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NONLINEAR REGRESSION
MODELS

9.1 INTRODUCTION

Although the linear model is flexible enough to allow great variety in the shape of the
regression, it still rules out many useful functional forms. In this chapter, we examine
regression models that are intrinsically nonlinear in their parameters. This allows a
much wider range of functional forms than the linear model can accommodate.!

9.2 NONLINEAR REGRESSION MODELS

The general form of the nonlinear regression model is
yi = h(x, B) + €. 9D
The linear model is obviously a special case. Moreover, some models which appear to
be nonlinear, such as
y = efoxl et
become linear after a transformation, in this case after taking logarithms. In this chapter,

we are interested in models for which there is no such transformation, such as the ones
in the following examples.

Example 9.1 CES Production Function
In Example 7.5, we examined a constant elasticity of substitution production function model:

Iny=Iny — ZInBK=" + (1 = )L ] + .
p

No transformation renders this equation linear in the parameters. We did find, however, that
a linear Taylor series approximation to this function around the point p = 0 produced an
intrinsically linear equation that could be fit by least squares. Nonetheless, the true model is
nonlinear in the sense that interests us in this chapter.

Example 9.2 Translog Demand System
Christensen, Jorgenson, and Lau (1975), proposed the translog indirect utility function for a
consumer allocating a budget among K commodities:

K K K
~InV =+ Y An(p/M) + DY valn(pe/M) In(pr/M)

k=1 k=1 1=1

1A complete discussion of this subject can be found in Amemiya (1985). Other important references are
Jennrich (1969), Malinvaud (1970), and especially Goldfeld and Quandt (1971, 1972). A very lengthy author-
itative treatment is the text by Davidson and MacKinnon (1993).
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where V is indirect utility, py is the price for the kth commodity and M is income. Roy’s identity
applied to this logarithmic function produces a budget share equation for the kth commodity
that is of the form

K
+ 35wy In(p; /M
Skz_aan/alnpk: B ;(_H’k; (p; /M) te k=1, K.
ainv/ainM g, 4+ S :/.=1 ymi In(p; /M)

where By = Ek Bx and yu; = Zk vk - No transformation of the budget share equation pro-
duces a linear model. This is an intrinsically nonlinear regression model. (It is also one among
a system of equations, an aspect we will ignore for the present.)

9.2.1 ASSUMPTIONS OF THE NONLINEAR REGRESSION MODEL

We shall require a somewhat more formal definition of a nonlinear regression model.
Sufficient for our purposes will be the following, which include the linear model as the
special case noted earlier. We assume that there is an underlying probability distribution,
or data generating process (DGP) for the observable y; and a true parameter vector, 8,
which is a characteristic of that DGP. The following are the assumptions of the nonlinear
regression model:

1. Functional form: The conditional mean function for y; given x; is .
Elyviix]=hx,B8), i=1,...,n,

where h(x;, B) is a twice continuously differentiable function.

2. Identifiability of the model parameters: The parameter vector in the model is iden-
tified (estimable) if there is no nonzero parameter 8°# g such that A(x;, 8% =
h(x;, B) for all x;. In the linear model, this was the full rank assumption, but the
simple absence of “multicollinearity” among the variables in x is not sufficient to
produce this condition in the nonlinear regression model. Note that the model given
in Example 9.2 is not identified. If the parameters in the model are all multiplied
by the same nonzero constant, the same conditional mean function results. This
condition persists even if all the variables in the model are linearly independent.
The indeterminacy was removed in the study cited by imposing the normalization
Bu=1.

3. Zero mean of the disturbance: It follows from Assumption 1 that we may write

yi = h(x;, B) +&;.

where E[g; | A(x;, 8)] = 0. This states that the disturbance at observation i is uncor-
related with the conditional mean function for all observations in the sample. This
is not quite the same as assuming that the disturbances and the exogenous variables
are uncorrelated, which is the familiar assumption, however. We will return to this
point below.

4. Homoscedasticity and nonautocorrelation: Asin the linear model, we assume con-
ditional homoscedasticity,

E[e?|h(x;.B), j=1,...,n] =0? afinite constant, 9-2)
and nonautocorrelation

E[eisjlh(xi,ﬂ),h_(xj,ﬂ), i=1...,n=0 forallj+#i.
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5. Data generating process: The data generating process for x; is assumed to be a well
behaved population such that first and second moments of the data can be assumed
to converge to fixed, finite population counterparts. The crucial assumption is that
the process generating x; is strictly exogenous to that generating ¢;. The data on x;
are assumed to be “well behaved.”

6. Underlying probability model: There is a well defined probability distribution gen-
erating &;. At this point, we assume only that this process produces a sample
of uncorrelated, identically (marginally) distributed random variables ; with mean
0 and variance o conditioned on A(x;, 8). Thus, at this point, our statement of the
model is semiparametric. (See Section 16.3.) We will not be assuming any partic-
ular distribution for ¢;. The conditional moment assumptions in 3 and 4 will be
sufficient for the results in this chapter. In Chapter 17, we will fully parameterize
the model by assuming that the disturbances are normally distributed. This will
allow us to be more specific about certain test statistics and, in addition, allow some
generalizations of the regression model. The assumption is not necessary here.

9.2.2 THE ORTHOGONALITY CONDITION
AND THE SUM OF SQUARES

Assumptions 1 and 3 imply that E[e; | A(x;, )] =0. In the lincar model, it follows,
because of the linearity of the conditional mean, that g; and x;, itself, are uncorrelated.
However, uncorrelatedness of &; with a particular nonlinear function of x; (the regression
function) does not necessarily imply uncorrelatedness with x;, itself nor, for that matter,
with other nonlinear functions of x;. On the other hand, the results we will obtain below
for the behavior of the estimator in this model are couched not in terms of x; but in
terms of certain functions of x; (the derivatives of the regression function), so, in point
of fact, E [¢ | X] = 0 is not even the assumption we need.

The foregoing is not a theoretical fine point. Dynamic models, which are very com-
mon in the contemporary literature, would greatly complicate this analysis. If it can be
assumed that g; is strictly uncorrelated with any prior information in the model, includ-
ing previous disturbances, then perhaps a treatment analogous to that for the linear
model would apply. But the convergence results needed to obtain the asymptotic prop-
erties of the estimator still have to be strengthened. The dynamic nonlinear regression
modelis beyond the reach of our treatment here. Strict independence of ¢; and x; would
be sufficient for uncorrelatedness of ¢; and every function of x;, but, again, in a dynamic
model, this assumption might be questionable. Some commentary on this aspect of the
nonlinear regression model may be found in Davidson and MacKinnon (1993).

If the disturbances in the nonlinear model are normally distributed, then the log of
the normal density for the ith observation will be

Inf(yi %, B,0%) = —(1/2)[In27 +Ino” + £/ /5?]. 9-3)

For this special case, we have from item D.2 in Theorem 17.2 (on maximum likelihood
estimation), that the derivatives of the log density with respect to the parameters have
mean zero. That is,

31nf(yi|xi,ﬂ,02)} _ E[l (8h(xi,ﬂ))
B

3B — 8,':| =0, 9-4)

ol
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so, in the normal case, the derivatives and the disturbances are uncorrelated. Whether
this can be assumed to hold in other cases is going to be model specific, but under
reasonable conditions, we would assume so. [See Ruud (2000, p. 540).]

In the context of the linear model, the orthogonality condition E [x;¢;] = 0 produces
least squares as a GMM estimator for the model. (See Chapter 18.) The orthogonality
condition is that the regressors and the disturbance in the model are uncorrelated.
In this setting, the same condition applies to the first derivatives of the conditional
mean function. The result in (9-4) produces a moment condition which will define the
nonlinear least squares estimator as a GMM estimator.

Example 9.3 First-Order Conditions for a Nonlinear Model
The first-order conditions for estimating the parameters of the nonlinear model,

Vi = B1+ €™+,
by nonlinear least squares [see (9-10)] are

3S(b) Z” .

ab, =—i=1 [y/—b1—bzeb3’]=0,
3S(b) . % ba
b, 2l mbibe]e =0,
3S(b .

These equations do not have an explicit solution.

Conceding the potential for ambiguity, we define a nonlinear regression model at
this point as follows.

DEFINITION 9.1 Nonlinear Regression Model

A nonlinear regression model is one for which the first-order conditions for least
squares estimation of the parameters are nonlinear functions of the parameters.

Thus, nonlinearity is defined in terms of the techniques needed to estimate the param-
eters, not the shape of the regression function. Later we shall broaden our definition to
include other techniques besides least squares.

9.2.3 THE LINEARIZED REGRESSION

The nonlinear regression model is y = h(x, B) + ¢. (To save some notation, we have
dropped the observation subscript.) The sampling theory results that have been obtained
for nonlinear regression models are based on a linear Taylor series approximation to
h(x, B) at a particular value for the parameter vector, 8%

K

0
hx By~ hix g + 3 XD

— 89, 9-5)
£ 3'31(() (.Bk ﬂk) \ & (
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This form of the equation is called the linearized regression model. By collecting terms,
we obtain

K ol 0h(x, B° K (ohx, B°
h(x, B) ~ [h(x, 8 - Zﬂf(—%}#)} + Zm(—ﬁﬂ). ©9-6)
k

0
k=1 k=1 By

Let x equal the kth partial derivative,> dk(x, 8°)/3BY. For a given value of g°, x{ is a
function only of the data, not of the unknown parameters. We now have

K K
h(x, B) ~ [h“ - Zx;?ﬂ;?} +) Xbr
k=1 k=1
which may be written
h(x,B) ~ h° —x"g% + x"B,
which implies that
yRh —x"g +x"B + .
By placing the known terms on the left-hand side of the equation, we obtain a linear
equation:
YW=y—h+x"p" =x"f+¢". -7

Note that £° contains both the true disturbance, ¢, and the error in the first order Taylor
series approximation to the true regression, shown in (9-6). That is,

K K
=g+ [h(x, B) - {ho =) B+ }:x,eﬁk}] : 9-8)
k=1 k=1

Since all the errors are accounted for, (9-7) is an equality, not an approximation. With
a value of g° in hand, we could compute y° and x” and then estimate the parameters of
(9-7) by linear least squares. (Whether this estimator is consistent or not remains to be
seen.)

Example 9.4 Linearized Regression
For the model in Example 9.3, the regressors in the linearized equation would be

h(.
X} = : (o) =1,

3P
x3 = ?h_(('))_=eﬂg",

B,

ah(.) 0
0 0, A8 X
X3 = ——= = Pp,xe"s",
3 319;9 ﬂz

With a set of values of the parameters g°,
Y =y —h(x. 81,53, B3) + BX] + B3xg + B3x3

could be regressed on the three variables previously defined to estimate 81, 8>, and gs.

ZYou should verity that for the linear regression model, these derivatives are the independent variables.
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9.2.4 LARGE SAMPLE PROPERTIES OF THE NONLINEAR
LEAST SQUARES ESTIMATOR

Numerous analytical results have been obtained for the nonlinear least squares esti-
mator, such as consistency and asymptotic normality. We cannot be sure that nonlinear
least squares is the most efficient estimator, except in the case of normally distributed
disturbances. (This conclusion is the same one we drew for the linear model.) But, in
the semiparametric setting of this chapter, we can ask whether this estimator is optimal
in some sense given the information that we do have; the answer turns out to be yes.
Some examples that follow will illustrate the points.

It is necessary to make some assumptions about the regressors. The precise require-
ments are discussed in some detail in Judge et al. (1985), Amemiya (1985), and Davidson
and MacKinnon (1993). In the linear regression model, to obtain our asymptotic results,
we assume that the sample moment matrix (1/7)X’'X converges to a positive definite
matrix Q. By analogy, we impose the same condition on the derivatives of the regression
function, which are called the pseudoregressors in the linearized model when they are
computed at the true parameter values. Therefore, for the nonlinear regression model,
the analog to (5-1) is

S 1 (3hxi. Bo)\ (9h(xi, B))\ _ y0 ]
phmnXX—phmn;< . )( - >_Q, ©-9)

where QU is a positive definite matrix. To establish consistency of b in the linear model,
we required plim(1/n)X’e = 0. We will use the counterpart to this for the pseudore-
gressors:

R
plim p ;x?si =0.

This is the orthogonality condition noted earlier in (5-4). In particular, note that orthog-
onality of the disturbances and the data is not the same condition. Finally, asymptotic
normality can be established under general conditions if

1 n
«/_ﬁ Zx?si BCN N[O,UZQO].
i=1

With these in hand, the asymptotic properties of the nonlinear least squares estimator
have been derived. They are, in fact, essentially those we have already seen for the
linear model, except that in this case we place the derivatives of the linearized function
evaluated at 8, X’ in the role of the regressors. [Amemiya (1985).]

The nonlinear least squares criterion function is

I O S B .
S(b)—zlz:lj[y, h(x;, b)] —zgei, (9-10)

where we have inserted what will be the solution value, b. The values of the parameters
that minimize (one half of) the sum of squared deviations are the nonlinear least squares
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estimators. The first-order conditions for a minimum are

. dh(xi, b
) == > i — hx, W] o =

i=1

0. (9-11)

In the linear model of Chapter 2, this produces a set of linear equations, the normal
equations (3-4). But in this more general case, (9-11) is a set of nonlinear equations that
do not have an explicit solution. Note that o is not relevant to the solution [nor was it
in (3-4)]. At the solution,

gb) = —X"e =0,

which is the same as (3-12) for the linear model.
Given our assumptions, we have the following general results:

THEOREM 9.1 Consistency of the Nonlinear Least
Squares Estimator
If the following assumptions hold:

a. The parameter space containing B is compact (has no gaps or nonconcave
regions),

b. For any vector ﬂo in that parameter space, plim 1/n)SB°) = q(ﬁo), a con-
tinuous and differentiable function,

C q(ﬁo) has a unique minimum at the true parameter vector, B,

then, the nonlinear least squares estimator defined by (9-10) and (9-11) is consis-
tent. We will sketch the proof, then consider why the theorem and the proof differ
as they do from the apparently simpler counterpart for the linear model. The proof,
notwithstanding the underlying subtleties of the assumptions, is straightforward.
The estimator, say, b" minimizes (1/m)S(B°). If (1/m)S(B") is minimized for every
n, then it is minimized by b" as n increases without bound. We also assumed that
the minimizer of q(B°) is uniquely B. If the minimum value of plim (1/n)S(8%)
equals the probability limit of the minimized value of the sum of squares, the
theorem is proved. This equality is produced by the continuity in assumption b.

R

;;:E
|

In the linear model, consistency of the least squares estimator could be established
based on plim(1/n)X’X = Q and plim(1/n)X’e = 0. To follow that approach here, we
would use the linearized model, and take essentially the same result. The loose end
in that argument would be that the linearized model is not the true model, and there
remains an approximation. In order for this line of reasoning to be valid, it must also be
either assumed or shown that plim(1/n)X"§ = 0 where §; = h(x;, 8) minus the Taylor
series approximation. An argument to this effect appears in Mittelhammer et al. (2000,
p. 190-191).

IR
EEAN N
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THEOREM 9.2 Asymptotic Normality of the Nonlinear
% Least Squares Estimator
If the pseudoregressors defined in (9-3) are “well behaved,” then

a 02
b~N [ﬁ, ——(QO)‘I} ,
n
where
1
Q' = plim—X"X".
n

The sample estimate of the asymptotic covariance matrix is

Est.Asy. Var[b] = 6%(X"X% L. 9-12)

Asymptotic efficiency of the nonlinear least squares estimator is difficult to establish
without a distributional assumption. There is an indirect approach that is one possibility.
The assumption of the orthogonality of the pseudoregressors and the true disturbances
implies that the nonlinear least squares estimator is a GMM estimator in this context.
With the assumptions of homoscedasticity and nonautocorrelation, the optimal weight-
ing matrix is the one that we used, which is to say that in the class of GMM estimators
for this model, nonlinear least squares uses the optimal weighting matrix. As such, it is
asymptotically efficient.

The requirement that the matrix in (9-9) converges to a positive definite matrix
implies that the columns of the regressor matrix X" must be linearly independent. This
identification condition is analogous to the requirement that the independent variables
inthe linear model be linearly independent. Nonlinear regression models usually involve
several independent variables, and at first blush, it might seem sufficient to examine the
data directly if one is concerned with multicollinearity. However, this situation is not
the case. Example 9.5 gives an application.

9.2.5 COMPUTING THE NONLINEAR LEAST SQUARES ESTIMATOR

Minimizing the sum of squares is a standard problem in nonlinear optimization that can
be solved by a number of methods. (See Section E.6.) The method of Gauss-Newton
is often used. In the linearized regression model, if a value of 8° is available, then the
linear regression model shown in (9-7) can be estimated by linear least squares. Once
a parameter vector is obtained, it can play the role of a new 8°, and the computation
can be done again. The iteration can continue until the difference between successive
parameter vectors is small enough to assume convergence. One of the main virtues of
this method is that at the last iteration the estimate of (Q°)~! will, apart from the scale
factor 62/n, provide the correct estimate of the asymptotic covariance matrix for the
parameter estimator.
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This iterative solution to the minimization problem is

n -1 n
b = [t [t
i=1

i=l1

n -1 n
zx,ox?'] [z O -h?)]
=1 i=1

—_ br =+ (X()’Xo)~lx()le0
= b[ + Al9

where all terms on the right-hand side are evaluated at b, and e” is the vector of nonlin-
ear least squares residuals. This algorithm has some intuitive appeal as well. For each
iteration, we update the previous parameter estimates by regressing the nonlinear least
squares residuals on the derivatives of the regression functions. The process will have
converged (i.e., the update will be 0) when X”e? is close enough to 0. This derivative
has a direct counterpart in the normal equations for the linear model, X’e = 0.

Asusual, when using a digital computer, we will not achieve exact convergence with
X%e” exactly equal to zero. A useful, scale-free counterpart to the convergence criterion
discussed in Section E.6.5is § = e"X"(X”X%)~'X"e". We note, finally, that iteration of
the linearized regression, although a very effective algorithm for many problems, does
not always work. As does Newton’s method, this algorithm sometimes “jumps off” to a
wildly errant second iterate, after which it may be impossible to compute the residuals
for the nextiteration. The choice of starting values for the iterations can be crucial. There
is art as well as science in the computation of nonlinear least squares estimates. [See
McCullough and Vinod (1999).] In the absence of information about starting values, a
workable strategy is to try the Gauss—Newton iteration first. If it fails, go back to the
initial starting values and try one of the more general algorithms, such as BFGS, treating
minimization of the sum of squares as an otherwise ordinary optimization problem.

A consistent estimator of o2 is based on the residuals:

~2 1 - 2
&t =~ ig[y, h(x;. b)]%. (9-13)

A degrees of freedom correction, 1/(n — K), where K is the number of elements in 8, is
notstrictly necessary here, because all results are asymptotic in any event. Davidson and
MacKinnon (1993) argue that on average, (9-13) will underestimate o2, and one should
use the degrees of freedom correction. Most software in current use for this model does,
but analysts will want to verify which is the case for the program they are using. With
this in hand, the estimator of the asymptotic covariance matrix for the nonlinear least
squares estimator is given in (9-12). :

Once the nonlinear least squares estimates are in hand, inference and hypothesis
tests can proceed in the same fashion as prescribed in Chapter 7. A minor problem can
arise in evaluating the fit of the regression in that the familiar measure,

=bt+

n 2
R=1— M’ (9-14)
Z?:l i =37

is no longer guaranteed to be in the range of 0 to 1. It does, however, provide a useful
descriptive measure.
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9.3 APPLICATIONS

We will examine two applications. The first is a nonlinear extension of the consump-
tion function examined in Example 2.1. The Box-Cox transformation presented in
Section 9.3.2 is a device used to search for functional form in regression.

9.3.1 A Nonlinear Consumption Function

The linear consumption function analyzed at the beginning of Chapter 2 is a restricted
version of the more general consumption function

C=a+pBY" +e¢,

in which y equals 1. With this restriction, the model is linear. If y is free to vary, however,
then this version becomes a nonlinear regression. The linearized model is

C— (a4 BY") + (@14 Y +y°8°Y" nY) =a + B(Y"") + 7 (Y InY) +e.

The nonlinear least squares procedure reduces to iterated regression of

, 1
0 ah(.) dh(.) Bh(.) 0
0 0 40 0 _ —
C=C+y’B8Y nYonx = 20 350 9,0 | Yl’ .
B8YY InY

Quarterly data on consumption, real disposable income, and several other variables
for 1950 to 2000 are listed in Appendix Table F5.1. We will use these to fit the nonlinear
consumption function. This turns out to be a particularly straightforward estimation
problem. Iterations are begun at the linear least squares estimates for « and g and 1
for ¥. As shown below, the solution is reached in 8 iterations, after which any further
iteration is merely “fine tuning” the hidden digits. (i.e., those that the analyst would not
be reporting to their reader.) (“Gradient” is the scale-free convergence measure noted
above.)

Begin NLSQ iterations. Linearized regression.

Iteration = 1; Sum of squares = 1536321.88; Gradient = 996103.930
Iteration = 2; Sum of squares = .1847 x 10'2; Gradient = .1847 x 10!
Iteration = 3; Sum of squares = 20406917.6; Gradient = 19902415.7
Iteration = 4; Sum of squares = 581703.598; Gradient = 77299.6342
Iteration = 5; Sum of squares = 504403.969; Gradient = .752189847
Iteration = 6; Sum of squares = 504403.216; Gradient = .526642396E-04
Iteration = 7; Sum of squares = 504403.216; Gradient = .511324981E-07
Iteration = 8; Sum of squares = 504403.216; Gradient = .606793426E-10

The linear and nonlinear least squares regression results are shown in Table 9.1.
Finding the starting values for a nonlinear procedure can be difficult. Simply trying
a convenient set of values can be unproductive. Unfortunately, there are no good rules
for starting values, except that they should be as close to the final values as possible
(not particularly helpful). When it is possible, an initial consistent estimator of g will be
a good starting value. In many cases, however, the only consistent estimator available
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Estimated Consumption Fi G
Linear Model Nonlinear Model

Parameter Estimate Standard Error Estimate Standard Error
o —80.3547 14.3059 458.7990 22.5014

B 0.9217 0.003872 . 0.10085 01091

y 1.0000 — 1.24483 .01205
ee 1,536,321.881 504,403.1725

o . . 87.20983 ; 50.0946

R? 996448 998834

Var|[b] — 0.000119037
Var[c] — ‘ 0.00014532
Cov[b, c] — —0.000131491

is the one we are trying to compute by least squares. For better or worse, trial and
error is the most frequently used procedure. For the present model, a natural set of
values can be obtained because a simple linear model is a special case. Thus, we can
start « and B at the linear least squares values that would result in the special case
of y = 1 and use 1 for the starting value for y. The procedures outlined earlier are
used at the last iteration to obtain the asymptotic standard errors and an estimate of
0. (To make this comparable to s? in the linear model, the value includes the degrees
of freedom correction.) The estimates for the linear model are shown in Table 9.1 as
well. Eight iterations are required for convergence. The value of § is shown at the right.
Note that the coefficient vector takes a very errant step after the first iteration—the
sum of squares becomes huge—but the iterations settle down after that and converge
routinely.

For hypothesis testing and confidence intervals, the usual procedures can be used,
with the proviso that all results are only asymptotic. As such, for testing a restriction,
the chi-squared statistic rather than the F ratio is likely to be more appropriate. For
example, for testing the hypothesis that y is different from 1, an asymptotic ¢ test, based
on the standard normal distribution, is carried out, using

124483 -1

o0 = 20.3178.

This result is larger than the critical value of 1.96 for the 5 percent significance level,
and we thus reject the linear model in favor of the nonlinear regression. We are also
interested in the marginal propensity to consume. In this expanded model, Hy:y =11is
a test that the marginal propensity to consume is constant, not that it is 1. (That would
be a joint test of both y =1 and g =1.) In this model, the marginal propensity to con-
sume is

dc
MPC = — = 8yY”,
ay =P
which varies with Y. To test the hypothesis that this value is 1, we require a particular
value of Y. Since it is the most recent value, we choose DPIygy 4 = 6634.9. At this value,
the MPC is estimated as 1.08264. We estimate its standard error using the delta method,
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with the square root of

[IMPC/3b 9MPC/dc] {

Var[p]  Cov[b, c]| [6MPC/3b
Cov|b,c]  Var|c] |:3MPC/3CZ|

0.00011904  —0.000131491
— c—1 c—1
=[c¥ bY T4 clnY)] [—0.000131491 0.00014532 ]

CYC—l
Y '(1+clnY)
= 0.00007469,
which gives a standard error of 0.0086425. For testing the hypothesis that the MPC is
equal to 1.0 in 2000.4, we would refer

1082641
~0.0086425

to a standard normal table. This difference is certainly statistically significant, so we
would reject the hypothesis.

= —9.562

Example 9.5 Multicollinearity in Nonlinear Regression

In the preceding example, there is no question of collinearity in the data matrix X = [i, y]; the
variation in Y is obvious on inspection. But at the final parameter estimates, the R? in the
regression is 0.999312 and the correlation between the two pseudoregressors x3 = Y and
x2 = BY” InY'is 0.999752. The condition number for the normalized matrix of sums of squares
and cross products is 208.306. (The condition number is computed by computing the square
root of the ratio of the largest to smallest characteristic root of D~'X”X°D " where x) = 1
and D is the diagonal matrix containing the square roots of x?’x{ on the diagonal.) Recall
that 20 was the benchmark value for a problematic data set. By the standards discussed in
Section 4.9.1, the collinearity problem in this “data set” is severe.

9.3.2 THE BOX-COX TRANSFORMATION

The Box—Cox transformation is a device for generalizing the linear model. The trans-
formation is*

a_
RO
A
In a regression model, the analysis can be done conditionally. For a given value of A,
the model

K
y=a+) fx +e (9-15)
k=1

is a linear regression that can be estimated by least squares.* In principle, each regressor
could be transformed by a different value of i, but, in most applications, this level of
generality becomes excessively cumbersome, and 1 is assumed to be the same for all
the variables in the model.®> At the same time, it is also possible to transform y, say, by

3Box and Cox (1964). To be defined for all values of A, x must be strictly positive. See also Zarembka (1974).

“In most applications, some of the regressors—for example, dummy variable—will not be transformed. For
such a variable, say vg, v,(f} = 1, and the relevant derivatives in (9-16) will be zero.

38ee, for example, Seaks and Layson (1983).



174 CHAPTER 9 4+ Nonlinear Regression Models

y®. Transformation of the dependent variable, however, amounts to a specification of
the whole model, not just the functional form. We will examine this case more closely
in Section 17.6.2.

Example 9.6 Flexible Cost Function

Caves, Christensen, and Trethaway (1980) analyzed the costs of production for railroads
providing freight and passenger service. Continuing a long line of literature on the costs
of production in regulated industries, a translog cost function (see Section 14.3.2) would
be a natural choice for modeling this multiple-output technology. Several of the firms in
the study, however, produced no passenger service, which would preclude the use of the
translog model. (This model would require the log of zero.) An alternative is the Box-Cox
transformation, which is computable for zero output levels. A constraint must still be placed
on % in their model, as 0™ is defined only if 1 is strictly positive. A positive value of A is
not assured. A question does arise in this context (and other similar ones) as to whether
zero outputs should be treated the same as nonzero outputs or whether an output of zero
represents a discrete corporate decision distinct from other variations in the output levels.
in addition, as can be seen in (9-16), this solution is only partial. The zero values of the
regressors preclude computation of appropriate standard errors.

If & in (9-15) is taken to be an unknown parameter, then the regression becomes nonlin-
ear in the parameters. Although no transformation will reduce it to linearity, nonlinear
least squaresis straightforward. In most instances, we can expect to find the least squares
value of A between —2 and 2. Typically, then, % is estimated by scanning this range for
the value that minimizes the sum of squares. When A equals zero, the transformation is,

by L’Hopital’s rule,
g Y —1)/dx
lim X =limd(x_)/d=limxkxlnx=1nx.
A—0 A r—0 1 A—0

Once the optimal value of A is located, the least squares estimates, the mean squared
residual, and this value of A constitute the nonlinear least squares (and, with normality
of the disturbance, maximum likelihood) estimates of the parameters.

After determining the optimal value of A, it is sometimes treated as if it were a
known value in the least squares results. But A is an estimate of an unknown parameter.
It is not hard to show that the least squares standard errors will always underestimate
the correct asymptotic standard errors.® To get the appropriate values, we need the
derivatives of the right-hand side of (9-15) with respect to «, 8, and 1. In the notation
of Section 9.2.3, these are .

nG _y

Jo

h() oy i
S5 = (9-16)

() o, 0P & o1, o
e S E — E Z(xr _
9 k=1 i 34 k=1 i )‘(Xk T )

6See Fomby, Hill, and Johnson (1984, pp- 426-431).
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We can now use (9-12) and (9-13) to estimate the asymptotic covariance matrix of the
parameter estimates. Note that Inx; appears in 8h(.)/dA. If xx = 0, then this matrix
cannot be computed. This was the point noted at the end of Example 9.6.

It is important to remember that the coefficients in a nonlinear model are not equal
to the slopes (i.e., here the demand elasticities) with respect to the variables. For the
Box-Cox model,’

A
lnY=oz—|—;6{X)L ]+e

9-17)
dE[InY|X]

dln X

Standard errors for these estimates can be obtained using the delta method. The deriva-
tives are 9n/88 = n/B and dn/0x = nln X. Collecting terms, we obtain

=ﬁXA‘=T’_

Asy. Var[f] = (n/8)*{ Asy. Var[B] + (8 In X)*Asy. Var[ 1] + (28 In X)Asy. Cov[B, A]}.

9.4 HYPOTHESIS TESTING AND PARAMETRIC
RESTRICTIONS

In most cases, the sorts of hypotheses one would test in this context will involve fairly
simple linear restrictions. The tests can be carried out using the usual formulas discussed
in Chapter 7 and the asymptotic covariance matrix presented earlier. For more involved
hypotheses and for nonlinear restrictions, the procedures are a bit less clear-cut. Three
principal testing procedures were discussed in Section 6.4 and Appendix C: the Wald,
likelihood ratio, and Lagrange multiplier tests. For the linear model, all three statistics
are transformations of the standard F statistic (see Section 17.6.1), so the tests are
essentially identical. In the nonlinear case, they are equivalent only asymptotically. We
will work through the Wald and Lagrange multiplier tests for the general case and
then apply them to the example of the previous section. Since we have not assumed
normality of the disturbances (yet), we will postpone treatment of the likelihood ratio
statistic until we revisit this model in Chapter 17.

9.4.1 SIGNIFICANCE TESTS FOR RESTRICTIONS:
F AND WALD STATISTICS

The hypothesis to be tested is

Hy:x(B) =q. 9-18)

where r(B) is a column vector of J continuous functions of the elements of 8. These
restrictions may be linear or nonlinear. It is necessary, however, that they be overiden-
tifying restrictions. Thus, in formal terms, if the original parameter vector has K free
elements, then the hypothesis r(8) — q must impose at least one functional relationship

7We have used the result dIn Y/dIn X = XdIn Y/d X.
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on the parameters. If there is more than one restriction, then they must be functionally
independent. These two conditions imply that the J x K matrix

ar(B)

ap’
must have full row rank and that J, the number of restrictions, must be strictly less than
K. (This situation is analogous to the linear model, in which R(8) would be the matrix
of coefficients in the restrictions.)

Let b be the unrestricted, nonlinear least squares estimator, and let b, be the esti-
mator obtained when the constraints of the hypothesis are imposed.® Which test statistic
one uses depends on how difficult the computations are. Unlike the linear model, the var-
ious testing procedures vary in complexity. For instance, in our example, the Lagrange
multiplier is by far the simplest to compute. Of the four methods we will consider, only
this test does not require us to compute a nonlinear regression.

The nonlinear analog to the familiar F statistic based on the fit of the regression
(i.e., the sum of squared residuals) would be

Sb,) — Sb)]/J
Sb)/(n—K)

R(B) = (9-19)

F[l,n— K] = [

(9-20)

This equation has the appearance of our earlier F ratio. In the nonlinear setting, how-
ever, neither the numerator nor the denominator has exactly the necessary chi-squared
distribution, so the F distribution is only approximate. Note that this F statistic requires
that both the restricted and unrestricted models be estimated.

The Wald test is based on the distance between r(b) and q. If the unrestricted esti-
mates fail to satisfy the restrictions, then doubt is cast on the validity of the restrictions.
The statistic is

W = [r(b) — q]'{ Est.Asy. Var[r(b) — q]}_l[r(b) —q]

) o 9-21)
= [1(b) — q]' {RB)VR'(0)} ' [x(b) — q,

where
V = Est.Asy. Var[b],

and R(b) is evaluated at b, the estimate of .

Under the null hypothesis, this statistic has a limiting chi-squared distribution with
J degrees of freedom. If the restrictions are correct, the Wald statistic and J times the F
statistic are asymptotically equivalent. The Wald statistic can be based on the estimated
covariance matrix obtained earlier using the unrestricted estimates, which may provide
a large savings in computing effort if the restrictions are nonlinear. It should be noted
that the small-sample behavior of W can be erratic, and the more conservative F statistic
may be preferable if the sample is not large.

The caveat about Wald statistics that applied in the linear case applies here as well.
Because it is a pure significance test that does not involve the alternative hypothesis, the

8This computational problem may be extremely difficult in its own right, especially if the constraints are
nonlinear. We assume that the estimator has been obtained by whatever means are necessary.
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Wald statistic is not invariant to how the hypothesis is framed. In cases in which there
are more than one equivalent ways to specify r(8) = q, W can give different answers
depending on which is chosen.

9.4.2 TESTS BASED ON THE LM STATISTIC

The Lagrange multiplier test is based on the decrease in the sum of squared residuals
that would result if the restrictions in the restricted model were released. The formalities
of the test are given in Sections 17.5.3 and 17.6.1. For the nonlinear regression model,
the test has a particularly appealing form.” Let e, be the vector of residuals y; — A(x;. b,)
computed using the restricted estimates. Recall that we defined X° as an n x K matrix
of derivatives computed at a particular parameter vector in (9-6). Let X? be this ma-
trix computed at the restricted estimates. Then the Lagrange multiplier statistic for the
nonlinear regression model is

0/w0ry01—
— e;X*[X*,X*] ngle*
e.e./n

LM

(9-22)

Under Hy, this statistic has a limiting chi-squared distribution with J degrees of freedom.
What is especially appealing about this approach is that it requires only the restricted
estimates. This method may provide some savings in computing effort if, as in our
example, the restrictions resultin a linear model. Note, also, that the Lagrange multiplier
statistic is n times the uncentered R’ in the regression of e, on X'. Many Lagrange
multiplier statistics are computed in this fashion.

Example 9.7 Hypotheses Tests in a Nonlinear Regression Model
We test the hypothesis Hg:y = 1 in the consumption function of Section 9.3.1.

o F statistic. The F statistic is

1,536,321.881 — 504,403.57) /1

|
Fl1,204 - 3] = 504,403.57/(204 — 3)

=411.29.

The critical value from the tables is 4.18, so the hypothesis is rejected.

e  Wald statistic. For our example, the Wald statistic is based on the distance of y from
1 and is simply the square of the asymptotic t ratio we computed at the end of the
example:

_(1.244827 — 1)
= 7 0.01205?

The critical value from the chi-squared table is 3.84.
e Lagrange multiplier. For our example, the elements in x' are

= 412.805.

X' =[1,Y", ByY’ InY].

To compute this at the restricted estimates, we use the ordinary least squares
estimates for « and g and 1 for y so that

x' =[1,Y,8YInY].

9This test is derived in Judge et al. (1985). A lengthy discussion appears in Mittelhammer et al. (2000).
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The residuals are the least squares residuals computed from the linear regression.
Inserting the values given earlier, we have
996,103.9
LM = : = 132.267.
(1,536,321.881/204)
As expected, this statistic is also larger than the critical value from the chi-squared
table.

9.4.3 A SPECIFICATION TEST FOR NONLINEAR REGRESSIONS:
THE P TEST

MacKinnon, White, and Davidson (1983) have extended the J test discussed in Sec-
tion 8.3.3 to nonlinear regressions. One result of this analysis is a simple test for linearity
versus loglinearity.

The specific hypothesis to be tested is

Hy:y=h'(x, B) + &
Yersus |

Hi:g(y) =h'@.y) + &,

where x and z are regressor vectors and 8 and y are the parameters. As the authors
note, using y instead of, say, j(y) in the first function is nothing more than an implicit
definition of the units of measurement of the dependent variable.

Anintermediate case is useful. If we assume that g(y) is equal to y but we allow #°(.)
and A'(.) to be nonlinear, then the necessary modification of the J test is straightforward,
albeit perhaps a bit more difficult to carry out. For this case, we form the compound
model

y=({10-ah'x, B) +ahl(z,y)+e
= ho(x, B) +a[hl(z, y) — KO (x, B)] +=.

Presumably, both 8 and y could be estimated in isolation by nonlinear least squares.
Suppose that a nonlinear least squares estimate of y has been obtained. One approach
is to insert this estimate in (9-23) and then estimate B and & by nonlinear least squares.
The J test amounts to testing the hypothesis that o equals zero. Of course, the model
is symmetric in A°(.) and 4!(.), so their roles could be reversed. The same conclusions
drawn earlier would apply here.

Davidson and MacKinnon (1981) propose what may be a simpler alternative. Given
an estimate of 8, say §, approximate the first i%(x, 8) in (9-23) with a linear Taylor series
at this point. The result is

(9-23)

9K ()

h(x, B) ~ W'(x, B) + 8—3,] B-H=h"+1"p - A8 9-24)

(Note H? is a row vector of derivatives.) Using this device, they replace (9-23) with
y=h'+H' =R +alh' @) - 'x B)] +e,

in which 8 and o can be estimated by linear least squares. As before, the J test amounts
to testing the significance of &. If it is found that & is significantly different from zero,
then Hj is rejected. For the authors’ asymptotic results to hold, any initial consistent
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estimator of B will suffice for §; the nonlinear least squares estimator that they suggest
seems a natural choice.1?

Now we can generalize the test to allow a nonlinear function, g(y), in H;. Davidson
and MacKinnon require g(y) to be monotonic, continuous, and continuously
differentiable and not to introduce any new parameters. (This requirement excludes
the Box-Cox model, which is considered in Section 9.3.2.) The compound model that
forms the basis of the test is

A -y — & B)] +alg(y) — h'(z, y)] ==. , (9-25)

Again, there are two approaches. As before, if p is an estimate of y, then 8 and & can be
estimated by maximum likelihood conditional on this estimate.'! This method promises
to be extremely messy, and an alternative is proposed. Rewrite (9-25) as

y—h'x. By =alh(z,y) — g»)] +aly — Bx, B)] + .

Now use the same linear Taylor series expansion for #°(x, B) on the left-hand side and
replace both y and A°(x, B) with /° on the right. The resulting model is

y =R+ 08 = H°B +a[h' — g(h°)] +e. (5-26)

As before, with an initial estimate of B, this model can be estimated by least squares.

This modified form of the J test is labeled the P rest. As the authors discuss, it is
probably not as powerful as any of the Wald or Lagrange multiplier tests that we have
considered. In their experience, however, it has sufficient power for applied research
and is clearly simple to carry out.

The P test can be used to test a linear specification against a loglinear model. For
this test, both 4°(.) and h'(.) are linear, whereas g(y) = In y. Let the two competing
models be denoted

Hy:y=xB+¢
and
Hi:lny=Inx)y +e.
[We stretch the usual notational conventions by using In(x) for (Inxy, ..., Inx;).] Now

letb and ¢ be the two linear least squares estimates of the parameter vectors. The P test
for H, as an alternative to Hy is carried out by testing the significance of the coefficient
& in the model

y=xB+a[lny— Inxb)] + ¢. 9-27)

The second term is the difference between predictions of In y obtained directly from
the loglinear model and obtained as the log of the prediction from the linear model.
We can also reverse the roles of the two formulas and test Hy as the alternative. The

10This procedure assumes that Hy is correct, of course.

U east squares will be inappropriate because of the transformation of y, which will translate to a Jacobian
term in the log-likelihood. See the later discussion of the Box-Cox model.
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a b,- (5% 1?2 s
Linear —-228.714 —23.849 0.1770 0.95548 76.277
(13.891) (2.044) (0.00278)
Pg test for the linear model, @ = —121.496 (46.353),t = —2.621
Loglinear —8.9473 -0.2590 1.8205 0.96647 0.14825
(0.2181) (0.0236) (0.0289)

Pg test for the loglinear model, & = —0.0003786 (0.0001969), ¢ = 1.925

compound regression is
Iny=Inx'p +a(y—e"™) +e. (9-28)

The test of linearity vs. loglinearity has been the subject of a number of studies.
Godfrey and Wickens (1982) discuss several approaches.

Example 9.8 Money Demand
A large number of studies have estimated money demand equations, some linear and some
log-linear.'? Quarterly data from 1950 to 2000 for estimation of a money demand equation
are given in Appendix Table F5.1. The interest rate is the quarterly average of the monthly
average 90 day T-bill rate. The money stock is M1. Real GDP is seasonally adjusted and
stated in 1996 constant dollars. Results of the Pr test of the linear versus the loglinear model
are shown in Table 9.2.

Regressions of M1 on a constant, r and Y, and In M1 on a constant, Inr and In Y, produce
the results given in Table 9.2 (standard errors are given in parentheses). Both models appear
to fit quite well,’® and the pattern of significance of the coefficients is the same in both
equations. After computing fitted values from the two equations, the estimates of « from the
two models are as shown in Table 9.2. Referring these to a standard normal table, we reject
the linear model in favor of the loglinear model.

9.5 ALTERNATIVE ESTIMATORS FOR NONLINEAR
REGRESSION MODELS

Section 9.2 discusses the “standard” case in which the only complication to the classical
regression model of Chapter 2 is that the conditional mean function in y; = h(x;, B) +¢&;
is a nonlinear function of 8. This fact mandates an alternative estimator, nonlinear
least squares, and some new interpretation of the “regressors” in the model. In this
section, we will consider two extensions of these results. First, as in the linear case,
there can be situations in which the assumption that Cov[x;, ¢;] = 0 is not reasonable.
These situations will, as before, require an instrumental variables treatment, which we
consider in Section 9.5.1. Second, there will be models in which it is convenient to
estimate the parameters in two steps, estimating one subset at the first step and then
using these estimates in a second step at which the remaining parameters are estimated.

12A comprehensive survey appears in Goldfeld (1973).
13The interest elasticity is in line with the received results. The income elasticity is quite a bit larger.
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We will have to modify our asymptotic results somewhat to accommodate this estimation
strategy. The two-step estimator is discussed in Section 9.5.2.

9.5.1 NONLINEAR INSTRUMENTAL VARIABLES ESTIMATION

In Section 5.4, we extended the linear regression model to allow for the possibility that
the regressors might be correlated with the disturbances. The same problem can arise in
nonlinear models. The consumption function estimated in Section 9.3.1 is almost surely
a case in point, and we reestimated it using the instrumental variables technique for
linear models in Example 5.3. In this section, we will extend the method of instrumental
variables to nonlinear regression models.

In the nonlinear model,

Vi =hx;, B) + ¢,

the covariates x; may be correlated with the disturbances. We would expect this effect
to be transmitted to the pscudoregressors, x! = dh(x;, B)/88. If so, then the results that
we derived for the linearized regression would no longer hold. Suppose that there is a
set of variables [z, ..., zz] such that

plim(1/m)Z'e =0 - 9-29)
and
plim(1/mZ'X° = Q% +#0,

where XU is the matrix of pseudoregressors in the linearized regression, evaluated at the
true parameter values. If the analysis that we did for the linear model in Section 5.4 can
be applied to this set of variables, then we will be able to construct a consistent estimator
for B using the instrumental variables. As a first step, we will attempt to replicate the

approach that we used for the linear model. The linearized regression model is given in
(9'7)7

y=hX p)+e~h’+X(B- % +e
or
Y ~X'B+e,
where
Y =y—h’+X°8°.

For the moment, we neglect the approximation error in linearizing the model. In (9-29),
we have assumed that

plim(1/n)Z'y® = plim (1/n)Z’X"B. (9-30)

Suppose, as we did before, that there are the same number of instrumental variables
as there are parameters, that is, columns in X°. (Note: This number need not be the
number of variables. See our preceding example.) Then the “estimator” used before is
suggested:

by = (Z'X%71Z'y°. : (9-31)
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The logic is sound, but there is a problem with this estimator. The unknown parameter
vector B appears on both sides of (9-30). We might consider the approach we used for
our first solution to the nonlinear regression model. That is, with some initial estima-
tor in hand, iterate back and forth between the instrumental variables regression and
recomputing the pseudoregressors until the process converges to the fixed point that
we seek. Once again, the logic is sound, and in principle, this method does produce the
estimator we seek.
If we add to our preceding assumptions

1
%Z’e 4, N[0, 6%Qu4],

then we will be able to use the same form of the asymptotic distribution for this estimator
that we did for the linear case. Before doing so, we must fill in some gapsin the preceding.
First, despite its intuitive appeal, the suggested procedure for finding the estimator is
very unlikely to be a good algorithm for locating the estimates. Second, we do not wish to
limit ourselves to the case in which we have the same number of instrumental variables as
parameters. So, we will consider the problem in general terms. The estimation criterion
for nonlinear instrumental variables is a quadratic form,

Ming S(B) = 3{[y — h(X, )1 Z}Z'Z)"{Z']y — h(X, B)]}
= 1e(BYLZL'L) ' Le(B).

The first-order conditions for minimization of this weighted sum of squares are

BB _ _xvz@zyzep) =o.
op :

This result is the same one we had for the linear model with X" in the role of X. You
should check that when e(8) = y — X8, our results for the linear model in Section 9.5.1
are replicated exactly. This problem, however, is highly nonlinear in most cases, and the
repeated least squares approach is unlikely to be effective. But it is a straightforward
minimization problem in the frameworks of Appendix E, and instead, we can just treat
estimation here as a problem in nonlinear optimization.

We have approached the formulation of this instrumental variables estimator more
or less strategically. However, there is a more structured approach. The orthogonality
condition

plim(1/n)Z'e =0

defines a GMM estimator. With the homoscedasticity and nonautocorrelation assump-
tion, the resultant minimum distance estimator produces precisely the criterion function
suggested above. We will revisit this estimator in this context, in Chapter 18.

With well-behaved pseudoregressors and instrumental variables, we have the gen-
eral result for the nonlinear instrumental variables estimator; this result is discussed at
length in Davidson and MacKinnon (1993).
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R R R

THEOREM 9.3 Asymptotic Distribution of the Nonlinear
Instrumental Variables Estimator
With well-behaved instrumental variables and pseudoregressors,

brv £ N[8.02(Q% Q) 'Q%) 7.

We estimate the asympiotic covariance matrix with
Est.Asy. Var[byy] = 62[XVZ(Z'2)"'Z’X°] !,

where X0 is X computed using bry.

As a final observation, note that the “two-stage least squares” interpretation of the
instrumental variables estimator for the linear model still applies here, with respect
to the IV estimator. That is, at the final estimates, the first-order conditions (normal
equations) imply that '

XOIZ(Z!Z)—lzly — XOIZ(ZIZ)—lzonB’

which says that the estimates satisfy the normal equations for alinear regression of y (not
y°) on the predictions obtained by regressing the columns of X" on Z. The interpretation
is not quite the same here, because to compute the predictions of XY, we must have the
estimate of 8 in hand. Thus, this two-stage least squares approach does not show how
to compute byy; it shows a characteristic of byy.

Example 9.9 Instrumental Variables Estimates of the
Consumption Function

The consumption function in Section 9.3.1 was estimated by nonlinear least squares without
accounting for the nature of the data that would certainly induce correlation between X°
and e. As we did earlier, we will reestimate this model using the technique of instrumental
variables. For this application, we will use the one-period lagged value of consumption and
one- and two-period lagged values of income as instrumental variables estimates. Table 9.3
reports the nonlinear least squares and instrumental variables estimates. Since we are using
two periods of lagged values, two observations are lost. Thus, the least squares estimates
are not the same as those reported earlier.

The instrumental variable estimates differ considerably from the least squares estimates.
The differences can be deceiving, however. Recall that the MPC in the model is 8Y"~'. The
2000.4 value for DPI that we examined earlier was 6634.9. At this value, the instrumental
variables and least squares estimates of the MPC are 0.8567 with an estimated standard
error of 0.01234 and 1.08479 with an estimated standard error of 0.008694, respectively.
These values do differ a bit but less than the quite large differences in the parameters might
have led one to expect. We do note that both of these are considerably greater than the
estimate in the linear model, 0.9222 (and greater than one, which seems a bit implausible).

9.56.2 TWO-STEP NONLINEAR LEAST SQUARES ESTIMATION

In this section, we consider a special case of this general class of models in which the
nonlinear regression model depends on a second set of parameters that is estimated
separately.
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lohlinear Least Squares

Instrumental Variables Least Squares
Parameter Estimate Standard Error Estimate Standard Error
o 627.031 26.6063 468.215 22.788
B 0.040291 0.006050 0.0971598 0.01064
y 1.34738 0.016816 1.24892 0.1220
o 57.1681 — 49.87998 —
e!

e 650,369.805 — 495,114.490 —

The model is
y=h(x, B,w,y)+e.

We consider cases in which the auxiliary parameter p is estimated separately in a model
that depends on an additional set of variables w. This first step might be a least squares
regression, a nonlinear regression, or a maximum likelihood estimation. The parameters
y will usually enter 4(.) through some function of y and w, such as an expectation. The
second step then consists of a nonlinear regression of y on A(x, 8, w, ¢) in which c¢is the
first-round estimate of y. To put this in context, we will develop an example.

The estimation procedure is as follows.

1. Estimate y by least squares, nonlinear least squares, or maximum likelihood. We
assume that this estimator, however obtained, denoted ¢, is consistent and asymp-
totically normally distributed with asymptotic covariance matrix V.. Let V. be any
appropriate estimator of V..

2. Estimate B by nonlinear least squares regression of y on h(x, 8,w, ¢). Let 02V,
be the asymptotic covariance matrix of this estimator of 8, assuming p is known
and let 2V, be any appropriate estimator of 02V, = ¢%X”X%) !, where X°
is the matrix of pseudoregressors evaluated at the true parameter values x! =
dh(x;, B, wi,y)/9B.

The argument for consistency of bis based on the Slutsky Theorem, D.12 as we treatb asa
function of c and the data. We require, as usual, well-behaved pseudoregressors. As long
as cis consistent for y, the large-sample behavior of the estimator of B conditioned on ¢
is the same as that conditioned on p, that s, as if y were known. Asymptotic normality is
obtained along similar lines (albeit with greater difficulty). The asymptotic covariance
matrix for the two-step estimator is provided by the following theorem.

THEOREM 9.4 Asymptotic Distribution of the Two-Step Nonlinear
Least Squares Estimator [Murphy and Topel (1985)]
Under the standard conditions assumed for the nonlinear least squares estima-

tor, the second-step estimator of B is consistent and asymptotically normally dis-
tributed with asymptotic covariance matrix

Vi =02V, + V,[CV.C' — CV.R' — RV.C]V,,
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THEOREM 9.4 (Continued)
where

1« h(x;, B, wi,
C=nplim- Y x'&2 (M)
ni= ay’

—npllm ZX : (M)

The function 9g(.)/dy in the a’eﬁnmon of R is the gradient of the ith term in the
log-likelihood function if y is estimated by maximum likelihood. (The precise
form is shown below.) If y appears as the parameter vector in a regression model,

zi = f(wi,y) +u;, 9-32)
then dg(.)/dy will be a derivative of the sum of squared deviations function,
9g() _ " af (wi, y)
dy dy
If this is a linear regression, then the derivative vector is just w;.

and

Implementation of the theorem requires that the asymptotic covariance matrix
computed as usual for the second-step estimator based on ¢ instead of the true y must
be corrected for the presence of the estimator ¢ in b.

Before developing the application, we note how some important special cases are
handled. If y enters A(.) as the coefficient vector in a prediction of another variable in
a regression model, then we have the following useful results.

Case 1 Linear regression models. If () = x/B + 8 E [z | w;| + &, where E[z |w;] =
w}y, then the two models are just fit by linear least squares as usual. The regression
for y includes an additional variable, wic. Let d be the coefficient on this new variable.
Then ’

n
C=d Z erx; W,
i=1

and
n
R = Z(e,-ui)x,-w’
i=1
Case 2 Uncorrelated linear regression models. In Case 1, if the two regression distur-

bances are uncorrelated, then R = 0.

Case 2 is general. The terms in R vanish asymptotically if the regressions have
uncorrelated disturbances, whether either or both of them are linear. This situation will
be quite common.
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Case 3 Prediction from a nonlinear model. In Cases1and?2,if E[z; | w;]is anonlinear
function rather than a linear function, then it is only necessary to change w; to w? =
9 E[z; | w;]/dy—a vector of pseudoregressors—in the definitions of C and R.

Case 4 Subset of regressors. In case 2 (but not in case 1), if w contains all the variables
that are in x, then the appropriate estimator is simply

2.2
Su

Vi =5 (1 + Cs—z) XX,

e

where X* includes all the variables in x as well as the prediction for z.

All these cases carry over to the case of a nonlinear regression function for y. It
is only necessary to replace x;, the actual regressors in the linear model, with x{, the

pseudoregressors.

9.5.3 TWO-STEP ESTIMATION OF A CREDIT SCORING MODEL.

Greene (1995¢) estimates a model of consumer behavior in which the dependent vari-
able of interest is the number of major derogatory reports recorded in the credit history
of a sample of applicants for a type of credit card. In fact, this particular variable is one
of the most significant determinants of whether an application for a loan or a credit card
will be accepted. This dependent variable y is a discrete variable that at any time, for
most consumers, will equal zero, but for a significant fraction who have missed several
revolving credit payments, it will take a positive value. The typical values are zero, one,
or two, but values up to, say, 10 are not unusual. This count variable is modeled using a
Poisson regression model. This model appears in Sections B.4.8,22.2.1,22.3.7, and 21.9.
The probability density function for this discrete random variable is

e~ Al

Probly; = j] = 7

The expected value of y; is A;, so depending on how ; is specified and despite the unusual
nature of the dependent variable, this model is a linear or nonlinear regression model.
We will consider both cases, the linear model E[y; | x;] = x]8 and the more common
loglinear model E[y; | x;] = e%F where x; might include such covariates as age, income,
and typical monthly credit account expenditure. This model is usually estimated by
maximum likelihood. But since it is a bona fide regression model, least squares, either
linear or nonlinear, is a consistent, if inefficient, estimator.

In Greene’s study, a secondary model is fit for the outcome of the credit card
application. Let z; denote this outcome, coded 1 if the application is accepted, 0 if not.
For purposes of this example, we will model this outcome using a logit model (see the
extensive development in Chapter 21, esp. Section 21.3). Thus

evy
Prob[z; = 1] = P(w;, y) = oo
where w; might include age, income, whether the applicants own their own homes, and
whether they are self-employed; these are the sorts of variables that “credit scoring”
agencies examine.
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Finally, we suppose that the probability of acceptance enters the regression model
as an additional explanatory variable. (We concede that the power of the underlying
theory wanes a bit here.) Thus, our nonlinear regression model is

Ely: |x] =X +8P(w,,p) (linear)
or
Eyi |x;] = e¥F+P™:Y) (Joglinear, nonlinear).

The two-step estimation procedure consists of estimation of y by maximum likelihood,
then computing P, = P(w;, ¢), and finally estimating by either linear or nonlinear
least squares [8, 8] using P; as a constructed regressor. We will develop the theoretical
background for the estimator and then continue with implementation of the estimator.

For the Poisson regression model, when the conditional mean function is linear,
x) = x;. If it is loglinear, then

X} = 94; /3B = dexp(x/B)/3B = Aix;,

which is simple to compute. When P(w;, y)isincludedin the model, the pseudoregressor
vector x? includes this variable and the coefficient vector is [8, §]. Then

P
Vp=-— Z[Yi — h(x;.wi, b, o) x (XVX%),
i
where X is computed at [b, d, ¢], the final estimates.
For the logit model, the gradient of the log-likelihood and the estimator of V. are
given in Section 21.3.1. They are

dlnf(z |wi, y)/0y = [z — P(wi, y)]w;

and

n -1
Ve=1> [z — Pwi. p)Pwiw;

i=1
Note that for this model, we are actually inserting a prediction from a regression model
of sorts, since E[z | w;] = P(w;, y). To compute C, we will require

0h(.)/0y = X80P, /0y = L8P (1~ F)w;.

The remaining parts of the corrected covariance matrix are computed using
n
C=> (X)) [hdPi(1— P)IW,
i=1 .
and

R=) (L&)&)@ — Pow,.

i=1

(If the regression model is linear, then the three occurrences of A; are omitted.)
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it Scoring |

Step 2. E[y; | x;] = eXf+0

Step 1. P(w;,y) Step 2. Ely; | x;1=x[B+ 6P,
Variable Est. St.Er. Est. St.Er* St.Er.* Est. St.Er. St.Er.*
Constant 27236 1.0970  —1.0628 1.1907 1.2681 —7.1969 6.2708 49.3854
Age —0.7328 0.02961 0.021661 0.018756 0.020089 0.079984 0.08135 0.61183
Income 0.21919 0.14296 0.03473 0.07266  0.082079 —0.1328007 0.21380 1.8687
Self-empl —1.9439 1.01270
Own Rent  0.18937 0.49817
Expend —0.000787 0.000368 0.000413 —0.28008  0.96429 0.96969
P(w;,y) 1.0408 1.0653 1.177299 6.99098 5.7978 49.34414
In L —53.925 '
ee 95.5506 80.31265
s 0.977496 0.89617
R 0.05433 0.20514
Mean 0.73 0.36 0.36

Data used in the application are listed in Appendix Table F9.1. We use the following
model:

Prob|z; = 1] = P(age, income, own rent, self-employed),
E[y;] = h(age, income, expend).

We have used 100 of the 1,319 observations used in the original study. Table 9.4 reports
the results of the various regressions and computations. The column denoted St.Er.*
contains the corrected standard error. The column marked St.Er. contains the standard
errors that would be computed ignoring the two-step nature of the computations. For
the linear model, we used €’e/n to estimate o2,

As expected, accounting for the variability in ¢ increases the standard errors of the
second-step estimator. The linear model appears to give quite different results from the
nonlinear model. But this can be deceiving. In the linear model, dE[y; | x;, P]/9x; =
B whereas in the nonlinear model, the counterpart is not g but ;8. The value of
A; at the mean values of all the variables in the second-step model is roughly 0.36
(the mean of the dependent variable), so the marginal effects in the nonlinear model
are [0.0224, —0.0372, —0.07847, 1.9587], respectively, including F; but not the constant,
which are reasonably similar to those for the linear model. To compute an asymptotic
covariance matrix for the estimated marginal effects, we would use the delta method
from Sections D.2.7 and D.3.1. For convenience, let b, = [b’, d]', and let v; = [x/, P,
which just adds F; to the regressor vector so we need not treat it separately. Then the
vector of marginal effects is

m = exp(v;b,) x b, = A;b,,.
The matrix of derivatives is

G =0m/3b, =2, (I+b,v),
so the estimator of the asymptotic covariance matrix for mis

Est.Asy. Var[m] = GV;G'.
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TABLE 9.5 Maximum Likelihgod Estim of Secopd-Step Regre

Constant Age Income Expend P
Estimate —6.3200 0.073106 0.045236 ~0.00689 4.6324
Std.Error 3.9308 0.054246 0.17411 0.00202 3.6618
Corr.Std.Error 9.0321 0.102867 0.402368 0.003985 9.918233

One might be tempted to treat A; as a constant, in which case only the first term in
the quadratic form would appear and the computation would amount simply to mul-
tiplying the asymptotic standard errors for b, by A;. This approximation would leave
the asymptotic ¢ ratios unchanged, whereas making the full correction will change the
entire covariance matrix. The approximation will generally lead to an understatement
of the correct standard errors.

Finally, although this treatment is not discussed in detail until Chapter 18, we note at
this point that nonlinear least squares is an inefficient estimator in the Poisson regression
model; maximum likelihood is the preferred, efficient estimator. Table 9.5 presents the
maximum likelihood estimates with both corrected and uncorrected estimates of the
asymptotic standard errors of the parameter estimates. (The full discussion of the model
is given in Section 21.9.) The corrected standard errors are computed using the methods
shown in Section 17.7. A comparison of these estimates with those in the third set of
Table 9.4 suggests the clear superiority of the maximum likelihood estimator.

9.6 SUMMARY AND CONCLUSIONS

In this chapter, we extended the regression model to a form which allows nonlinearity
in the parameters in the regression function. The results for interpretation, estimation,
and hypothesis testing are quite similar to those for the linear model. The two crucial
differences between the two models are, first, the more involved estimation procedures
needed for the nonlinear model and, second, the ambiguity of the interpretation of the
coefficients in the nonlinear model (since the derivatives of the regression are often
nonconstant, in contrast to those in the linear model.) Finally, we added two additional
levels of generality to the model. A nonlinear instrumental variables estimator is sug-
gested to accommodate the possibility that the disturbances in the model are correlated
with the included variables. In the second application, two-step nonlinear least squares
is suggested as a method of allowing a model to be fit while including functions of
previously estimated parameters.

Key Terms and Concepts

* Box-Cox transformation e Lincarized regression model o Pp test

 Consistency ¢ LM test ¢ Pseudoregressors

¢ Delta method ¢ Logit ¢ Semiparametric

* GMM estimator ¢ Multicollinearity o Starting values

¢ [dentification » Nonlinear model o Translog

* [nstrumental variables « Normalization ¢ Two-step estimation
estimator ¢ Orthogonality condition o Wald test

o [teration ¢ Overidentifying restrictions
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Exercises

1.

2.

Describe how to obtain nonlinear least squares estimates of the parameters of the
model y = ax? + ¢.
Use MacKinnon, White, and Davidson’s Py test to determine whether a linear or
loglinear production model is more appropriate for the data in Appendix Table
F6.1. (The test is described in Section 9.4.3 and Example 9.8.)
Using the Box—Cox transformation, we may specify an alternative to the Cobb-
Dougilas model as
2 A
lnY=a+ﬁk(K D—}—ﬁl(L 1)+8.
A A
Using Zellner and Revankar’s data in Appendix Table F9.2, estimate «, B, f;, and
A by using the scanning method suggested in Section 9.3.2. (Do not forget to scale
Y, K, and L by the number of establishments.) Use (9-16), (9-12), and (9-13) to
compute the appropriate asymptotic standard errors for your estimates. Compute
the two output elasticities, 31n Y/9In K and 8 1n Y/3d In L, at the sample means of
Kand L. [Hint: 9lnY/dln K = K31In Y/3K.]
For the model in Exercise 3, test the hypothesis that A = 0 using a Wald test, a
likelihood ratio test, and a Lagrange multiplier test. Note that the restricted model
is the Cobb-Douglas log-linear model.
To extend Zeliner and Revankar’s model in a fashion similar to theirs, we can use
the Box—Cox transformation for the dependent variable as well. Use the method
of Example 17.6 (with 8 = 1) to repeat the study of the preceding two exercises.
How do your results change?
Verify the following differential equation, which applies to the Box-Cox transfor-

mation:
dix® (1 . idlx®
i = (X) [XA(IH x)’ - W . (9'33)

Show that the limiting sequence for » = 01is

dix®  (Inx)+!
— = . 9-34
0 A i+l O34
These results can be used to great advantage in deriving the actual second deriva-
tives of the log-likelihood function for the Box—Cox model.
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