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Chapter 1

Introduction to Probability Theory

1.1 The Binomial Asset Pricing Model

Thebinomial asset pricing modelprovides a powerful tool to understand arbitrage pricing theory
and probability theory. In this course, we shall use it for both these purposes.

In the binomial asset pricing model, we model stock prices in discrete time, assuming that at each
step, the stock price will change to one of two possible values. Let us begin with an initial positive
stock priceS0. There are two positive numbers,d andu, with

0 < d < u; (1.1)

such that at the next period, the stock price will be eitherdS0 or uS0. Typically, we taked andu
to satisfy0 < d < 1 < u, so change of the stock price fromS0 to dS0 represents adownward
movement, and change of the stock price fromS0 to uS0 represents anupwardmovement. It is
common to also haved = 1

u , and this will be the case in many of our examples. However, strictly
speaking, for what we are about to do we need to assume only (1.1) and (1.2) below.

Of course, stock price movements are much more complicated than indicated by the binomial asset
pricing model. We consider this simple model for three reasons. First of all, within this model the
concept of arbitrage pricing and its relation to risk-neutral pricing is clearly illuminated. Secondly,
the model is used in practice because with a sufficient number of steps, it provides a good, compu-
tationally tractable approximation to continuous-time models. Thirdly, within the binomial model
we can develop the theory of conditional expectations and martingales which lies at the heart of
continuous-time models.

With this third motivation in mind, we develop notation for the binomial model which is a bit
different from that normally found in practice. Let us imagine that we are tossing a coin, and when
we get a “Head,” the stock price moves up, but when we get a “Tail,” the price moves down. We
denote the price at time1 byS1(H) = uS0 if the toss results in head (H), and byS1(T ) = dS0 if it

11



12

S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

Figure 1.1:Binomial tree of stock prices withS0 = 4, u = 1=d = 2.

results in tail (T). After the second toss, the price will be one of:

S2(HH) = uS1(H) = u2S0; S2(HT ) = dS1(H) = duS0;

S2(TH) = uS1(T ) = udS0; S2(TT ) = dS1(T ) = d2S0:

After three tosses, there are eight possible coin sequences, although not all of them result in different
stock prices at time3.

For the moment, let us assume that the third toss is the last one and denote by


 = fHHH;HHT;HTH;HTT;THH;THT;TTH;TTTg

the set of all possible outcomes of the three tosses. The set
 of all possible outcomes of a ran-
dom experiment is called thesample spacefor the experiment, and the elements! of 
 are called
sample points. In this case, each sample point! is a sequence of length three. We denote thek-th
component of! by !k. For example, when! = HTH , we have!1 = H , !2 = T and!3 = H .

The stock priceSk at timek depends on the coin tosses. To emphasize this, we often writeSk(!).
Actually, this notation does not quite tell the whole story, for whileS3 depends on all of!, S2
depends on only the first two components of!, S1 depends on only the first component of!, and
S0 does not depend on! at all. Sometimes we will use notation suchS2(!1; !2) just to record more
explicitly howS2 depends on! = (!1; !2; !3).

Example 1.1 SetS0 = 4, u = 2 andd = 1

2
. We have then the binomial “tree” of possible stock

prices shown in Fig. 1.1. Each sample point! = (!1; !2; !3) represents a path through the tree.
Thus, we can think of the sample space
 as either the set of all possible outcomes from three coin
tosses or as the set of all possible paths through the tree.

To complete our binomial asset pricing model, we introduce amoney marketwith interest rater;
$1 invested in the money market becomes$(1 + r) in the next period. We taker to be the interest
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rate for bothborrowingandlending. (This is not as ridiculous as it first seems, because in a many
applications of the model, an agent is either borrowing or lending (not both) and knows in advance
which she will be doing; in such an application, she should taker to be the rate of interest for her
activity.) We assume that

d < 1 + r < u: (1.2)

The model would not make sense if we did not have this condition. For example, if1+ r � u, then
the rate of return on the money market is always at least as great as and sometimes greater than the
return on the stock, and no one would invest in the stock. The inequalityd � 1 + r cannot happen
unless eitherr is negative (which never happens, except maybe once upon a time in Switzerland) or
d � 1. In the latter case, the stock does not really go “down” if we get a tail; it just goes up less
than if we had gotten a head. One should borrow money at interest rater and invest in the stock,
since even in the worst case, the stock price rises at least as fast as the debt used to buy it.

With the stock as the underlying asset, let us consider aEuropean call optionwith strike price
K > 0 and expiration time1. This option confers the right to buy the stock at time1 for K dollars,
and so is worthS1 �K at time1 if S1 �K is positive and is otherwise worth zero. We denote by

V1(!) = (S1(!)�K)+
�
= maxfS1(!)�K; 0g

the value (payoff) of this option at expiration. Of course,V1(!) actually depends only on!1, and
we can and do sometimes writeV1(!1) rather thanV1(!). Our first task is to compute thearbitrage
priceof this option at time zero.

Suppose at time zero you sell the call forV0 dollars, whereV0 is still to be determined. You now
have an obligation to pay off(uS0 � K)+ if !1 = H and to pay off(dS0 � K)+ if !1 = T . At
the time you sell the option, you don’t yet know which value!1 will take. You hedgeyour short
position in the option by buying�0 shares of stock, where�0 is still to be determined. You can use
the proceedsV0 of the sale of the option for this purpose, and then borrow if necessary at interest
rater to complete the purchase. IfV0 is more than necessary to buy the�0 shares of stock, you
invest the residual money at interest rater. In either case, you will haveV0��0S0 dollars invested
in the money market, where this quantity might be negative. You will also own�0 shares of stock.

If the stock goes up, the value of your portfolio (excluding the short position in the option) is

�0S1(H) + (1 + r)(V0��0S0);

and you need to haveV1(H). Thus, you want to chooseV0 and�0 so that

V1(H) = �0S1(H) + (1 + r)(V0 ��0S0): (1.3)

If the stock goes down, the value of your portfolio is

�0S1(T ) + (1 + r)(V0 ��0S0);

and you need to haveV1(T ). Thus, you want to chooseV0 and�0 to also have

V1(T ) = �0S1(T ) + (1 + r)(V0��0S0): (1.4)
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These are two equations in two unknowns, and we solve them below

Subtracting (1.4) from (1.3), we obtain

V1(H)� V1(T ) = �0(S1(H)� S1(T )); (1.5)

so that

�0 =
V1(H)� V1(T )

S1(H)� S1(T )
: (1.6)

This is a discrete-time version of the famous “delta-hedging” formula for derivative securities, ac-
cording to which the number of shares of an underlying asset a hedge should hold is the derivative
(in the sense of calculus) of the value of the derivative security with respect to the price of the
underlying asset. This formula is so pervasive the when a practitioner says “delta”, she means the
derivative (in the sense of calculus) just described. Note, however, that mydefinitionof �0 is the
number of shares of stock one holds at time zero, and (1.6) is a consequence of this definition, not
the definition of�0 itself. Depending on how uncertainty enters the model, there can be cases
in which the number of shares of stock a hedge should hold is not the (calculus) derivative of the
derivative security with respect to the price of the underlying asset.

To complete the solution of (1.3) and (1.4), we substitute (1.6) into either (1.3) or (1.4) and solve
for V0. After some simplification, this leads to the formula

V0 =
1

1 + r

�
1 + r � d

u � d
V1(H) +

u� (1 + r)

u� d
V1(T )

�
: (1.7)

This is thearbitrage pricefor the European call option with payoffV1 at time1. To simplify this
formula, we define

~p
�
=

1 + r � d

u� d
; ~q

�
=
u� (1 + r)

u� d
= 1� ~p; (1.8)

so that (1.7) becomes

V0 =
1

1+ r
[~pV1(H) + ~qV1(T )]: (1.9)

Because we have takend < u, both ~p and ~q are defined,i.e., the denominator in (1.8) is not zero.
Because of (1.2), both~p and~q are in the interval(0; 1), and because they sum to1, we can regard
them as probabilities ofH andT , respectively. They are therisk-neutralprobabilites. They ap-
peared when we solved the two equations (1.3) and (1.4), and have nothing to do with the actual
probabilities of gettingH or T on the coin tosses. In fact, at this point, they are nothing more than
a convenient tool for writing (1.7) as (1.9).

We now consider a European call which pays offK dollars at time2. At expiration, the payoff of

this option isV2
�
= (S2 � K)+, whereV2 andS2 depend on!1 and!2, the first and second coin

tosses. We want to determine the arbitrage price for this option at time zero. Suppose an agent sells
the option at time zero forV0 dollars, whereV0 is still to be determined. She then buys�0 shares
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of stock, investingV0 ��0S0 dollars in the money market to finance this. At time1, the agent has
a portfolio (excluding the short position in the option) valued at

X1

�
= �0S1 + (1 + r)(V0 ��0S0): (1.10)

Although we do not indicate it in the notation,S1 and thereforeX1 depend on!1, the outcome of
the first coin toss. Thus, there are really two equations implicit in (1.10):

X1(H)
�
= �0S1(H) + (1 + r)(V0 ��0S0);

X1(T )
�
= �0S1(T ) + (1 + r)(V0 ��0S0):

After the first coin toss, the agent hasX1 dollars and can readjust her hedge. Suppose she decides to
now hold�1 shares of stock, where�1 is allowed to depend on!1 because the agent knows what
value!1 has taken. She invests the remainder of her wealth,X1 � �1S1 in the money market. In
the next period, her wealth will be given by the right-hand side of the following equation, and she
wants it to beV2. Therefore, she wants to have

V2 = �1S2 + (1 + r)(X1 ��1S1): (1.11)

Although we do not indicate it in the notation,S2 andV2 depend on!1 and!2, the outcomes of the
first two coin tosses. Considering all four possible outcomes, we can write (1.11) as four equations:

V2(HH) = �1(H)S2(HH) + (1 + r)(X1(H)��1(H)S1(H));

V2(HT ) = �1(H)S2(HT ) + (1 + r)(X1(H)��1(H)S1(H));

V2(TH) = �1(T )S2(TH) + (1 + r)(X1(T )��1(T )S1(T ));

V2(TT ) = �1(T )S2(TT ) + (1 + r)(X1(T )��1(T )S1(T )):

We now have six equations, the two represented by (1.10) and the four represented by (1.11), in the
six unknownsV0, �0, �1(H), �1(T ),X1(H), andX1(T ).

To solve these equations, and thereby determine the arbitrage priceV0 at time zero of the option and
the hedging portfolio�0, �1(H) and�1(T ), we begin with the last two

V2(TH) = �1(T )S2(TH) + (1 + r)(X1(T )��1(T )S1(T ));

V2(TT ) = �1(T )S2(TT ) + (1 + r)(X1(T )��1(T )S1(T )):

Subtracting one of these from the other and solving for�1(T ), we obtain the “delta-hedging for-
mula”

�1(T ) =
V2(TH)� V2(TT )

S2(TH)� S2(TT )
; (1.12)

and substituting this into either equation, we can solve for

X1(T ) =
1

1 + r
[~pV2(TH) + ~qV2(TT )]: (1.13)
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Equation (1.13), gives the value the hedging portfolio should have at time1 if the stock goes down
between times0 and1. We define this quantity to be thearbitrage value of the option at time1 if
!1 = T , and we denote it byV1(T ). We have just shown that

V1(T )
�
=

1

1 + r
[~pV2(TH) + ~qV2(TT )]: (1.14)

The hedger should choose her portfolio so that her wealthX1(T ) if !1 = T agrees withV1(T )
defined by (1.14). This formula is analgous to formula (1.9), but postponed by one step. The first
two equations implicit in (1.11) lead in a similar way to the formulas

�1(H) =
V2(HH)� V2(HT )

S2(HH)� S2(HT )
(1.15)

andX1(H) = V1(H), whereV1(H) is the value of the option at time1 if !1 = H , defined by

V1(H)
�
=

1

1 + r
[~pV2(HH) + ~qV2(HT )]: (1.16)

This is again analgous to formula (1.9), postponed by one step. Finally, we plug the valuesX1(H) =

V1(H) andX1(T ) = V1(T ) into the two equations implicit in (1.10). The solution of these equa-
tions for�0 andV0 is the same as the solution of (1.3) and (1.4), and results again in (1.6) and
(1.9).

The pattern emerging here persists, regardless of the number of periods. IfVk denotes the value at
time k of a derivative security, and this depends on the firstk coin tosses!1; : : : ; !k, then at time
k � 1, after the firstk � 1 tosses!1; : : : ; !k�1 are known, the portfolio to hedge a short position
should hold�k�1(!1; : : : ; !k�1) shares of stock, where

�k�1(!1; : : : ; !k�1) =
Vk(!1; : : : ; !k�1; H)� Vk(!1; : : : ; !k�1; T )
Sk(!1; : : : ; !k�1; H)� Sk(!1; : : : ; !k�1; T )

; (1.17)

and the value at timek � 1 of the derivative security, when the firstk � 1 coin tosses result in the
outcomes!1; : : : ; !k�1, is given by

Vk�1(!1; : : : ; !k�1) =
1

1 + r
[~pVk(!1; : : : ; !k�1; H) + ~qVk(!1; : : : ; !k�1; T )]

(1.18)

1.2 Finite Probability Spaces

Let
 be a set with finitely many elements. An example to keep in mind is


 = fHHH;HHT;HTH;HTT;THH;THT;TTH;TTTg (2.1)

of all possible outcomes of three coin tosses. LetF be the set of all subsets of
. Some sets inF
are;, fHHH;HHT;HTH;HTTg, fTTTg, and
 itself. How many sets are there inF?
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Definition 1.1 A probability measureIP is a function mappingF into [0; 1] with the following
properties:

(i) IP (
) = 1,

(ii) If A1; A2; : : : is a sequence of disjoint sets inF , then

IP

 1[
k=1

Ak

!
=

1X
k=1

IP (Ak):

Probability measures have the following interpretation. LetA be a subset ofF . Imagine that
 is
the set of all possible outcomes of some random experiment. There is a certain probability, between
0 and1, that when that experiment is performed, the outcome will lie in the setA. We think of
IP (A) as this probability.

Example 1.2 Suppose a coin has probability1
3

for H and 2

3
for T . For the individual elements of


 in (2.1), define

IPfHHHg =
�
1

3

�
3

; IPfHHTg =
�
1

3

�
2
�
2

3

�
;

IPfHTHg =
�
1

3

�
2
�
2

3

�
; IPfHTTg =

�
1

3

��
2

3

�
2

;

IPfTHHg =
�
1

3

�
2
�
1

3

�
; IPfTHTg =

�
1

3

��
2

3

�
2

;

IPfTTHg =
�
1

3

��
2

3

�
2

; IPfTTTg =
�
2

3

�
3

:

ForA 2 F , we define

IP (A) =
X
!2A

IPf!g: (2.2)

For example,

IPfHHH;HHT;HTH;HTTg=
�
1

3

�
3

+ 2

�
1

3

�
2
�
2

3

�
+

�
1

3

��
2

3

�
2

=
1

3
;

which is another way of saying that the probability ofH on the first toss is1
3
.

As in the above example, it is generally the case that we specify a probability measure on only some
of the subsets of
 and then use property (ii) of Definition 1.1 to determineIP (A) for the remaining
setsA 2 F . In the above example, we specified the probability measure only for the sets containing
a single element, and then used Definition 1.1(ii) in the form (2.2) (see Problem 1.4(ii)) to determine
IP for all the other sets inF .

Definition 1.2 Let 
 be a nonempty set. A�-algebra is a collectionG of subsets of
 with the
following three properties:

(i) ; 2 G,
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(ii) If A 2 G, then its complementAc 2 G,

(iii) If A1; A2; A3; : : : is a sequence of sets inG, then[1k=1Ak is also inG.

Here are some important�-algebras of subsets of the set
 in Example 1.2:

F0 =

(
;;


)
;

F1 =

(
;;
; fHHH;HHT;HTH;HTTg; fTHH; THT;TTH;TTTg

)
;

F2 =

(
;;
; fHHH;HHTg; fHTH;HTTg; fTHH; THTg; fTTH;TTTg;

and all sets which can be built by taking unions of these

)
;

F3 = F = The set of all subsets of
:

To simplify notation a bit, let us define

AH
�
= fHHH;HHT;HTH;HTTg= fH on the first tossg;

AT
�
= fTHH; THT;TTH; TTTg= fT on the first tossg;

so that
F1 = f;;
; AH; ATg;

and let us define

AHH
�
= fHHH;HHTg= fHH on the first two tossesg;

AHT
�
= fHTH;HTTg= fHT on the first two tossesg;

ATH
�
= fTHH; THTg= fTH on the first two tossesg;

ATT
�
= fTTH; TTTg= fTT on the first two tossesg;

so that

F2 = f;;
; AHH; AHT ; ATH; ATT ;

AH ; AT ; AHH [ ATH ; AHH [ ATT ; AHT [ ATH ; AHT [ ATT ;

Ac
HH ; A

c
HT ; A

c
TH; A

c
TTg:

We interpret�-algebras as a record of information. Suppose the coin is tossed three times, and you
are not told the outcome, but you are told, for every set inF1 whether or not the outcome is in that
set. For example, you would be told that the outcome is not in; and is in
. Moreover, you might
be told that the outcome is not inAH but is inAT . In effect, you have been told that the first toss
was aT , and nothing more. The�-algebraF1 is said to contain the “information of the first toss”,
which is usually called the “information up to time1”. Similarly, F2 contains the “information of
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the first two tosses,” which is the “information up to time2.” The �-algebraF3 = F contains “full
information” about the outcome of all three tosses. The so-called “trivial”�-algebraF0 contains no
information. Knowing whether the outcome! of the three tosses is in; (it is not) and whether it is
in 
 (it is) tells you nothing about!

Definition 1.3 Let
 be a nonempty finite set. Afiltration is a sequence of�-algebrasF0;F1;F2; : : : ;Fn

such that each�-algebra in the sequence contains all the sets contained by the previous�-algebra.

Definition 1.4 Let 
 be a nonempty finite set and letF be the�-algebra of all subsets of
. A
random variable is a function mapping
 into IR.

Example 1.3 Let 
 be given by (2.1) and consider the binomial asset pricing Example 1.1, where
S0 = 4, u = 2 andd = 1

2
. ThenS0, S1, S2 andS3 are all random variables. For example,

S2(HHT ) = u2S0 = 16. The “random variable”S0 is really not random, sinceS0(!) = 4 for all
! 2 
. Nonetheless, it is a function mapping
 into IR, and thus technically a random variable,
albeit a degenerate one.

A random variable maps
 into IR, and we can look at the preimage under the random variable of
sets inIR. Consider, for example, the random variableS2 of Example 1.1. We have

S2(HHH) = S2(HHT ) = 16;

S2(HTH) = S2(HTT ) = S2(THH) = S2(THT ) = 4;

S2(TTH) = S2(TTT ) = 1:

Let us consider the interval[4; 27]. The preimage underS2 of this interval is defined to be

f! 2 
;S2(!) 2 [4; 27]g= f! 2 
; 4 � S2 � 27g = Ac
TT :

The complete list of subsets of
 we can get as preimages of sets inIR is:

;;
; AHH; AHT [ATH ; ATT ;

and sets which can be built by taking unions of these. This collection of sets is a�-algebra, called
the �-algebra generated by the random variableS2, and is denoted by�(S2). The information
content of this�-algebra is exactly the information learned by observingS2. More specifically,
suppose the coin is tossed three times and you do not know the outcome!, but someone is willing
to tell you, for each set in�(S2), whether! is in the set. You might be told, for example, that! is
not inAHH , is inAHT [ATH , and is not inATT . Then you know that in the first two tosses, there
was a head and a tail, and you know nothing more. This information is the same you would have
gotten by being told that the value ofS2(!) is 4.

Note thatF2 defined earlier contains all the sets which are in�(S2), and even more. This means
that the information in the first two tosses is greater than the information inS2. In particular, if you
see the first two tosses, you can distinguishAHT from ATH , but you cannot make this distinction
from knowing the value ofS2 alone.
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Definition 1.5 Let
 be a nonemtpy finite set and letF be the�-algebra of all subsets of
. LetX
be a random variable on(
;F). The�-algebra�(X) generated byX is defined to be the collection
of all sets of the formf! 2 
;X(!) 2 Ag, whereA is a subset ofIR. LetG be a sub-�-algebra of
F . We say thatX isG-measurableif every set in�(X) is also inG.

Note: We normally write simplyfX 2 Ag rather thanf! 2 
;X(!) 2 Ag.

Definition 1.6 Let
 be a nonempty, finite set, letF be the�-algebra of all subsets of
, let IP be
a probabilty measure on(
;F), and letX be a random variable on
. Given any setA � IR, we
define theinduced measureof A to be

LX(A)
�
= IPfX 2 Ag:

In other words, the induced measure of a setA tells us the probability thatX takes a value inA. In
the case ofS2 above with the probability measure of Example 1.2, some sets inIR and their induced
measures are:

LS2(;) = IP (;) = 0;

LS2(IR) = IP (
) = 1;

LS2 [0;1) = IP (
) = 1;

LS2 [0; 3] = IPfS2 = 1g = IP (ATT ) =

�
2

3

�
2

:

In fact, the induced measure ofS2 places a mass of size
�
1

3

�2
= 1

9
at the number16, a mass of size

4

9
at the number4, and a mass of size

�
2

3

�2
= 4

9
at the number1. A common way to record this

information is to give thecumulative distribution functionFS2(x) of S2, defined by

FS2(x)
�
= IP (S2 � x) =

8>>><
>>>:

0; if x < 1;
4

9
; if 1 � x < 4;

8

9
; if 4 � x < 16;

1; if 16 � x:

(2.3)

By the distributionof a random variableX , we mean any of the several ways of characterizing
LX . If X is discrete, as in the case ofS2 above, we can either tell where the masses are and how
large they are, or tell what the cumulative distribution function is. (Later we will consider random
variablesX which have densities, in which case the induced measure of a setA � IR is the integral
of the density over the setA.)

Important Note. In order to work through the concept of a risk-neutral measure, we set up the
definitions to make a clear distinction between random variables and their distributions.

A random variableis a mapping from
 to IR, nothing more. It has an existence quite apart from
discussion of probabilities. For example, in the discussion above,S2(TTH) = S2(TTT ) = 1,
regardless of whether the probability forH is 1

3
or 1

2
.
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Thedistributionof a random variable is a measureLX on IR, i.e., a way of assigning probabilities
to sets inIR. It depends on the random variableX and the probability measureIP we use in
. If we
set the probability ofH to be1

3
, thenLS2 assigns mass1

9
to the number16. If we set the probability

of H to be 1

2
, thenLS2 assigns mass1

4
to the number16. The distribution ofS2 has changed, but

the random variable has not. It is still defined by

S2(HHH) = S2(HHT ) = 16;

S2(HTH) = S2(HTT ) = S2(THH) = S2(THT ) = 4;

S2(TTH) = S2(TTT ) = 1:

Thus, a random variable can have more than one distribution (a “market” or “objective” distribution,
and a “risk-neutral” distribution).

In a similar vein, twodifferent random variablescan have thesame distribution. Suppose in the
binomial model of Example 1.1, the probability ofH and the probability ofT is 1

2
. Consider a

European call with strike price14 expiring at time2. The payoff of the call at time2 is the random
variable(S2 � 14)+, which takes the value2 if ! = HHH or! = HHT , and takes the value0 in
every other case. The probability the payoff is2 is 1

4
, and the probability it is zero is3

4
. Consider also

a European put with strike price3 expiring at time2. The payoff of the put at time2 is (3� S2)
+,

which takes the value2 if ! = TTH or ! = TTT . Like the payoff of the call, the payoff of the
put is2 with probability 1

4
and0 with probability3

4
. The payoffs of the call and the put are different

random variables having the same distribution.

Definition 1.7 Let
 be a nonempty, finite set, letF be the�-algebra of all subsets of
, let IP be
a probabilty measure on(
;F), and letX be a random variable on
. Theexpected valueof X is
defined to be

IEX
�
=
X
!2


X(!)IPf!g: (2.4)

Notice that the expected value in (2.4) is defined to be a sumover the sample space
. Since
 is a
finite set,X can take only finitely many values, which we labelx1; : : : ; xn. We can partition
 into
the subsetsfX1 = x1g; : : : ; fXn = xng, and then rewrite (2.4) as

IEX
�
=

X
!2


X(!)IPf!g

=
nX

k=1

X
!2fXk=xkg

X(!)IPf!g

=
nX

k=1

xk
X

!2fXk=xkg
IPf!g

=
nX

k=1

xkIPfXk = xkg

=
nX

k=1

xkLXfxkg:
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Thus, although the expected value is defined as a sum over the sample space
, we can also write it
as a sum overIR.

To make the above set of equations absolutely clear, we considerS2 with the distribution given by
(2.3). The definition ofIES2 is

IES2 = S2(HHH)IPfHHHg+ S2(HHT )IPfHHTg
+S2(HTH)IPfHTHg+ S2(HTT )IPfHTTg
+S2(THH)IPfTHHg+ S2(THT )IPfTHTg
+S2(TTH)IPfTTHg+ S2(TTT )IPfTTTg

= 16 � IP (AHH) + 4 � IP (AHT [ATH) + 1 � IP (ATT )

= 16 � IPfS2 = 16g+ 4 � IPfS2 = 4g+ 1 � IPfS2 = 1g
= 16 � LS2f16g+ 4 � LS2f4g+ 1 � LS2f1g
= 16 � 1

9
+ 4 � 4

9
+ 4 � 4

9

=
48

9
:

Definition 1.8 Let
 be a nonempty, finite set, letF be the�-algebra of all subsets of
, let IP be a
probabilty measure on(
;F), and letX be a random variable on
. Thevarianceof X is defined
to be the expected value of(X � IEX)2, i.e.,

Var(X)
�
=
X
!2


(X(!)� IEX)2IPf!g: (2.5)

One again, we can rewrite (2.5) as a sum overIR rather than over
. Indeed, ifX takes the values
x1; : : : ; xn, then

Var(X) =
nX

k=1

(xk � IEX)2IPfX = xkg =
nX

k=1

(xk � IEX)2LX(xk):

1.3 Lebesgue Measure and the Lebesgue Integral

In this section, we consider the set of real numbersIR, which is uncountably infinite. We define the
Lebesgue measureof intervals inIR to be their length. This definition and the properties of measure
determine the Lebesgue measure of many, but not all, subsets ofIR. The collection of subsets of
IR we consider, and for which Lebesgue measure is defined, is the collection ofBorel setsdefined
below.

We use Lebesgue measure to construct theLebesgue integral, a generalization of the Riemann
integral. We need this integral because, unlike the Riemann integral, it can be defined on abstract
spaces, such as the space of infinite sequences of coin tosses or the space of paths of Brownian
motion. This section concerns the Lebesgue integral on the spaceIR only; the generalization to
other spaces will be given later.
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Definition 1.9 TheBorel �-algebra, denotedB(IR), is the smallest�-algebra containing all open
intervals inIR. The sets inB(IR) are calledBorel sets.

Every set which can be written down and just about every set imaginable is inB(IR). The following
discussion of this fact uses the�-algebra properties developed in Problem 1.3.

By definition, every open interval(a; b) is inB(IR), wherea andb are real numbers. SinceB(IR) is
a�-algebra, every union of open intervals is also inB(IR). For example, for every real numbera,
theopen half-line

(a;1) =
1[
n=1

(a; a+ n)

is a Borel set, as is

(�1; a) =
1[
n=1

(a� n; a):

For real numbersa andb, the union

(�1; a) [ (b;1)

is Borel. SinceB(IR) is a�-algebra, every complement of a Borel set is Borel, soB(IR) contains

[a; b] =
�
(�1; a) [ (b;1)

�c
:

This shows that every closed interval is Borel. In addition, theclosed half-lines

[a;1) =
1[
n=1

[a; a+ n]

and

(�1; a] =
1[
n=1

[a� n; a]

are Borel. Half-open and half-closed intervals are also Borel, since they can be written as intersec-
tions of open half-lines and closed half-lines. For example,

(a; b] = (�1; b]\ (a;1):

Every set which contains only one real number is Borel. Indeed, ifa is a real number, then

fag =
1\
n=1

�
a� 1

n
; a+

1

n

�
:

This means that every set containing finitely many real numbers is Borel; ifA = fa1; a2; : : : ; ang,
then

A =
n[

k=1

fakg:
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In fact, every set containing countably infinitely many numbers is Borel; ifA = fa1; a2; : : :g, then

A =
n[

k=1

fakg:

This means that the set of rational numbers is Borel, as is its complement, the set of irrational
numbers.

There are, however, sets which are not Borel. We have just seen that any non-Borel set must have
uncountably many points.

Example 1.4 (The Cantor set.)This example gives a hint of how complicated a Borel set can be.
We use it later when we discuss the sample space for an infinite sequence of coin tosses.

Consider the unit interval[0; 1], and remove the middle half, i.e., remove the open interval

A1

�
=

�
1

4
;
3

4

�
:

The remaining set

C1 =

�
0;

1

4

�
[
�
3

4
; 1

�
has two pieces. From each of these pieces, remove the middle half, i.e., remove the open set

A2

�
=

�
1

16
;
3

16

�[�
13

16
;
15

16

�
:

The remaining set

C2 =

�
0;

1

16

�[�
3

16
;
1

4

�[�
3

4
;
13

16

�[�
15

16
; 1

�
:

has four pieces. Continue this process, so at stagek, the setCk has2k pieces, and each piece has
length 1

4k
. TheCantor set

C
�
=

1\
k=1

Ck

is defined to be the set of points not removed at any stage of this nonterminating process.

Note that the length ofA1, the first set removed, is1
2
. The “length” ofA2, the second set removed,

is 1

8
+ 1

8
= 1

4
. The “length” of the next set removed is4 � 1

32
= 1

8
, and in general, the length of the

k-th set removed is2�k . Thus, the total length removed is
1X
k=1

1

2k
= 1;

and so the Cantor set, the set of points not removed, has zero “length.”

Despite the fact that the Cantor set has no “length,” there are lots of points in this set. In particular,
none of the endpoints of the pieces of the setsC1; C2; : : : is ever removed. Thus, the points

0;
1

4
;
3

4
; 1;

1

16
;
3

16
;
13

16
;
15

16
;
1

64
; : : :

are all in C. This is a countably infinite set of points. We shall see eventually that the Cantor set
has uncountably many points. �
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Definition 1.10 Let B(IR) be the�-algebra of Borel subsets ofIR. A measure on(IR;B(IR)) is a
function� mappingB into [0;1] with the following properties:

(i) �(;) = 0,

(ii) If A1; A2; : : : is a sequence of disjoint sets inB(IR), then

�

 1[
k=1

Ak

!
=

1X
k=1

�(Ak):

Lebesgue measureis defined to be the measure on(IR;B(IR)) which assigns the measure of each
interval to be its length. Following Williams’s book, we denote Lebesgue measure by�0.

A measure has all the properties of a probability measure given in Problem 1.4, except that the total
measure of the space is not necessarily1 (in fact,�0(IR) =1), one no longer has the equation

�(Ac) = 1� �(A)

in Problem 1.4(iii), and property (v) in Problem 1.4 needs to be modified to say:

(v) If A1; A2; : : : is a sequence of sets inB(IR) with A1 � A2 � � � � and�(A1) <1, then

�

 1\
k=1

Ak

!
= lim

n!1�(An):

To see that the additional requirment�(A1) <1 is needed in (v), consider

A1 = [1;1); A2 = [2;1); A3 = [3;1); : : : :

Then\1k=1Ak = ;, so�0(\1k=1Ak) = 0, but limn!1 �0(An) =1.

We specify that the Lebesgue measure of each interval is its length, and that determines the Lebesgue
measure of all other Borel sets. For example, the Lebesgue measure of the Cantor set in Example
1.4 must be zero, because of the “length” computation given at the end of that example.

The Lebesgue measure of a set containing only one point must be zero. In fact, since

fag �
�
a� 1

n
; a+

1

n

�

for every positive integern, we must have

0 � �0fag � �0

�
a � 1

n
; a+

1

n

�
=

2

n
:

Lettingn!1, we obtain
�0fag = 0:
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The Lebesgue measure of a set containing countably many points must also be zero. Indeed, if
A = fa1; a2; : : :g, then

�0(A) =
1X
k=1

�0fakg =
1X
k=1

0 = 0:

The Lebesgue measure of a set containing uncountably many points can be either zero, positive and
finite, or infinite. We may not compute the Lebesgue measure of an uncountable set by adding up
the Lebesgue measure of its individual members, because there is no way to add up uncountably
many numbers. The integral was invented to get around this problem.

In order to think about Lebesgue integrals, we must first consider the functions to be integrated.

Definition 1.11 Let f be a function fromIR to IR. We say thatf is Borel-measurableif the set
fx 2 IR; f(x) 2 Ag is in B(IR) wheneverA 2 B(IR). In the language of Section 2, we want the
�-algebra generated byf to be contained inB(IR).

Definition 3.4 is purely technical and has nothing to do with keeping track of information. It is
difficult to conceive of a function which is not Borel-measurable, and we shall pretend such func-
tions don’t exist. Hencefore, “function mappingIR to IR” will mean “Borel-measurable function
mappingIR to IR” and “subset ofIR” will mean “Borel subset ofIR”.

Definition 1.12 An indicator functiong from IR to IR is a function which takes only the values0
and1. We call

A
�
= fx 2 IR; g(x) = 1g

the setindicatedby g. We define theLebesgue integralof g to beZ
IR
g d�0

�
= �0(A):

A simple functionh from IR to IR is a linear combination of indicators, i.e., a function of the form

h(x) =
nX

k=1

ckgk(x);

where eachgk is of the form

gk(x) =

(
1; if x 2 Ak ;

0; if x =2 Ak ;

and eachck is a real number. We define theLebesgue integralof h to be

Z
R
h d�0

�
=

nX
k=1

ck

Z
IR
gkd�0 =

nX
k=1

ck�0(Ak):

Let f be a nonnegative function defined onIR, possibly taking the value1 at some points. We
define theLebesgue integralof f to beZ

IR
f d�0

�
= sup

�Z
IR
h d�0; h is simple andh(x) � f(x) for everyx 2 IR

�
:
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It is possible that this integral is infinite. If it is finite, we say thatf is integrable.

Finally, letf be a function defined onIR, possibly taking the value1 at some points and the value
�1 at other points. We define thepositiveandnegative partsof f to be

f+(x)
�
= maxff(x); 0g; f�(x) �

= maxf�f(x); 0g;
respectively, and we define theLebesgue integralof f to beZ

IR
f d�0

�
=

Z
IR
f+ d�0 � �

Z
IR
f� d�0;

provided the right-hand side is not of the form1�1. If both
R
IR f

+ d�0 and
R
IR f

� d�0 are finite
(or equivalently,

R
IR jf j d�0 <1, sincejf j = f+ + f�), we say thatf is integrable.

Let f be a function defined onIR, possibly taking the value1 at some points and the value�1 at
other points. LetA be a subset ofIR. We defineZ

A
f d�0

�
=

Z
IR
lIAf d�0;

where

lIA(x)
�
=

(
1; if x 2 A;

0; if x =2 A;

is theindicator function ofA.

The Lebesgue integral just defined is related to the Riemann integral in one very important way: if
the Riemann integral

R b
a f(x)dx is defined, then the Lebesgue integral

R
[a;b] f d�0 agrees with the

Riemann integral. The Lebesgue integral has two important advantages over the Riemann integral.
The first is that the Lebesgue integral is defined for more functions, as we show in the following
examples.

Example 1.5 LetQ be the set of rational numbers in[0; 1], and considerf �
= lIQ. Being a countable

set,Q has Lebesgue measure zero, and so the Lebesgue integral off over [0; 1] isZ
[0;1]

f d�0 = 0:

To compute the Riemann integral
R
1

0
f(x)dx, we choose partition points0 = x0 < x1 < � � � <

xn = 1 and divide the interval[0; 1] into subintervals[x0; x1]; [x1; x2]; : : : ; [xn�1; xn]. In each
subinterval[xk�1; xk] there is a rational pointqk , wheref(qk) = 1, and there is also an irrational
pointrk, wheref(rk) = 0. We approximate the Riemann integral from above by theupper sum

nX
k=1

f(qk)(xk � xk�1) =
nX

k=1

1 � (xk � xk�1) = 1;

and we also approximate it from below by thelower sum

nX
k=1

f(rk)(xk � xk�1) =
nX

k=1

0 � (xk � xk�1) = 0:
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No matter how fine we take the partition of[0; 1], the upper sum is always1 and the lower sum is
always0. Since these two do not converge to a common value as the partition becomes finer, the
Riemann integral is not defined. �

Example 1.6 Consider the function

f(x)
�
=

(
1; if x = 0;

0; if x 6= 0:

This is not a simple function because simple function cannot take the value1. Every simple
function which lies between0 andf is of the form

h(x)
�
=

(
y; if x = 0;

0; if x 6= 0;

for somey 2 [0;1), and thus has Lebesgue integralZ
IR
h d�0 = y�0f0g = 0:

It follows thatZ
IR
f d�0 = sup

�Z
IR
h d�0; h is simple andh(x) � f(x) for everyx 2 IR

�
= 0:

Now consider the Riemann integral
R1
�1 f(x) dx, which for this functionf is the same as the

Riemann integral
R
1

�1 f(x) dx. When we partition[�1; 1] into subintervals, one of these will contain

the point0, and when we compute the upper approximating sum for
R
1

�1 f(x) dx, this point will
contribute1 times the length of the subinterval containing it. Thus the upper approximating sum is
1. On the other hand, the lower approximating sum is0, and again the Riemann integral does not
exist. �

The Lebesgue integral has alllinearity andcomparisonproperties one would expect of an integral.
In particular, for any two functionsf andg and any real constantc,Z

IR
(f + g) d�0 =

Z
IR
f d�0 +

Z
IR
g d�0;Z

IR
cf d�0 = c

Z
IR
f d�0;

and wheneverf(x) � g(x) for all x 2 IR, we haveZ
IR
f d�0 �

Z
IR
gd d�0:

Finally, if A andB are disjoint sets, thenZ
A[B

f d�0 =

Z
A
f d�0 +

Z
B
f d�0:
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There are threeconvergence theoremssatisfied by the Lebesgue integral. In each of these the sit-
uation is that there is a sequence of functionsfn; n = 1; 2; : : : convergingpointwiseto a limiting
functionf . Pointwise convergencejust means that

lim
n!1 fn(x) = f(x) for everyx 2 IR:

There are no such theorems for the Riemann integral, because the Riemann integral of the limit-
ing functionf is too often not defined. Before we state the theorems, we given two examples of
pointwise convergence which arise in probability theory.

Example 1.7 Consider a sequence of normal densities,each with variance1 and then-th having
meann:

fn(x)
�
=

1p
2�

e�
(x�n)2

2 :

These converge pointwise to the function

f(x) = 0 for everyx 2 IR:

We have
R
IR fnd�0 = 1 for everyn, solimn!1

R
IR fnd�0 = 1, but

R
IR f d�0 = 0. �

Example 1.8 Consider a sequence of normal densities,each with mean0 and then-th having vari-
ance1

n
:

fn(x)
�
=

r
n

2�
e�

x2

2n :

These converge pointwise to the function

f(x)
�
=

(
1; if x = 0;

0; if x 6= 0:

We have again
R
IR fnd�0 = 1 for everyn, so limn!1

R
IR fnd�0 = 1, but

R
IR f d�0 = 0. The

functionf is not the Dirac delta; the Lebesgue integral of this function was already seen in Example
1.6 to be zero. �

Theorem 3.1 (Fatou’s Lemma)Let fn; n = 1; 2; : : : be a sequence of nonnegative functions con-
verging pointwise to a functionf . ThenZ

IR
f d�0 � lim inf

n!1

Z
IR
fn d�0:

If limn!1
R
IR fn d�0 is defined, then Fatou’s Lemma has the simpler conclusionZ

IR
f d�0 � lim

n!1

Z
IR
fn d�0:

This is the case in Examples 1.7 and 1.8, where

lim
n!1

Z
IR
fn d�0 = 1;
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while
R
IR f d�0 = 0. We could modify either Example 1.7 or 1.8 by settinggn = fn if n is even,

but gn = 2fn if n is odd. Now
R
IR gn d�0 = 1 if n is even, but

R
IR gn d�0 = 2 if n is odd. The

sequencefRIR gn d�0g1n=1 has two cluster points,1 and 2. By definition, the smaller one,1, is
lim infn!1

R
IR gn d�0 and the larger one,2, is lim supn!1

R
IR gn d�0. Fatou’s Lemma guarantees

that even the smaller cluster point will be greater than or equal to the integral of the limiting function.

The key assumption in Fatou’s Lemma is that all the functions take only nonnegative values. Fatou’s
Lemma does not assume much but it is is not very satisfying because it does not conclude thatZ

IR
f d�0 = lim

n!1

Z
IR
fn d�0:

There are two sets of assumptions which permit this stronger conclusion.

Theorem 3.2 (Monotone Convergence Theorem)Let fn; n = 1; 2; : : : be a sequence of functions
converging pointwise to a functionf . Assume that

0 � f1(x) � f2(x) � f3(x) � � � � for everyx 2 IR:

Then Z
IR
f d�0 = lim

n!1

Z
IR
fn d�0;

where both sides are allowed to be1.

Theorem 3.3 (Dominated Convergence Theorem)Letfn; n = 1; 2; : : : be a sequence of functions,
which may take either positive or negative values, converging pointwise to a functionf . Assume
that there is a nonnegative integrable functiong (i.e.,

R
IR g d�0 <1) such that

jfn(x)j � g(x) for everyx 2 IR for everyn:

Then Z
IR
f d�0 = lim

n!1

Z
IR
fn d�0;

and both sides will be finite.

1.4 General Probability Spaces

Definition 1.13 A probability space(
;F ; IP ) consists of three objects:

(i) 
, a nonempty set, called thesample space, which contains all possible outcomes of some
random experiment;

(ii) F , a�-algebra of subsets of
;

(iii) IP , a probability measure on(
;F), i.e., a function which assigns to each setA 2 F a number
IP (A) 2 [0; 1], which represents the probability that the outcome of the random experiment
lies in the setA.
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Remark 1.1 We recall from Homework Problem 1.4 that a probabilitymeasureIP has the following
properties:

(a) IP (;) = 0.

(b) (Countable additivity) IfA1; A2; : : : is a sequence of disjoint sets inF , then

IP

 1[
k=1

Ak

!
=

1X
k=1

IP (Ak):

(c) (Finite additivity) If n is a positive integer andA1; : : : ; An are disjoint sets inF , then

IP (A1 [ � � � [An) = IP (A1) + � � �+ IP (An):

(d) If A andB are sets inF andA � B, then

IP (B) = IP (A) + IP (B nA):
In particular,

IP (B) � IP (A):

(d) (Continuity from below.) IfA1; A2; : : : is a sequence of sets inF with A1 � A2 � � � � , then

IP

 1[
k=1

Ak

!
= lim

n!1 IP (An):

(d) (Continuity from above.) IfA1; A2; : : : is a sequence of sets inF with A1 � A2 � � � � , then

IP

 1\
k=1

Ak

!
= lim

n!1 IP (An):

We have already seen some examples of finite probability spaces. We repeat these and give some
examples of infinite probability spaces as well.

Example 1.9 Finite coin toss space.
Toss a coinn times, so that
 is the set of all sequences ofH andT which haven components.
We will use this space quite a bit, and so give it a name:
n. LetF be the collection of all subsets
of 
n. Suppose the probability ofH on each toss isp, a number between zero and one. Then the

probability ofT is q �
= 1� p. For each! = (!1; !2; : : : ; !n) in 
n, we define

IPf!g �
= pNumber of H in ! � qNumber of T in !:

For eachA 2 F , we define

IP (A)
�
=
X
!2A

IPf!g: (4.1)

We can defineIP (A) this way becauseA has only finitely many elements, and so only finitely many
terms appear in the sum on the right-hand side of (4.1). �
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Example 1.10 Infinite coin toss space.
Toss a coin repeatedly without stopping, so that
 is the set of all nonterminating sequences ofH

andT . We call this space
1. This is an uncountably infinite space, and we need to exercise some
care in the construction of the�-algebra we will use here.

For each positive integern, we defineFn to be the�-algebra determined by the firstn tosses. For
example,F2 contains four basic sets,

AHH
�
= f! = (!1; !2; !3; : : :);!1 = H;!2 = Hg
= The set of all sequences which begin withHH;

AHT
�
= f! = (!1; !2; !3; : : :);!1 = H;!2 = Tg
= The set of all sequences which begin withHT;

ATH
�
= f! = (!1; !2; !3; : : :);!1 = T; !2 = Hg
= The set of all sequences which begin withTH;

ATT
�
= f! = (!1; !2; !3; : : :);!1 = T; !2 = Tg
= The set of all sequences which begin withTT:

BecauseF2 is a�-algebra, we must also put into it the sets;, 
, and all unions of the four basic
sets.

In the �-algebraF , we put every set in every�-algebraFn, wheren ranges over the positive
integers. We also put in every other set which is required to makeF be a�-algebra. For example,
the set containing the single sequence

fHHHHH � � �g = fH on every tossg

is not in any of theFn �-algebras, because it depends on all the components of the sequence and
not just the firstn components. However, for each positive integern, the set

fH on the firstn tossesg

is inFn and hence inF . Therefore,

fH on every tossg =
1\
n=1

fH on the firstn tossesg

is also inF .

We next construct the probability measureIP on (
1;F) which corresponds to probabilityp 2
[0; 1] for H and probabilityq = 1 � p for T . LetA 2 F be given. If there is a positive integern
such thatA 2 Fn, then the description ofA depends on only the firstn tosses, and it is clear how to
defineIP (A). For example, supposeA = AHH [ATH , where these sets were defined earlier. Then
A is inF2. We setIP (AHH) = p2 andIP (ATH) = qp, and then we have

IP (A) = IP (AHH [ ATH) = p2 + qp = (p+ q)p = p:

In other words, the probability of aH on the second toss isp.
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Let us now consider a setA 2 F for which there is no positive integern such thatA 2 F . Such
is the case for the setfH on every tossg. To determine the probability of these sets, we write them
in terms of sets which are inFn for positive integersn, and then use the properties of probability
measures listed in Remark 1.1. For example,

fH on the first tossg � fH on the first two tossesg
� fH on the first three tossesg
� � � � ;

and
1\
n=1

fH on the firstn tossesg = fH on every tossg:

According to Remark 1.1(d) (continuity from above),

IPfH on every tossg = lim
n!1 IPfH on the firstn tossesg = lim

n!1 pn:

If p = 1, thenIPfH on every tossg = 1; otherwise,IPfH on every tossg = 0.

A similar argument shows that if0 < p < 1 so that0 < q < 1, then every set in
1 which contains
only one element (nonterminating sequence ofH andT ) has probability zero, and hence very set
which contains countably many elements also has probabiliy zero. We are in a case very similar to
Lebesgue measure: every point has measure zero, but sets can have positive measure. Of course,
the only sets which can have positive probabilty in
1 are those which contain uncountably many
elements.

In the infinite coin toss space, we define a sequence of random variablesY1; Y2; : : : by

Yk(!)
�
=

(
1 if !k = H;

0 if !k = T;

and we also define the random variable

X(!) =
nX

k=1

Yk(!)

2k
:

Since eachYk is either zero or one,X takes values in the interval[0; 1]. Indeed,X(TTTT � � � ) = 0,
X(HHHH � � � ) = 1 and the other values ofX lie in between. We define a “dyadic rational
number” to be a number of the formm

2k
, wherek andm are integers. For example,3

4
is a dyadic

rational. Every dyadic rational in (0,1) corresponds to two sequences! 2 
1. For example,

X(HHTTTTT � � � ) = X(HTHHHHH � � � ) = 3

4
:

The numbers in (0,1) which are not dyadic rationals correspond to a single! 2 
1; these numbers
have a unique binary expansion.



34

Whenever we place a probability measureIP on(
;F), we have a corresponding induced measure
LX on [0; 1]. For example, if we setp = q = 1

2
in the construction of this example, then we have

LX
�
0;

1

2

�
= IPfFirst toss isTg = 1

2
;

LX
�
1

2
; 1

�
= IPfFirst toss isHg = 1

2
;

LX
�
0;

1

4

�
= IPfFirst two tosses areTTg = 1

4
;

LX
�
1

4
;
1

2

�
= IPfFirst two tosses areTHg = 1

4
;

LX
�
1

2
;
3

4

�
= IPfFirst two tosses areHTg = 1

4
;

LX
�
3

4
; 1

�
= IPfFirst two tosses areHHg = 1

4
:

Continuing this process, we can verify that for any positive integersk andm satisfying

0 � m� 1

2k
<

m

2k
� 1;

we have

LX
�
m� 1

2k
;
m

2k

�
=

1

2k
:

In other words, theLX -measure of all intervals in[0; 1] whose endpoints are dyadic rationals is the
same as the Lebesgue measure of these intervals. The only way this can be is forLX to be Lebesgue
measure.

It is interesing to consider whatLX would look like if we take a value ofp other than1
2

when we
construct the probability measureIP on
.

We conclude this example with another look at the Cantor set of Example 3.2. Let
pairs be the
subset of
 in which every even-numbered toss is the same as the odd-numbered toss immediately
preceding it. For example,HHTTTTHH is the beginning of a sequence in
pairs, butHT is not.
Consider now the set of real numbers

C0 �= fX(!);! 2 
pairsg:

The numbers between(1
4
; 1
2
) can be written asX(!), but the sequence! must begin with either

TH or HT . Therefore, none of these numbers is inC 0. Similarly, the numbers between( 1

16
; 3

16
)

can be written asX(!), but the sequence! must begin withTTTH or TTHT , so none of these
numbers is inC 0. Continuing this process, we see thatC 0 will not contain any of the numbers which
were removed in the construction of the Cantor setC in Example 3.2. In other words,C 0 � C.
With a bit more work, one can convince onself that in factC 0 = C, i.e., by requiring consecutive
coin tosses to be paired, we are removing exactly those points in[0; 1] which were removed in the
Cantor set construction of Example 3.2. �
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In addition to tossing a coin, another common random experiment is to pick a number, perhaps
using a random number generator. Here are some probability spaces which correspond to different
ways of picking a number at random.

Example 1.11
Suppose we choose a number fromIR in such a way that we are sure to get either1, 4 or 16.
Furthermore, we construct the experiment so that the probability of getting1 is 4

9
, the probability of

getting4 is 4

9
and the probability of getting16 is 1

9
. We describe this random experiment by taking


 to beIR, F to beB(IR), and setting up the probability measure so that

IPf1g = 4

9
; IPf4g = 4

9
; IPf16g = 1

9
:

This determinesIP (A) for every setA 2 B(IR). For example, the probability of the interval(0; 5]

is 8

9
, because this interval contains the numbers1 and4, but not the number16.

The probability measure described in this example isLS2 , the measure induced by the stock price
S2, when the initial stock priceS0 = 4 and the probabilityofH is 1

3
. This distributionwas discussed

immediately following Definition 2.8. �

Example 1.12 Uniform distribution on[0; 1].
Let 
 = [0; 1] and letF = B([0; 1]), the collection of all Borel subsets containined in[0; 1]. For
each Borel setA � [0; 1], we defineIP (A) = �0(A) to be the Lebesgue measure of the set. Because
�0[0; 1] = 1, this gives us a probability measure.

This probability space corresponds to the random experiment of choosing a number from[0; 1] so
that every number is “equally likely” to be chosen. Since there are infinitely mean numbers in[0; 1],
this requires that every number have probabilty zero of being chosen. Nonetheless, we can speak of
the probability that the number chosen lies in a particular set, and if the set has uncountably many
points, then this probability can be positive. �

I know of no way to design a physical experiment which corresponds to choosing a number at
random from[0; 1] so that each number is equally likely to be chosen, just as I know of no way to
toss a coin infinitely many times. Nonetheless, both Examples 1.10 and 1.12 provide probability
spaces which are often useful approximations to reality.

Example 1.13 Standard normal distribution.
Define the standard normal density

'(x)
�
=

1p
2�

e
�
x2

2 :

Let
 = IR, F = B(IR) and for every Borel setA � IR, define

IP (A)
�
=

Z
A
'd�0: (4.2)
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If A in (4.2) is an interval[a; b], then we can write (4.2) as the less mysterious Riemann integral:

IP [a; b]
�
=

Z b

a

1p
2�

e
�
x2

2 dx:

This corresponds to choosing a point at random on the real line, and every single point has probabil-
ity zero of being chosen, but if a setA is given, then the probability the point is in that set is given
by (4.2). �

The construction of the integral in a general probability space follows the same steps as the con-
struction of Lebesgue integral. We repeat this construction below.

Definition 1.14 Let (
;F ; IP )be a probability space, and letX be a random variable on this space,
i.e., a mapping from
 to IR, possibly also taking the values�1.

� If X is anindicator, i.e,

X(!) = lIA(!) =

(
1 if ! 2 A;

0 if ! 2 Ac;

for some setA 2 F , we define Z



X dIP
�
= IP (A):

� If X is asimple function, i.e,

X(!) =
nX

k=1

cklIAk(!);

where eachck is a real number and eachAk is a set inF , we define

Z



X dIP
�
=

nX
k=1

ck

Z



lIAk dIP =
nX

k=1

ckIP (Ak):

� If X is nonnegativebut otherwise general, we defineZ



X dIP

�
= sup

�Z



Y dIP ; Y is simple andY (!) � X(!) for every! 2 


�
:

In fact, we can always construct a sequence of simple functionsYn; n = 1; 2; : : : such that

0 � Y1(!) � Y2(!) � Y3(!) � : : : for every! 2 
;

andY (!) = limn!1 Yn(!) for every! 2 
. With this sequence, we can defineZ



X dIP
�
= lim

n!1

Z



Yn dIP:
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� If X is integrable, i.e, Z



X+ dIP <1;

Z



X� dIP <1;

where
X+(!)

�
= maxfX(!); 0g; X�(!) �

= maxf�X(!); 0g;
then we define Z




X dIP
�
=

Z



X+ dIP � �
Z



X� dIP:

If A is a set inF andX is a random variable, we defineZ
A
X dIP

�
=

Z



lIA �X dIP:

Theexpectationof a random variableX is defined to be

IEX
�
=

Z



X dIP:

The above integral has all the linearity and comparison properties one would expect. In particular,
if X andY are random variables andc is a real constant, thenZ




(X + Y ) dIP =

Z



X dIP +

Z



Y dIP;Z



cX dIP = c

Z



X dP;

If X(!) � Y (!) for every! 2 
, thenZ



X dIP �
Z



Y dIP:

In fact, we don’t need to haveX(!) � Y (!) for every! 2 
 in order to reach this conclusion; it is
enough if the set of! for whichX(!) � Y (!) has probability one. When a condition holds with
probability one, we say it holdsalmost surely. Finally, if A andB are disjoint subsets of
 andX
is a random variable, then Z

A[B
X dIP =

Z
A
X dIP +

Z
B
X dIP:

We restate the Lebesgue integral convergence theorem in this more general context. We acknowl-
edge in these statements that conditions don’t need to hold for every!; almost surely is enough.

Theorem 4.4 (Fatou’s Lemma)LetXn; n = 1; 2; : : : be a sequence of almost surely nonnegative
random variables converging almost surely to a random variableX . ThenZ




X dIP � lim inf
n!1

Z



Xn dIP;

or equivalently,
IEX � lim inf

n!1 IEXn:
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Theorem 4.5 (Monotone Convergence Theorem)LetXn; n = 1; 2; : : : be a sequence of random
variables converging almost surely to a random variableX . Assume that

0 � X1 � X2 � X3 � � � � almost surely:

Then Z



X dIP = lim
n!1

Z



XndIP;

or equivalently,
IEX = lim

n!1 IEXn:

Theorem 4.6 (Dominated Convergence Theorem)LetXn; n = 1; 2; : : : be a sequence of random
variables, converging almost surely to a random variableX . Assume that there exists a random
variableY such that

jXnj � Y almost surely for everyn:

Then Z



X dIP = lim
n!1

Z



Xn dIP;

or equivalently,
IEX = lim

n!1 IEXn:

In Example 1.13, we constructed a probability measure on(IR;B(IR)) by integrating the standard
normal density. In fact, whenever' is a nonnegative function defined onR satisfying

R
IR'd�0 = 1,

we call' a densityand we can define an associated probability measure by

IP (A)
�
=

Z
A
'd�0 for everyA 2 B(IR): (4.3)

We shall often have a situation in which two measure are related by an equation like (4.3). In fact,
the market measure and the risk-neutral measures in financial markets are related this way. We say
that' in (4.3) is theRadon-Nikodym derivativeof dIP with respect to�0, and we write

' =
dIP

d�0
: (4.4)

The probability measureIP weights different parts of the real line according to the density'. Now
supposef is a function on(R;B(IR); IP ). Definition 1.14 gives us a value for the abstract integralZ

IR
f dIP:

We can also evaluate Z
IR
f' d�0;

which is an integral with respec to Lebesgue measure over the real line. We want to show thatZ
IR
f dIP =

Z
IR
f' d�0; (4.5)
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an equation which is suggested by the notation introduced in (4.4) (substitutedIP
d�0

for ' in (4.5) and
“cancel” thed�0). We include a proof of this because it allows us toillustrate the concept of the
standard machineexplained in Williams’s book in Section 5.12, page 5.

The standard machine argument proceeds in four steps.

Step 1. Assume thatf is anindicator function, i.e.,f(x) = lIA(x) for some Borel setA � IR. In
that case, (4.5) becomes

IP (A) =

Z
A
'd�0:

This is true because it is the definition of IP (A).

Step 2. Now that we know that (4.5) holds whenf is an indicator function, assume thatf is a
simple function, i.e., a linear combination of indicator functions. In other words,

f(x) =
nX

k=1

ckhk(x);

where eachck is a real number and eachhk is an indicator function. Then

Z
IR
f dIP =

Z
IR

"
nX

k=1

ckhk

#
dIP

=
nX

k=1

ck

Z
IR
hk dIP

=
nX

k=1

ck

Z
IR
hk'd�0

=

Z
IR

"
nX

k=1

ckhk

#
'd�0

=

Z
IR
f' d�0:

Step 3. Now that we know that (4.5) holds whenf is a simple function, we consider a general
nonnegative functionf . We can always construct a sequence of nonnegative simple functions
fn; n = 1; 2; : : : such that

0 � f1(x) � f2(x) � f3(x) � : : : for everyx 2 IR;

andf(x) = limn!1 fn(x) for everyx 2 IR. We have already proved thatZ
IR
fn dIP =

Z
IR
fn'd�0 for everyn:

We letn!1 and use the Monotone Convergence Theorem on both sides of this equality to
get Z

IR
f dIP =

Z
IR
f' d�0:
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Step 4. In the last step, we consider anintegrablefunctionf , which can take both positive and
negative values. Byintegrable, we mean thatZ

IR
f+ dIP <1;

Z
IR
f� dIP <1:

¿From Step 3, we have Z
IR
f+ dIP =

Z
IR
f+'d�0;Z

IR
f� dIP =

Z
IR
f�'d�0:

Subtracting these two equations, we obtain the desired result:Z
IR
f dIP =

Z
IR
f+ dIP �

Z
IR
f� dIP

=

Z
IR
f+'d�0 �

Z
IR
f�'d�0

=

Z
R
f' d�0:

1.5 Independence

In this section, we define and discuss the notion of independence in a general probability space
(
;F ; IP ), although most of the examples we give will be for coin toss space.

1.5.1 Independence of sets

Definition 1.15 We say that two setsA 2 F andB 2 F areindependentif

IP (A \ B) = IP (A)IP (B):

Suppose a random experiment is conducted, and! is the outcome. The probability that! 2 A is
IP (A). Suppose you are not told!, but you are told that! 2 B. Conditional on this information,
the probability that! 2 A is

IP (AjB)
�
=
IP (A \B)

IP (B)
:

The setsA andB are independent if and only if this conditional probability is the uncondidtional
probabilityIP (A), i.e., knowing that! 2 B does not change the probability you assign toA. This
discussion is symmetric with respect toA andB; if A andB are independent and you know that
! 2 A, the conditional probability you assign toB is still the unconditional probabilityIP (B).

Whether two sets are independent depends on the probability measureIP . For example, suppose we
toss a coin twice, with probabilityp for H and probabilityq = 1� p for T on each toss. To avoid
trivialities, we assume that0 < p < 1. Then

IPfHHg = p2; IPfHTg = IPfTHg = pq; IPfTTg = q2: (5.1)
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LetA = fHH;HTg andB = fHT; THg. In words,A is the set “H on the first toss” andB is the
set “oneH and oneT .” ThenA \ B = fHTg. We compute

IP (A) = p2 + pq = p;

IP (B) = 2pq;

IP (A)IP (B) = 2p2q;

IP (A \B) = pq:

These sets are independent if and only if2p2q = pq, which is the case if and only ifp = 1

2
.

If p = 1

2
, thenIP (B), the probability of one head and one tail, is1

2
. If you are told that the coin

tosses resulted in a head on the first toss, the probability ofB, which is now the probability of aT
on the second toss, is still1

2
.

Suppose however thatp = 0:01. By far the most likely outcome of the two coin tosses isTT , and
the probability of one head and one tail is quite small; in fact,IP (B) = 0:0198. However, if you
are told that the first toss resulted inH , it becomes very likely that the two tosses result in one head
and one tail. In fact, conditioned on getting aH on the first toss, the probability of oneH and one
T is the probability of aT on the second toss, which is0:99.

1.5.2 Independence of�-algebras

Definition 1.16 LetG andH be sub-�-algebras ofF . We say thatG andH areindependentif every
set inG is independent of every set inH, i.e,

IP (A \ B) = IP (A)IP (B) for everyA 2 H; B 2 G:

Example 1.14 Toss a coin twice, and letIP be given by (5.1). LetG = F1 be the�-algebra
determined by the first toss:G contains the sets

;;
; fHH;HTg; fTH;TTg:

LetH be the�-albegra determined by the second toss:H contains the sets

;;
; fHH;THg; fHT;TTg:

These two�-algebras are independent. For example, if we choose the setfHH;HTg from G and
the setfHH; THg fromH, then we have

IPfHH;HTgIPfHH; THg= (p2 + pq)(p2 + pq) = p2;

IP
�
fHH;HTg\ fHH; THg

�
= IPfHHg = p2:

No matter which set we choose inG and which set we choose inH, we will find that the product of
the probabilties is the probability of the intersection.
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Example 1.14 illustrates the general principle that when the probability for a sequence of tosses is
defined to be the product of the probabilities for the individual tosses of the sequence, then every
set depending on a particular toss will be independent of every set depending on a different toss.
We say that the different tosses are independent when we construct probabilities this way. It is also
possible to construct probabilities such that the different tosses are not independent, as shown by
the following example.

Example 1.15 DefineIP for the individual elements of
 = fHH;HT;TH;TTg to be

IPfHHg = 1

9
; IPfHTg = 2

9
; IPfTHg = 1

3
; IPfTTg = 1

3
;

and for every setA � 
, defineIP (A) to be the sum of the probabilities of the elements inA. Then
IP (
) = 1, soIP is a probability measure. Note that the setsfH on first tossg = fHH;HTg and
fH on second tossg = fHH; THg have probabilitiesIPfHH;HTg = 1

3
andIPfHH; THg =

4

9
, so the product of the probabilities is4

27
. On the other hand, the intersection offHH;HTg

andfHH; THg contains the single elementfHHg, which has probability1
9
. These sets are not

independent.

1.5.3 Independence of random variables

Definition 1.17 We say that two random variablesX andY areindependentif the �-algebras they
generate�(X) and�(Y ) are independent.

In the probability space of three independent coin tosses, the priceS2 of the stock at time2 is
independent ofS3

S2
. This is becauseS2 depends on only the first two coin tosses, whereasS3

S2
is

eitheru or d, depending on whether thethird coin toss isH or T .

Definition 1.17 says that for independent random variablesX andY , every set defined in terms of
X is independent of every set defined in terms ofY . In the case ofS2 andS3

S2
just considered, for ex-

ample, the setsfS2 = udS0g = fHTH;HTTg and
n
S3
S2

= u
o
= fHHH;HTH; THH;TTHg

are indepedent sets.

SupposeX andY are independent random variables. We defined earlier the measure induced byX

on IR to be
LX(A)

�
= IPfX 2 Ag; A � IR:

Similarly, the measure induced byY is

LY (B)
�
= IPfY 2 Bg; B � IR:

Now the pair(X; Y ) takes values in the planeIR2, and we can define the measure induced by the
pair

LX;Y (C) = IPf(X; Y ) 2 Cg; C � IR2:

The setC in this last equation is a subset of the planeIR2. In particular,C could be a “rectangle”,
i.e, a set of the formA� B, whereA � IR andB � IR. In this case,

f(X; Y ) 2 A�Bg = fX 2 Ag \ fY 2 Bg;
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andX andY are independent if and only if

LX;Y (A� B) = IP
�
fX 2 Ag \ fY 2 Bg

�
= IPfX 2 AgIPfY 2 Bg (5.2)

= LX(A)LY (B):

In other words, for independent random variablesX andY , thejoint distributionrepresented by the
measureLX;Y factors into the product of themarginal distributionsrepresented by the measures
LX andLY .

A joint densityfor (X; Y ) is a nonnegative functionfX;Y (x; y) such that

LX;Y (A�B) =

Z
A

Z
B
fX;Y (x; y) dx dy:

Not every pair of random variables(X; Y ) has a joint density, but if a pair does, then the random
variablesX andY havemarginal densitiesdefined by

fX(x) =

Z 1

�1
fX;Y (x; �) d�; fY (y)

Z 1

�1
fX;Y (�; y) d�:

These have the properties

LX(A) =

Z
A
fX(x) dx; A � IR;

LY (B) =

Z
B
fY (y) dy; B � IR:

SupposeX andY have a joint density. ThenX andY are independent variables if and only if
the joint density is the product of the marginal densities. This follows from the fact that (5.2) is
equivalent to independence ofX andY . TakeA = (�1; x] andB = (�1; y], write (5.1) in terms
of densities, and differentiate with respect to bothx andy.

Theorem 5.7 SupposeX andY are independent random variables. Letg andh be functions from
IR to IR. Theng(X) andh(Y ) are also independent random variables.

PROOF: Let us denoteW = g(X) andZ = h(Y ). We must consider sets in�(W ) and�(Z). But
a typical set in�(W ) is of the form

f!;W (!) 2 Ag = f! : g(X(!)) 2 Ag;

which is defined in terms of the random variableX . Therefore, this set is in�(X). (In general,
we have that every set in�(W ) is also in�(X), which means thatX contains at least as much
information asW . In fact,X can contain strictly more information thanW , which means that�(X)

will contain all the sets in�(W ) and others besides; this is the case, for example, ifW = X2.)

In the same way that we just argued that every set in�(W ) is also in�(X), we can show that
every set in�(Z) is also in�(Y ). Since every set in�(X) is independent of every set in�(Y ), we
conclude that every set in�(W ) is independent of every set in�(Z). �



44

Definition 1.18 Let X1; X2; : : : be a sequence of random variables. We say that these random
variables areindependentif for every sequence of setsA1 2 �(X1); A2 2 �(X2); : : : and for every
positive integern,

IP (A1 \ A2 \ � � �An) = IP (A1)IP (A2) � � �IP (An):

1.5.4 Correlation and independence

Theorem 5.8 If two random variablesX andY are independent, and ifg andh are functions from
IR to IR, then

IE[g(X)h(Y )] = IEg(X) � IEh(Y );

provided all the expectations are defined.

PROOF: Let g(x) = lIA(x) andh(y) = lIB(y) be indicator functions. Then the equation we are
trying to prove becomes

IP
�
fX 2 Ag \ fY 2 Bg

�
= IPfX 2 AgIPfY 2 Bg;

which is true becauseX andY are independent. Now use the standard machine to get the result for
general functionsg andh. �
Thevarianceof a random variableX is defined to be

Var(X)
�
= IE[X � IEX ]2:

The covariance of two random variablesX andY is defined to be

Cov(X; Y ) �
= IE

h
(X � IEX)(Y � IEY )

i
= IE[XY ]� IEX � IEY:

According to Theorem 5.8, for independent random variables, the covariance is zero. IfX andY
both have positive variances, we define theircorrelation coefficient

�(X; Y )
�
=

Cov(X; Y )p
Var(X)Var(Y )

:

For independent random variables, the correlation coefficient is zero.

Unfortunately, two random variables can have zero correlation and still not be independent. Con-
sider the following example.

Example 1.16 Let X be a standard normal random variable, letZ be independent ofX and have
the distributionIPfZ = 1g = IPfZ = �1g = 0. DefineY = XZ. We show thatY is also a
standard normal random variable,X andY are uncorrelated, butX andY are not independent.

The last claim is easy to see. IfX andY were independent, so would beX2 andY 2, but in fact,
X2 = Y 2 almost surely.
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We next check thatY is standard normal. Fory 2 IR, we have

IPfY � yg = IPfY � y andZ = 1g+ IPfY � y andZ = �1g
= IPfX � y andZ = 1g+ IPf�X � y andZ = �1g
= IPfX � ygIPfZ = 1g+ IPf�X � ygIPfZ = �1g
=

1

2
IPfX � yg+ 1

2
IPf�X � yg:

SinceX is standard normal,IPfX � yg = IPfX � �yg, and we haveIPfY � yg = IPfX � yg,
which shows thatY is also standard normal.

Being standard normal, bothX andY have expected value zero. Therefore,

Cov(X; Y ) = IE[XY ] = IE[X2Z] = IEX2 � IEZ = 1 � 0 = 0:

Where inIR2 does the measureLX;Y put its mass, i.e., what is the distribution of(X; Y )?

We conclude this section with the observation that for independent random variables, the variance
of their sum is the sum of their variances. Indeed, ifX andY are independent andZ = X + Y ,
then

Var(Z) �
= IE

h
(Z � IEZ)2

i
= IE

�
X + Y � IEX � IEY )2

i
= IE

h
(X � IEX)2 + 2(X � IEX)(Y � IEY ) + (Y � IEY )2

i
= Var(X) + 2IE[X � IEX ]IE[Y � IEY ] + Var(Y )

= Var(X) + Var(Y ):

This argument extends to any finite number of random variables. If we are given independent
random variablesX1; X2; : : : ; Xn, then

Var(X1 +X2 + � � �+Xn) = Var(X1) + Var(X2) + � � �+ Var(Xn): (5.3)

1.5.5 Independence and conditional expectation.

We now return to property (k) for conditional expectations, presented in the lecture dated October
19, 1995. The property as stated there is taken from Williams’s book, page 88; we shall need only
the second assertion of the property:

(k) If a random variableX is independent of a�-algebraH, then

IE[X jH] = IEX:

The point of this statement is that ifX is independent ofH, then the best estimate ofX based on
the information inH is IEX , the same as the best estimate ofX based on no information.
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To show this equality, we observe first thatIEX isH-measurable, since it is not random. We must
also check the partial averaging propertyZ

A
IEX dIP =

Z
A
X dIP for everyA 2 H:

If X is an indicator of some setB, which by assumption must be independent ofH, then the partial
averaging equation we must check isZ

A
IP (B) dIP =

Z
A
lIB dIP:

The left-hand side of this equation isIP (A)IP (B), and the right hand side isZ



lIAlIB dIP =

Z



lIA\B dIP = IP (A \B):

The partial averaging equation holds becauseA andB are independent. The partial averaging
equation for generalX independent ofH follows by the standard machine.

1.5.6 Law of Large Numbers

There are two fundamental theorems about sequences of independent random variables. Here is the
first one.

Theorem 5.9 (Law of Large Numbers)LetX1; X2; : : : be a sequence of independent, identically
distributed random variables, each with expected value� and variance�2. Define the sequence of
averages

Yn
�
=
X1 +X2 + � � �+Xn

n
; n = 1; 2; : : : :

ThenYn converges to� almost surely asn!1.

We are not going to give the proof of this theorem, but here is an argument which makes it plausible.
We will use this argument later when developing stochastic calculus. The argument proceeds in two
steps. We first check thatIEYn = � for everyn. We next check that Var(Yn) ! 0 asn ! 0. In
other words, the random variablesYn are increasingly tightly distributed around� asn!1.

For the first step, we simply compute

IEYn =
1

n
[IEX1 + IEX2 + � � �+ IEXn] =

1

n
[�+ �+ � � �+ �]| {z }

n times

= �:

For the second step, we first recall from (5.3) that the variance of the sum of independent random
variables is the sum of their variances. Therefore,

Var(Yn) =
nX

k=1

Var
�
Xk

n

�
=

nX
k=1

�2

n2
=
�2

n
:

As n!1, we have Var(Yn)! 0.



CHAPTER 1. Introduction to Probability Theory 47

1.5.7 Central Limit Theorem

The Law of Large Numbers is a bit boring because the limit is nonrandom. This is because the
denominator in the definition ofYn is so large that the variance ofYn converges to zero. If we want
to prevent this, we should divide by

p
n rather thann. In particular, if we again have a sequence of

independent, identically distributed random variables, each with expected value� and variance�2,
but now we set

Zn
�
=

(X1 � �) + (X2 � �) + � � �+ (Xn � �)p
n

;

then eachZn has expected value zero and

Var(Zn) =
nX

k=1

Var
�
Xk � �p

n

�
=

nX
k=1

�2

n
= �2:

As n ! 1, the distributions of all the random variablesZn have the same degree of tightness, as
measured by their variance, around their expected value0. The Central Limit Theorem asserts that
asn!1, the distribution ofZn approaches that of a normal random variable with mean (expected
value) zero and variance�2. In other words, for every setA � IR,

lim
n!1 IPfZn 2 Ag = 1

�
p
2�

Z
A
e
� x2

2�2 dx:
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Chapter 2

Conditional Expectation

Please see Hull’s book (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomial model: The initial stock price during the
period under study is denotedS0. At each time step, the stock price either goes up by a factor ofu

or down by a factor ofd. It will be useful to visualize tossing a coin at each time step, and say that

� the stock price moves up by a factor ofu if the coin comes out heads (H), and

� down by a factor ofd if it comes out tails (T ).

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is


 = fHHH;HHT;HTH;HTT; THH;THH; THT; TTH; TTTg:

A typical sequence of
 will be denoted!, and!k will denote thekth element in the sequence!.
We writeSk(!) to denote the stock price at “time”k (i.e. afterk tosses) under the outcome!. Note
thatSk(!) depends only on!1; !2; : : : ; !k. Thus in the 3-coin-toss example we write for instance,

S1(!)
4
= S1(!1; !2; !3)

4
= S1(!1);

S2(!)
4
= S2(!1; !2; !3)

4
= S2(!1; !2):

EachSk is a random variabledefined on the set
. More precisely, letF = P(
). ThenF is a
�-algebra and(
;F) is a measurable space. EachSk is anF -measurable function
!IR, that is,
S�1k is a functionB!F whereB is the Borel�-algebra on IR. We will see later thatSk is in fact

49
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Figure 2.1:A three coin period binomial model.

measurable under a sub-�-algebra ofF . Recall that the Borel�-algebraB is the�-algebra generated
by the open intervals of IR. In this course we will always deal with subsets of IR that belong toB.

For any random variableX defined on a sample space
 and anyy 2 IR, we will use the notation:

fX � yg 4= f! 2 
;X(!) � yg:
The setsfX < yg; fX � yg; fX = yg; etc, are defined similarly. Similarly for any subsetB of IR,
we define

fX 2 Bg 4
= f! 2 
;X(!) 2 Bg:

Assumption 2.1 u > d > 0.

2.2 Information

Definition 2.1 (Sets determined by the firstk tosses.)We say that a setA � 
 is determined by
the firstk coin tossesif, knowing only the outcome of the firstk tosses, we can decide whether the
outcome ofall tosses is inA. In general we denote the collection of sets determined by the firstk

tosses byFk. It is easy to check thatFk is a�-algebra.

Note that the random variableSk isFk-measurable, for eachk = 1; 2; : : : ; n.

Example 2.1 In the 3 coin-toss example, the collectionF1 of sets determined by the first toss consists of:



CHAPTER 2. Conditional Expectation 51

1. AH
4
= fHHH;HHT;HTH;HTTg,

2. AT
4

= fTHH; THT; TTH; TTTg,
3. �,

4. 
.

The collectionF2 of sets determined by the first two tosses consists of:

1. AHH
4

= fHHH;HHTg,

2. AHT
4

= fHTH;HTTg,

3. ATH
4
= fTHH; THTg,

4. ATT
4
= fTTH; TTTg,

5. The complements of the above sets,

6. Any union of the above sets (including the complements),

7. � and
.

Definition 2.2 (Information carried by a random variable.) LetX be a random variable
!IR.
We say that a setA � 
 is determined by the random variableX if, knowing only the valueX(!)

of the random variable, we can decide whether or not! 2 A. Another way of saying this is that for
everyy 2 IR, eitherX�1(y) � A orX�1(y) \ A = �. The collection of susbets of
 determined
byX is a�-algebra, which we call the�-algebra generated byX , and denote by�(X).

If the random variableX takes finitely many different values, then�(X) is generated by the collec-
tion of sets

fX�1(X(!))j! 2 
g;
these sets are called theatomsof the�-algebra�(X).

In general, ifX is a random variable
!IR, then�(X) is given by

�(X) = fX�1(B);B 2 Bg:

Example 2.2 (Sets determined byS2) The�-algebra generated byS2 consists of the following sets:

1. AHH = fHHH;HHTg = f! 2 
;S2(!) = u2S0g,
2. ATT = fTTH; TTTg = fS2 = d2S0g;
3. AHT [ATH = fS2 = udS0g;
4. Complements of the above sets,

5. Any union of the above sets,

6. � = fS2(!) 2 �g,
7. 
 = fS2(!) 2 IRg.
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample space
. Let us define

� p 2 (0; 1) is the probability ofH ,

� q
4
= (1� p) is the probability ofT ,

� the coin tosses areindependent,so that, e.g.,IP (HHT ) = p2q; etc.

� IP (A)
4
=
P
!2A IP (!), 8A � 
.

Definition 2.3 (Expectation.)

IEX
4
=
X
!2


X(!)IP (!):

If A � 
 then

IA(!)
4
=

(
1 if ! 2 A

0 if ! 62 A

and
IE(IAX) =

Z
A
XdIP =

X
!2A

X(!)IP (!):

We can think ofIE(IAX) as apartial averageof X over the setA.

2.3.1 An example

Let us estimateS1, givenS2. Denote the estimate byIE(S1jS2). From elementary probability,
IE(S1jS2) is a random variableY whose value at! is defined by

Y (!) = IE(S1jS2 = y);

wherey = S2(!). Properties ofIE(S1jS2):

� IE(S1jS2) should depend on!, i.e., it is arandom variable.

� If the value ofS2 is known, then the value ofIE(S1jS2) should also be known. In particular,

– If ! = HHH or! = HHT , thenS2(!) = u2S0. If we know thatS2(!) = u2S0, then
even without knowing!, we know thatS1(!) = uS0. We define

IE(S1jS2)(HHH) = IE(S1jS2)(HHT ) = uS0:

– If ! = TTT or ! = TTH , thenS2(!) = d2S0. If we know thatS2(!) = d2S0, then
even without knowing!, we know thatS1(!) = dS0. We define

IE(S1jS2)(TTT ) = IE(S1jS2)(TTH) = dS0:
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– If ! 2 A = fHTH;HTT;THH; THTg, thenS2(!) = udS0. If we knowS2(!) =

udS0, then we do not know whetherS1 = uS0 or S1 = dS0. We then take a weighted
average:

IP (A) = p2q + pq2 + p2q + pq2 = 2pq:

Furthermore, Z
A
S1dIP = p2quS0 + pq2uS0 + p2qdS0 + pq2dS0

= pq(u+ d)S0

For! 2 A we define

IE(S1jS2)(!) =
R
A S1dIP

IP (A)
= 1

2
(u+ d)S0:

Then Z
A
IE(S1jS2)dIP =

Z
A
S1dIP:

In conclusion, we can write
IE(S1jS2)(!) = g(S2(!));

where

g(x) =

8><
>:

uS0 if x = u2S0
1

2
(u+ d)S0 if x = udS0

dS0 if x = d2S0

In other words,IE(S1jS2) is randomonly through dependence onS2. We also write

IE(S1jS2 = x) = g(x);

whereg is the function defined above.

The random variableIE(S1jS2) has two fundamental properties:

� IE(S1jS2) is�(S2)-measurable.

� For every setA 2 �(S2), Z
A
IE(S1jS2)dIP =

Z
A
S1dIP:

2.3.2 Definition of Conditional Expectation

Please see Williams, p.83.

Let (
;F ; IP ) be a probability space, and letG be a sub-�-algebra ofF . LetX be a random variable
on (
;F ; IP ). ThenIE(X jG) is defined to be any random variableY that satisfies:

(a) Y isG-measurable,
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(b) For every setA 2 G, we have the “partial averaging property”

Z
A
Y dIP =

Z
A
XdIP:

Existence. There is always a random variableY satisfying the above properties (provided that
IEjX j <1), i.e., conditional expectations always exist.

Uniqueness.There can be more than one random variableY satisfying the above properties, but if
Y 0 is another one, thenY = Y 0 almost surely, i.e.,IPf! 2 
; Y (!) = Y 0(!)g = 1:

Notation 2.1 For random variablesX; Y , it is standard notation to write

IE(X jY ) 4= IE(X j�(Y )):

Here are some useful ways to think aboutIE(X jG):

� A random experiment is performed, i.e., an element! of 
 is selected. The value of! is
partially but not fully revealed to us, and thus we cannot compute the exact value ofX(!).
Based on what we know about!, we compute an estimate ofX(!). Because this estimate
depends on the partial information we have about!, it depends on!, i.e., IE[X jY ](!) is a
function of!, although the dependence on! is often not shown explicitly.

� If the�-algebraG contains finitely many sets, there will be a “smallest” setA in G containing
!, which is the intersection of all sets inG containing!. The way! is partially revealed to us
is that we are told it is inA, but not told which element ofA it is. We then defineIE[X jY ](!)
to be the average (with respect toIP ) value ofX over this setA. Thus, for all! in this setA,
IE[X jY ](!) will be the same.

2.3.3 Further discussion of Partial Averaging

The partial averaging property is

Z
A
IE(X jG)dIP =

Z
A
XdIP; 8A 2 G: (3.1)

We can rewrite this as

IE[IA:IE(X jG)] = IE[IA:X ]: (3.2)

Note thatIA is aG-measurable random variable. In fact the following holds:

Lemma 3.10 If V is anyG-measurable random variable, then providedIEjV:IE(XjG)j <1,

IE[V:IE(XjG)] = IE[V:X ]: (3.3)
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Proof: To see this, first use (3.2) and linearity of expectations to prove (3.3) whenV is asimple
G-measurable random variable, i.e.,V is of the formV =

Pn
k=1 ckIAK , where eachAk is inG and

eachck is constant. Next consider the case thatV is a nonnegativeG-measurable random variable,
but is not necessarily simple. Such aV can be written as the limit of an increasing sequence
of simple random variablesVn; we write (3.3) for eachVn and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3) forV . Finally, the generalG-
measurable random variableV can be written as the difference of two nonnegative random-variables
V = V + � V �, and since (3.3) holds forV + andV � it must hold forV as well. Williams calls
this argument the “standard machine” (p. 56).

Based on this lemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For everyG-measurable random-variableV , we have

IE[V:IE(X jG)] = IE[V:X ]: (3.4)

2.3.4 Properties of Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

(a) IE(IE(X jG)) = IE(X):

Proof: Just takeA in the partial averaging property to be
.

The conditional expectation ofX is thus an unbiased estimator of the random variableX .

(b) If X is G-measurable, then
IE(X jG) = X:

Proof: The partial averaging property holds trivially whenY is replaced byX . And sinceX
isG-measurable,X satisfies the requirement (a) of a conditional expectation as well.

If the information content ofG is sufficient to determineX , then the best estimate ofX based
onG isX itself.

(c) (Linearity)
IE(a1X1 + a2X2jG) = a1IE(X1jG) + a2IE(X2jG):

(d) (Positivity) If X � 0 almost surely, then

IE(X jG) � 0:

Proof: TakeA = f! 2 
; IE(X jG)(!) < 0g. This set is inG sinceIE(X jG) isG-measurable.
Partial averaging implies

R
A IE(X jG)dIP =

R
AXdIP . The right-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, unlessIP (A) = 0. Therefore,
IP (A) = 0.
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(h) (Jensen’s Inequality) If� : R!R is convex andIEj�(X)j<1, then

IE(�(X)jG) � �(IE(X jG)):

Recall the usual Jensen’s Inequality: IE�(X) � �(IE(X)):

(i) (Tower Property) IfH is a sub-�-algebra ofG, then

IE(IE(X jG)jH) = IE(X jH):

H is a sub-�-algebra ofG means thatG contains more information thanH. If we estimateX
based on the information inG, and then estimate the estimator based on the smaller amount
of information inH, then we get the same result as if we had estimatedX directly based on
the information inH.

(j) (Taking out what is known) IfZ is G-measurable, then

IE(ZX jG) = Z:IE(X jG):

When conditioning onG, theG-measurable random variableZ acts like a constant.

Proof: LetZ be aG-measurable random variable. A random variableY is IE(ZX jG) if and
only if

(a) Y is G-measurable;

(b)
R
A Y dIP =

R
A ZXdIP; 8A 2 G.

TakeY = Z:IE(X jG). ThenY satisfies (a) (a product ofG-measurable random variables is
G-measurable).Y also satisfies property (b), as we can check below:

Z
A
Y dIP = IE(IA:Y )

= IE[IAZIE(X jG)]
= IE[IAZ:X ] ((b’) with V = IAZ

=

Z
A
ZXdIP:

(k) (Role of Independence) IfH is independent of�(�(X);G), then

IE(X j�(G;H)) = IE(X jG):

In particular, ifX is independent ofH, then

IE(X jH) = IE(X):

If H is independent ofX andG, then nothing is gained by including the information content
ofH in the estimation ofX .
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2.3.5 Examples from the Binomial Model

Recall thatF1 = f�;AH; AT ;
g. Notice thatIE(S2jF1) must be constant onAH andAT .

Now sinceIE(S2jF1) must satisfy the partial averaging property,Z
AH

IE(S2jF1)dIP =

Z
AH

S2dIP;

Z
AT

IE(S2jF1)dIP =

Z
AT

S2dIP:

We compute Z
AH

IE(S2jF1)dIP = IP (AH ):IE(S2jF1)(!)

= pIE(S2jF1)(!); 8! 2 AH :

On the other hand, Z
AH

S2dIP = p2u2S0 + pqudS0:

Therefore,
IE(S2jF1)(!) = pu2S0 + qudS0; 8! 2 AH :

We can also write

IE(S2jF1)(!) = pu2S0 + qudS0

= (pu+ qd)uS0

= (pu+ qd)S1(!); 8! 2 AH

Similarly,
IE(S2jF1)(!) = (pu+ qd)S1(!); 8! 2 AT :

Thus in both cases we have

IE(S2jF1)(!) = (pu+ qd)S1(!); 8! 2 
:

A similar argument one time step later shows that

IE(S3jF2)(!) = (pu+ qd)S2(!):

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous equations we have

IE[IE(S3jF2)jF1] = IE[(pu+ qd)S2jF2]

= (pu+ qd)IE(S2jF1) (linearity)

= (pu+ qd)2S1:

This final expression isIE(S3jF1).
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2.4 Martingales

The ingredients are:

� A probability space(
;F; IP ).
� A sequence of�-algebrasF0;F1; : : : ;Fn, with the property thatF0 � F1 � : : : � Fn �
F . Such a sequence of�-algebras is called afiltration.

� A sequence of random variablesM0;M1; : : : ;Mn. This is called astochastic process.

Conditions for a martingale:

1. EachMk isFk-measurable. If you know the information inFk, then you know the value of
Mk. We say that the processfMkg is adaptedto the filtrationfFkg.

2. For eachk, IE(Mk+1jFk) = Mk . Martingales tend to go neither up nor down.

A supermartingaletends to godown, i.e. the second conditionabove is replaced byIE(Mk+1jFk) �
Mk; a submartingaletends to goup, i.e. IE(Mk+1jFk) �Mk.

Example 2.3 (Example from the binomial model.)Fork = 1; 2 we already showed that

IE(Sk+1jFk) = (pu+ qd)Sk:

For k = 0, we setF0 = f�;
g, the “trivial �-algebra”. This�-algebra contains no information, and any
F0-measurable random variable must be constant (nonrandom). Therefore, by definition,IE(S1jF0) is that
constant which satisfies the averaging propertyZ




IE(S1jF0)dIP =

Z



S1dIP:

The right hand side isIES1 = (pu+ qd)S0, and so we have

IE(S1jF0) = (pu+ qd)S0:

In conclusion,

� If (pu+ qd) = 1 thenfSk;Fk; k = 0; 1; 2; 3g is a martingale.

� If (pu+ qd) � 1 thenfSk;Fk; k = 0; 1; 2; 3g is a submartingale.

� If (pu+ qd) � 1 thenfSk;Fk; k = 0; 1; 2; 3g is a supermartingale.



Chapter 3

Arbitrage Pricing

3.1 Binomial Pricing

Return to the binomial pricing model

Please see:

� Cox, Ross and Rubinstein,J. Financial Economics, 7(1979), 229–263, and

� Cox and Rubinstein (1985),Options Markets, Prentice-Hall.

Example 3.1 (Pricing a Call Option) Supposeu = 2; d = 0:5; r = 25%(interest rate),S0 = 50. (In this
and all examples, the interest rate quoted is per unit time, and the stock pricesS0; S1; : : : are indexed by the
same time periods). We know that

S1(!) =

�
100 if !1 = H

25 if !1 = T

Find the valueat time zeroof a call option to buy one share of stock at time 1 for $50 (i.e. thestrike priceis
$50).

The value of the call at time 1 is

V1(!) = (S1(!) � 50)
+
=

�
50 if !1 = H

0 if !1 = T

Suppose the option sells for $20 at time 0. Let us construct a portfolio:

1. Sell 3 options for $20 each. Cash outlay is�$60:

2. Buy 2 shares of stock for $50 each. Cash outlay is$100.

3. Borrow $40. Cash outlay is�$40:
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This portfolio thus requires no initial investment. For this portfolio, the cash outlay at time 1 is:

!1 = H !1 = T

Pay off option $150 $0

Sell stock �$200 �$50
Pay off debt $50 $50

�� �� � � �� ��
$0 $0

Thearbitrage pricing theory (APT)value of the option at time 0 isV0 = 20.

Assumptions underlying APT:

� Unlimited short selling of stock.

� Unlimited borrowing.

� No transaction costs.

� Agent is a “small investor”, i.e., his/her trading does not move the market.

Important Observation: The APT value of the option does not depend on the probabilities ofH

andT .

3.2 General one-step APT

Suppose a derivative security pays off the amountV1 at time 1, whereV1 is anF1-measurable
random variable. (This measurability condition is important; this is why it does not make sense
to use some stock unrelated to the derivative security in valuing it, at least in the straightforward
method described below).

� Sell the security forV0 at time 0. (V0 is to be determined later).

� Buy�0 shares of stock at time 0. (�0 is also to be determined later)

� InvestV0 � �0S0 in the money market, at risk-free interest rater. (V0 � �0S0 might be
negative).

� Then wealth at time 1 is

X1

4
= �0S1 + (1 + r)(V0��0S0)

= (1 + r)V0 +�0(S1 � (1 + r)S0):

� We want to chooseV0 and�0 so that

X1 = V1

regardless of whether the stock goes up or down.
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The last condition above can be expressed bytwo equations (which is fortunate since there aretwo
unknowns):

(1 + r)V0+ �0(S1(H)� (1 + r)S0) = V1(H) (2.1)

(1 + r)V0 +�0(S1(T )� (1 + r)S0) = V1(T ) (2.2)

Note that this is where we use the fact that the derivative security valueVk is a function ofSk ,
i.e., whenSk is known for a given!, Vk is known (and therefore non-random) at that! as well.
Subtracting the second equation above from the first gives

�0 =
V1(H)� V1(T )

S1(H)� S1(T )
: (2.3)

Plug the formula (2.3) for�0 into (2.1):

(1 + r)V0 = V1(H)��0(S1(H)� (1 + r)S0)

= V1(H)� V1(H)� V1(T )

(u� d)S0
(u� 1� r)S0

=
1

u � d
[(u� d)V1(H)� (V1(H)� V1(T ))(u� 1� r)]

=
1 + r � d

u � d
V1(H) +

u� 1� r

u � d
V1(T ):

We have already assumedu > d > 0. We now also assumed � 1 + r � u (otherwise there would
be an arbitrage opportunity). Define

~p
4
=

1 + r � d

u� d
; ~q

4
=
u� 1� r

u� d
:

Then~p > 0 and~q > 0. Since~p + ~q = 1, we have0 < ~p < 1 and~q = 1 � ~p. Thus,~p; ~q are like
probabilities. We will return to this later. Thus the price of the call at time 0 is given by

V0 =
1

1+ r
[~pV1(H) + ~qV1(T )]: (2.4)

3.3 Risk-Neutral Probability Measure

Let
 be the set of possible outcomes fromn coin tosses. Construct a probability measurefIP on

by the formula fIP (!1; !2; : : : ; !n)

4
= ~p#fj;!j=Hg~q#fj;!j=Tg

fIP is called therisk-neutral probability measure. We denote byfIE the expectation underfIP . Equa-
tion 2.4 says

V0 = fIE � 1

1 + r
V1

�
:
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Theorem 3.11 UnderfIP , the discounted stock price processf(1+r)�kSk;Fkgnk=0 is a martingale.

Proof:

fIE[(1 + r)�(k+1)Sk+1jFk ]

= (1 + r)�(k+1)(~pu+ ~qd)Sk

= (1 + r)�(k+1)
�
u(1 + r� d)

u� d
+
d(u� 1� r)

u � d

�
Sk

= (1 + r)�(k+1)
u + ur � ud+ du� d� dr

u� d
Sk

= (1 + r)�(k+1)
(u� d)(1 + r)

u� d
Sk

= (1 + r)�kSk:

3.3.1 Portfolio Process

The portfolio process is� = (�0;�1; : : : ;�n�1), where

� �k is the number of shares of stock held between timesk andk + 1.

� Each�k isFk-measurable. (No insider trading).

3.3.2 Self-financing Value of a Portfolio Process�

� Start with nonrandom initial wealthX0, which need not be 0.

� Define recursively

Xk+1 = �kSk+1 + (1 + r)(Xk ��kSk) (3.1)

= (1 + r)Xk +�k(Sk+1 � (1 + r)Sk): (3.2)

� Then eachXk isFk-measurable.

Theorem 3.12 UnderfIP , the discounted self-financingportfolioprocess valuef(1 + r)�kXk;Fkgnk=0
is a martingale.

Proof: We have

(1 + r)�(k+1)Xk+1 = (1 + r)�kXk + �k

�
(1 + r)�(k+1)Sk+1 � (1 + r)�kSk

�
:
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Therefore,

fIE[(1 + r)�(k+1)Xk+1jFk]

= fIE[(1 + r)�kXkjFk]

+fIE[(1 + r)�(k+1)�kSk+1jFk]

�fIE[(1 + r)�k�kSkjFk]

= (1 + r)�kXk (requirement (b) of conditional exp.)

+�k
fIE[(1 + r)�(k+1)Sk+1jFk] (taking out what is known)

�(1 + r)�k�kSk (property (b))

= (1 + r)�kXk (Theorem 3.11)

3.4 Simple European Derivative Securities

Definition 3.1 () A simple European derivative securitywith expiration timem is anFm-measurable
random variableVm. (Here,m is less than or equal ton, the number of periods/coin-tosses in the
model).

Definition 3.2 () A simple European derivative securityVm is said to behedgeableif there exists
a constantX0 and a portfolio process� = (�0; : : : ;�m�1) such that the self-financing value
processX0; X1; : : : ; Xm given by (3.2) satisfies

Xm(!) = Vm(!); 8! 2 
:

In this case, fork = 0; 1; : : : ; m, we callXk theAPT value at timek ofVm.

Theorem 4.13 (Corollary to Theorem 3.12)If a simple European securityVm is hedgeable, then
for eachk = 0; 1; : : : ; m, the APT value at timek of Vm is

Vk
4
= (1 + r)kfIE[(1 + r)�mVmjFk]: (4.1)

Proof: We first observe that iffMk; Fk; k = 0; 1; : : : ; mg is a martingale, i.e., satisfies the
martingale property fIE[Mk+1jFk] = Mk

for eachk = 0; 1; : : : ; m� 1, then we also have

fIE[MmjFk] = Mk ; k = 0; 1; : : : ; m� 1: (4.2)

Whenk = m� 1, the equation (4.2) follows directly from the martingale property. Fork = m� 2,
we use the tower property to write

fIE[MmjFm�2] = fIE[fIE[MmjFm�1]jFm�2]

= fIE[Mm�1jFm�2]

= Mm�2:
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We can continue by induction to obtain (4.2).

If the simple European securityVm is hedgeable, then there is a portfolio process whose self-
financing value processX0; X1; : : : ; Xm satisfiesXm = Vm. By definition,Xk is the APT value
at timek of Vm. Theorem 3.12 says that

X0; (1+ r)�1X1; : : : ; (1 + r)�mXm

is a martingale, and so for eachk,

(1 + r)�kXk = fIE[(1 + r)�mXmjFk] = fIE[(1 + r)�mVmjFk ]:

Therefore,
Xk = (1 + r)kfIE[(1 + r)�mVmjFk ]:

3.5 The Binomial Model is Complete

Can a simple European derivative security always be hedged? It depends on the model. If the answer
is “yes”, the model is said to becomplete.If the answer is “no”, the model is calledincomplete.

Theorem 5.14 The binomial model is complete. In particular, letVm be a simple European deriva-
tive security, and set

Vk(!1; : : : ; !k) = (1 + r)kfIE[(1 + r)�mVmjFk](!1; : : : ; !k); (5.1)

�k(!1; : : : ; !k) =
Vk+1(!1; : : : ; !k; H)� Vk+1(!1; : : : ; !k; T )

Sk+1(!1; : : : ; !k; H)� Sk+1(!1; : : : ; !k; T )
: (5.2)

Starting with initial wealthV0 = fIE[(1 + r)�mVm], the self-financing value of the portfolio process
�0;�1; : : : ;�m�1 is the processV0; V1; : : : ; Vm.

Proof: Let V0; : : : ; Vm�1 and�0; : : : ;�m�1 be defined by (5.1) and (5.2). SetX0 = V0 and
define the self-financing value of the portfolio process�0; : : : ;�m�1 by the recursive formula 3.2:

Xk+1 = �kSk+1 + (1 + r)(Xk ��kSk):

We need to show that

Xk = Vk; 8k 2 f0; 1; : : : ; mg: (5.3)

We proceed by induction. Fork = 0, (5.3) holds by definition ofX0. Assume that (5.3) holds for
some value ofk, i.e., for each fixed(!1; : : : ; !k), we have

Xk(!1; : : : ; !k) = Vk(!1; : : : ; !k):
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We need to show that

Xk+1(!1; : : : ; !k; H) = Vk+1(!1; : : : ; !k; H);

Xk+1(!1; : : : ; !k; T ) = Vk+1(!1; : : : ; !k; T ):

We prove the first equality; the second can be shown similarly. Note first that

fIE[(1 + r)�(k+1)Vk+1jFk] = fIE[fIE[(1 + r)�mVmjFk+1]jFk]

= fIE[(1 + r)�mVmjFk]

= (1 + r)�kVk

In other words,f(1 + r)�kVkgnk=0 is a martingale underfIP . In particular,

Vk(!1; : : : ; !k) = fIE[(1 + r)�1Vk+1jFk](!1; : : : ; !k)

=
1

1 + r
(~pVk+1(!1; : : : ; !k; H) + ~qVk+1(!1; : : : ; !k; T )) :

Since(!1; : : : ; !k) will be fixed for the rest of the proof, we simplify notation by suppressing these
symbols. For example, we write the last equation as

Vk =
1

1 + r
(~pVk+1(H) + ~qVk+1(T )) :

We compute

Xk+1(H)

= �kSk+1(H) + (1 + r)(Xk ��kSk)

= �k (Sk+1(H)� (1 + r)Sk) + (1 + r)Vk

=
Vk+1(H)� Vk+1(T )

Sk+1(H)� Sk+1(T )
(Sk+1(H)� (1 + r)Sk)

+~pVk+1(H) + ~qVk+1(T )

=
Vk+1(H)� Vk+1(T )

uSk � dSk
(uSk � (1 + r)Sk)

+~pVk+1(H) + ~qVk+1(T )

= (Vk+1(H)� Vk+1(T ))

�
u� 1� r

u� d

�
+ ~pVk+1(H) + ~qVk+1(T )

= (Vk+1(H)� Vk+1(T )) ~q + ~pVk+1(H) + ~qVk+1(T )

= Vk+1(H):
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Chapter 4

The Markov Property

4.1 Binomial Model Pricing and Hedging

Recall thatVm is the given simple European derivative security, and the value and portfolio pro-
cesses are given by:

Vk = (1 + r)kfIE[(1 + r)�mVmjFk]; k = 0; 1; : : : ; m� 1:

�k(!1; : : : ; !k) =
Vk+1(!1; : : : ; !k; H)� Vk+1(!1; : : : ; !k; T )

Sk+1(!1; : : : ; !k; H)� Sk+1(!1; : : : ; !k; T )
; k = 0; 1; : : : ; m� 1:

Example 4.1 (Lookback Option) u = 2; d = 0:5; r = 0:25; S0 = 4; ~p = 1+r�d
u�d

= 0:5; ~q = 1 � ~p = 0:5:

Consider a simple European derivative security with expiration 2, with payoff given by (See Fig. 4.1):

V2 = max
0�k�2

(Sk � 5)
+:

Notice that
V2(HH) = 11; V2(HT ) = 3 6= V2(TH) = 0; V2(TT ) = 0:

The payoff is thus “path dependent”. Working backward in time, we have:

V1(H) =
1

1 + r
[~pV2(HH) + ~qV2(HT )] =

4

5
[0:5� 11 + 0:5� 3] = 5:60;

V1(T ) =
4

5
[0:5� 0 + 0:5� 0] = 0;

V0 =
4

5
[0:5� 5:60 + 0:5� 0] = 2:24:

Using these values, we can now compute:

�0 =
V1(H) � V1(T )

S1(H) � S1(T )
= 0:93;

�1(H) =
V2(HH)� V2(HT )

S2(HH)� S2(HT )
= 0:67;
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S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

Figure 4.1:Stock price underlying the lookback option.

�1(T ) =
V2(TH)� V2(TT )

S2(TH)� S2(TT )
= 0:

Working forward in time, we can check that

X1(H) = �0S1(H) + (1 + r)(X0 ��0S0) = 5:59; V1(H) = 5:60;

X1(T ) = �0S1(T ) + (1 + r)(X0 ��0S0) = 0:01; V1(T ) = 0;

X1(HH) = �1(H)S1(HH) + (1 + r)(X1(H)��1(H)S1(H)) = 11:01; V1(HH) = 11;

etc.

Example 4.2 (European Call) Let u = 2; d =
1

2
; r = 1

4
; S0 = 4; ~p = ~q = 1

2
, and consider a European call

with expiration time 2 and payoff function

V2 = (S2 � 5)
+:

Note that
V2(HH) = 11; V2(HT ) = V2(TH) = 0; V2(TT ) = 0;

V1(H) =
4

5
[
1

2
:11 + 1

2
:0] = 4:40

V1(T ) =
4

5
[
1

2
:0 + 1

2
:0] = 0

V0 =
4

5
[
1

2
� 4:40 + 1

2
� 0] = 1:76:

Definevk(x) to be the value of the call at timek whenSk = x. Then

v2(x) = (x� 5)
+

v1(x) =
4

5
[
1

2
v2(2x) +

1

2
v2(x=2)];

v0(x) =
4

5
[
1

2
v1(2x) +

1

2
v1(x=2)]:
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In particular,
v2(16) = 11; v2(4) = 0; v2(1) = 0;

v1(8) =
4

5
[
1

2
:11 + 1

2
:0] = 4:40;

v1(2) =
4

5
[
1

2
:0 + 1

2
:0] = 0;

v0 =
4

5
[
1

2
� 4:40 + 1

2
� 0] = 1:76:

Let �k(x) be the number of shares in the hedging portfolio at timek whenSk = x. Then

�k(x) =
vk+1(2x)� vk+1(x=2)

2x� x=2
; k = 0; 1:

4.2 Computational Issues

For a model withn periods (coin tosses),
 has2n elements. For periodk, we must solve2k

equations of the form

Vk(!1; : : : ; !k) =
1

1 + r
[~pVk+1(!1; : : : ; !k; H) + ~qVk+1(!1; : : : ; !k; T )]:

For example, a three-month option has 66 trading days. If each day is taken to be one period, then
n = 66 and266 � 7� 1019.

There are three possible ways to deal with this problem:

1. Simulation. We have, for example, that

V0 = (1 + r)�nfIEVn;
and so we could computeV0 by simulation. More specifically, we could simulaten coin
tosses! = (!1; : : : ; !n) under the risk-neutral probability measure. We could store the
value ofVn(!). We could repeat this several times and take the average value ofVn as an
approximation tofIEVn.

2. Approximate a many-period model by a continuous-time model. Then we can use calculus
and partial differential equations. We’ll get to that.

3. Look for Markov structure. Example 4.2 has this. In period 2, the option in Example 4.2 has
three possible valuesv2(16); v2(4); v2(1), rather than four possible valuesV2(HH); V2(HT ); V2(TH); V2(TT ).
If there were 66 periods, then in period 66 there would be 67 possible stock price values (since
the final price depends only on thenumberof up-ticks of the stock price – i.e., heads – so far)
and hence only 67 possible option values, rather than266 � 7� 1019.
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4.3 Markov Processes

Technical condition always present:We consider only functions on IR and subsets of IR which are
Borel-measurable, i.e., we only consider subsetsA of IR that are inB and functionsg : IR!IR such
thatg�1 is a functionB!B.

Definition 4.1 () Let (
;F;P) be a probability space. LetfFkgnk=0 be a filtration underF . Let
fXkgnk=0 be a stochastic process on(
;F;P). This process is said to beMarkovif:

� The stochastic processfXkg is adapted to the filtrationfFkg, and

� (The Markov Property).For eachk = 0; 1; : : : ; n� 1, the distribution ofXk+1 conditioned
onFk is the same as the distribution ofXk+1 conditioned onXk.

4.3.1 Different ways to write the Markov property

(a) (Agreement of distributions). For everyA 2 B 4
= B(IR), we have

IP (Xk+1 2 AjFk) = IE[IA(Xk+1)jFk ]

= IE[IA(Xk+1)jXk]

= IP [Xk+1 2 AjXk]:

(b) (Agreement of expectations of all functions). For every (Borel-measurable) functionh : IR!IR

for whichIEjh(Xk+1)j <1, we have

IE[h(Xk+1)jFk] = IE[h(Xk+1)jXk]:

(c) (Agreement of Laplace transforms.) For everyu 2 IR for whichIEeuXk+1 <1, we have

IE

�
euXk+1

����Fk

�
= IE

�
euXk+1

����Xk

�
:

(If we fix u and defineh(x) = eux, then the equations in (b) and (c) are the same. However in
(b) we have a condition which holds foreveryfunctionh, and in (c) we assume this condition
only for functionsh of the formh(x) = eux. A main result in the theory of Laplace transforms
is that if the equation holds for everyh of this special form, then it holds for everyh, i.e., (c)
implies (b).)

(d) (Agreement of characteristic functions) For everyu 2 IR, we have

IE
h
eiuXk+1 jFk

i
= IE

h
eiuXk+1 jXk

i
;

wherei =
p�1. (Sincejeiuxj = j cosx+sin xj � 1 we don’t need to assume thatIEjeiuxj <

1.)



CHAPTER 4. The Markov Property 71

Remark 4.1 In every case of the Markov properties whereIE[: : : jXk] appears, we could just as
well writeg(Xk) for some functiong. For example, form (a) of the Markov property can be restated
as:

For everyA 2 B, we have

IP (Xk+1 2 AjFk) = g(Xk);

whereg is a function that depends on the setA.

Conditions (a)-(d) are equivalent. The Markov property as stated in (a)-(d) involves the process at
a “current” timek and one future timek + 1. Conditions (a)-(d) are also equivalent to conditions
involving the process at timek and multiple future times. We write these apparently stronger but
actually equivalent conditions below.

Consequences of the Markov property.Let j be a positive integer.

(A) For everyAk+1 � IR; : : : ;Ak+j � IR,

IP [Xk+1 2 Ak+1; : : : ; Xk+j 2 Ak+j jFk] = IP [Xk+1 2 Ak+1; : : : ; Xk+j 2 Ak+j jXk]:

(A’) For everyA 2 IRj ,

IP [(Xk+1; : : : ; Xk+j) 2 AjFk] = IP [(Xk+1; : : : ; Xk+j) 2 AjXk]:

(B) For every functionh : IRj!IR for whichIEjh(Xk+1; : : : ; Xk+j)j <1, we have

IE[h(Xk+1; : : : ; Xk+j)jFk] = IE[h(Xk+1; : : : ; Xk+j)jXk]:

(C) For everyu = (uk+1; : : : ; uk+j) 2 IRj for whichIEjeuk+1Xk+1+:::+uk+jXk+j j <1, we have

IE[euk+1Xk+1+:::+uk+jXk+j jFk] = IE[euk+1Xk+1+:::+uk+jXk+j jXk]:

(D) For everyu = (uk+1; : : : ; uk+j) 2 IRj we have

IE[ei(uk+1Xk+1+:::+uk+jXk+j)jFk] = IE[ei(uk+1Xk+1+:::+uk+jXk+j)jXk]:

Once again, every expression of the formIE(: : : jXk) can also be written asg(Xk), where the
functiong depends on the random variable represented by: : : in this expression.

Remark. All these Markov properties have analogues for vector-valued processes.
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Proof that (b) =) (A). (with j = 2 in (A)) Assume (b). Then (a) also holds (takeh = IA).
Consider

IP [Xk+1 2 Ak+1; Xk+2 2 Ak+2jFk]

= IE[IAk+1
(Xk+1)IAk+2

(Xk+2)jFk]

(Definition of conditional probability)

= IE[IE[IAk+1
(Xk+1)IAk+2

(Xk+2)jFk+1]jFk ]

(Tower property)

= IE[IAk+1
(Xk+1):IE[IAk+2

(Xk+2)jFk+1]jFk]

(Taking out what is known)

= IE[IAk+1
(Xk+1):IE[IAk+2

(Xk+2)jXk+1]jFk ]

(Markov property, form (a).)

= IE[IAk+1
(Xk+1):g(Xk+1)jFk]

(Remark 4.1)

= IE[IAk+1
(Xk+1):g(Xk+1)jXk]

(Markov property, form (b).)

Now take conditional expectation on both sides of the above equation, conditioned on�(Xk), and
use the tower property on the left, to obtain

IP [Xk+1 2 Ak+1; Xk+2 2 Ak+2jXk] = IE[IAk+1
(Xk+1):g(Xk+1)jXk]: (3.1)

Since both
IP [Xk+1 2 Ak+1; Xk+2 2 Ak+2jFk ]

and
IP [Xk+1 2 Ak+1; Xk+2 2 Ak+2jXk]

are equal to the RHS of (3.1)), they are equal to each other, and this is property (A) withj = 2.

Example 4.3 It is intuitively clear that the stock price process in the binomial model is a Markov process.
We will formally prove this later. If we want to estimate the distribution ofSk+1 based on the information in
Fk, the only relevant piece of information is the value ofSk. For example,

eIE[Sk+1jFk] = (~pu+ ~qd)Sk = (1 + r)Sk (3.2)

is a function ofSk. Note however that form (b) of the Markov property is stronger then (3.2); the Markov
property requires that foranyfunctionh, eIE[h(Sk+1)jFk]

is a function ofSk. Equation (3.2) is the case ofh(x) = x.

Consider a model with 66 periods and a simple European derivative security whose payoff at time 66 is

V66 =
1

3
(S64 + S65 + S66):
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The value of this security at time 50 is

V50 = (1 + r)50 eIE[(1 + r)�66V66jF50]

= (1 + r)�16 eIE[V66jS50];

because the stock price process is Markov. (We are using form (B) of the Markov property here). In other
words, theF50-measurable random variableV50 can be written as

V50(!1; : : : ; !50) = g(S50(!1; : : : ; !50))

for some functiong, which we can determine with a bit of work.

4.4 Showing that a process is Markov

Definition 4.2 (Independence)Let (
;F ;P) be a probability space, and letG andH be sub-�-
algebras ofF . We say thatG andH areindependentif for everyA 2 G andB 2 H, we have

IP (A \ B) = IP (A)IP (B):

We say that a random variableX is independent of a�-algebraG if �(X), the�-algebra generated
byX , is independent ofG.

Example 4.4 Consider the two-period binomial model. Recall thatF1 is the�-algebra of sets determined
by the first toss, i.e.,F1 contains the four sets

AH
4
= fHH;HTg; AT

4
= fTH; TTg; �; 
:

LetH be the�-algebra of sets determined by the second toss, i.e.,H contains the four sets

fHH;THg; fHT; TTg; �;
:

ThenF1 andH are independent. For example, if we takeA = fHH;HTg fromF1 andB = fHH;THg
fromH, thenIP (A \B) = IP (HH) = p2 and

IP (A)IP (B) = (p2 + pq)(p2 + pq) = p2(p+ q)2 = p2:

Note thatF1 andS2 are not independent (unlessp = 1 or p = 0). For example, one of the sets in�(S2) is
f!;S2(!) = u2S0g = fHHg. If we takeA = fHH;HTg from F1 andB = fHHg from �(S2), then
IP (A \B) = IP (HH) = p2, but

IP (A)IP (B) = (p2 + pq)p2 = p3(p+ q) = p3:

The following lemma will be very useful in showing that a process is Markov:

Lemma 4.15 (Independence Lemma)LetX andY be random variables on a probability space
(
;F;P). LetG be a sub-�-algebra ofF . Assume
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� X is independent ofG;

� Y is G-measurable.

Letf(x; y) be a function of two variables, and define

g(y)
4
= IEf(X; y):

Then
IE[f(X; Y )jG] = g(Y ):

Remark. In this lemma and the following discussion, capital letters denote random variables and
lower case letters denote nonrandom variables.

Example 4.5 (Showing the stock price process is Markov)Consider ann-period binomial model. Fix a

timek and defineX
4

=
Sk+1
Sk

andG 4

= Fk. ThenX = u if !k+1 = H andX = d if !k+1 = T . SinceX

depends only on the(k+ 1)st toss,X is independent ofG. DefineY
4
= Sk, so thatY isG-measurable. Leth

be any function and setf(x; y)
4

= h(xy). Then

g(y)
4

= IEf(X; y) = IEh(Xy) = ph(uy) + qh(dy):

The Independence Lemma asserts that

IE[h(Sk+1)jFk] = IE[h

�
Sk+1

Sk
:Sk

�
jFk]

= IE[f(X;Y )jG]
= g(Y )

= ph(uSk) + qh(dSk):

This shows the stock price is Markov. Indeed, if we condition both sides of the above equation on�(Sk) and
use the tower property on the left and the fact that the right hand side is�(Sk)-measurable, we obtain

IE[h(Sk+1)jSk] = ph(uSk) + qh(dSk):

ThusIE[h(Sk+1)jFk] andIE[h(Sk+1)jXk] are equal and form (b) of the Markov property is proved.

Not only have we shown that the stock price process is Markov, but we have also obtained a formula for
IE[h(Sk+1)jFk] as a function ofSk. This is a special case of Remark 4.1.

4.5 Application to Exotic Options

Consider ann-period binomial model. Define therunning maximumof the stock price to be

Mk
4
= max

1�j�k
Sj :

Consider a simple European derivative security with payoff at timen of vn(Sn;Mn).

Examples:
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� vn(Sn;Mn) = (Mn �K)+ (Lookback option);

� vn(Sn;Mn) = IMn�B(Sn �K)+ (Knock-in Barrier option).

Lemma 5.16 The two-dimensional processf(Sk;Mk)gnk=0 is Markov. (Here we are working under
the risk-neutral measure IP, although that does not matter).

Proof: Fix k. We have
Mk+1 = Mk _ Sk+1;

where_ indicates the maximum of two quantities. LetZ
4
=
Sk+1
Sk

, so

fIP (Z = u) = ~p; fIP (Z = d) = ~q;

andZ is independent ofFk . Leth(x; y) be a function of two variables. We have

h(Sk+1;Mk+1) = h(Sk+1;Mk _ Sk+1)
= h(ZSk;Mk _ (ZSk)):

Define

g(x; y)
4
= fIEh(Zx; y _ (Zx))

= ~ph(ux; y _ (ux)) + ~qh(dx; y _ (dx)):

The Independence Lemma implies

fIE[h(Sk+1;Mk+1)jFk ] = g(Sk;Mk) = ~ph(uSk;Mk _ (uSk)) + ~qh(dSk;Mk);

the second equality being a consequence of the fact thatMk ^ dSk = Mk . Since the RHS is a
function of (Sk;Mk), we have proved the Markov property (form (b)) for this two-dimensional
process.

Continuing with the exotic option of the previous Lemma... LetVk denote the value of the derivative
security at timek. Since(1 + r)�kVk is a martingale underfIP , we have

Vk =
1

1 + r
fIE[Vk+1jFk]; k = 0; 1; : : : ; n� 1:

At the final time, we have
Vn = vn(Sn;Mn):

Stepping back one step, we can compute

Vn�1 =
1

1+ r
fIE[vn(Sn;Mn)jFn�1]

=
1

1 + r
[~pvn(uSn�1; uSn�1 _Mn�1) + ~qvn(dSn�1;Mn�1)] :
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This leads us to define

vn�1(x; y)
4
=

1

1+ r
[~pvn(ux; ux _ y) + ~qvn(dx; y)]

so that
Vn�1 = vn�1(Sn�1;Mn�1):

The general algorithm is

vk(x; y) =
1

1 + r

�
~pvk+1(ux; ux _ y) + ~qvk+1(dx; y)

�
;

and the value of the option at timek is vk(Sk;Mk). Since this is a simple European option, the
hedging portfolio is given by the usual formula, which in this case is

�k =
vk+1(uSk; (uSk)_Mk)� vk+1(dSk;Mk)

(u� d)Sk



Chapter 5

Stopping Times and American Options

5.1 American Pricing

Let us first review theEuropean pricing formula in a Markov model . Consider the Binomial
model withn periods. LetVn = g(Sn) be the payoff of a derivative security. Define by backward
recursion:

vn(x) = g(x)

vk(x) =
1

1 + r
[~pvk+1(ux) + ~qvk+1(dx)]:

Thenvk(Sk) is the value of the option at timek, and the hedging portfolio is given by

�k =
vk+1(uSk)� vk+1(dSk)

(u� d)Sk
; k = 0; 1; 2; : : : ; n� 1:

Now consider an American option. Again a functiong is specified. In any periodk, the holder
of the derivative security can “exercise” and receive paymentg(Sk). Thus, the hedging portfolio
should create a wealth process which satisfies

Xk � g(Sk); 8k; almost surely.

This is because the value of the derivative security at timek is at leastg(Sk), and the wealth process
value at that time must equal the value of the derivative security.

American algorithm.

vn(x) = g(x)

vk(x) = max

�
1

1 + r
(~pvk+1(ux) + ~qvk+1(dx)); g(x)

�

Thenvk(Sk) is the value of the option at timek.

77
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v  (16)  = 02

S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

v  (4) = 1

v  (1)  = 4

2

2

Figure 5.1:Stock price and final value of an American put option with strike price 5.

Example 5.1 See Fig. 5.1.S0 = 4; u = 2; d = 1

2
; r = 1

4
; ~p = ~q = 1

2
; n = 2. Setv2(x) = g(x) = (5 � x)+.

Then

v1(8) = max

�
4

5

�
1

2
:0 + 1

2
:1
�
; (5� 8)

+

�

= max

�
2

5
; 0

�
= 0:40

v1(2) = max

�
4

5

�
1

2
:1 + 1

2
:4
�
; (5� 2)

+

�
= maxf2; 3g
= 3:00

v0(4) = max

�
4

5

�
1

2
:(0:4) + 1

2
:(3:0)

�
; (5� 4)

+

�
= maxf1:36; 1g
= 1:36

Let us now construct the hedging portfolio for this option. Begin with initial wealthX0 = 1:36. Compute
�0 as follows:

0:40 = v1(S1(H))

= S1(H)�0 + (1 + r)(X0 ��0S0)

= 8�0 +
5

4
(1:36� 4�0)

= 3�0 + 1:70 =) �0 = �0:43
3:00 = v1(S1(T ))

= S1(T )�0 + (1 + r)(X0 ��0S0)

= 2�0 +
5

4
(1:36� 4�0)

= �3�0 + 1:70 =) �0 = �0:43
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Using�0 = �0:43 results in

X1(H) = v1(S1(H)) = 0:40; X1(T ) = v1(S1(T )) = 3:00

Now let us compute�1 (Recall thatS1(T ) = 2):

1 = v2(4)

= S2(TH)�1(T ) + (1 + r)(X1(T ) ��1(T )S1(T ))

= 4�1(T ) +
5

4
(3� 2�1(T ))

= 1:5�1(T ) + 3:75 =) �1(T ) = �1:83
4 = v2(1)

= S2(TT )�1(T ) + (1 + r)(X1(T ) ��1(T )S1(T ))

= �1(T ) +
5

4
(3� 2�1(T ))

= �1:5�1(T ) + 3:75 =) �1(T ) = �0:16

We get different answers for�1(T )! If we hadX1(T ) = 2, the value of theEuropeanput, we would have

1 = 1:5�1(T ) + 2:5 =) �1(T ) = �1;

4 = �1:5�1(T ) + 2:5 =) �1(T ) = �1;

5.2 Value of Portfolio Hedging an American Option

Xk+1 = �kSk+1 + (1 + r)(Xk � Ck ��kSk)

= (1 + r)Xk +�k(Sk+1 � (1 + r)Sk)� (1 + r)Ck

Here,Ck is the amount “consumed” at timek.

� The discounted value of the portfolio is asupermartingale.

� The value satisfiesXk � g(Sk); k = 0; 1; : : : ; n.

� The value process is the smallest process with these properties.

When do you consume? If

fIE((1 + r)�(k+1)vk+1(Sk+1)jFk] < (1 + r)�kvk(Sk);

or, equivalently,

fIE(
1

1 + r
vk+1(Sk+1)jFk] < vk(Sk)
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and the holder of the American option does not exercise, then the seller of the option can consume
to close the gap. By doing this, he can ensure thatXk = vk(Sk) for all k, wherevk is the value
defined by the American algorithm in Section 5.1.

In the previous example,v1(S1(T )) = 3; v2(S2(TH)) = 1 andv2(S2(TT )) = 4. Therefore,

fIE[
1

1 + r
v2(S2)jF1](T ) =

4

5

h
1

2
:1 + 1

2
:4
i

=
4

5

�
5

2

�
= 2;

v1(S1(T )) = 3;

so there is a gap of size 1. If the owner of the option does not exercise it at time one in the state
!1 = T , then the seller can consume 1 at time 1. Thereafter, he uses the usual hedging portfolio

�k =
vk+1(uSk)� vk+1(dSk)

(u� d)Sk

In the example, we havev1(S1(T )) = g(S1(T )). It is optimal for the owner of the American option
to exercise whenever its valuevk(Sk) agrees with its intrinsic valueg(Sk).

Definition 5.1 (Stopping Time) Let (
;F;P) be a probability space and letfFkgnk=0 be a filtra-
tion. A stopping timeis a random variable� : 
!f0; 1; 2; : : : ; ng [ f1g with the property that:

f! 2 
; �(!) = kg 2 Fk; 8k = 0; 1; : : : ; n;1:

Example 5.2 Consider the binomial model withn = 2; S0 = 4; u = 2; d =
1

2
; r =

1

4
, so ~p = ~q =

1

2
. Let

v0; v1; v2 be the value functions defined for the American put with strike price 5. Define

� (!) = minfk; vk(Sk) = (5� Sk)
+g:

The stopping time� corresponds to “stopping the first time the value of the option agrees with its intrinsic
value”. It is an optimal exercise time. We note that

� (!) =

�
1 if ! 2 AT

2 if ! 2 AH

We verify that� is indeed a stopping time:

f!; � (!) = 0g = � 2 F0

f!; � (!) = 1g = AT 2 F1

f!; � (!) = 2g = AH 2 F2

Example 5.3 (A random time which is not a stopping time) In the same binomial model as in the previous
example, define

�(!) = minfk;Sk(!) = m2(!)g;
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wherem2

4
= min0�j�2 Sj . In other words,� stops when the stock price reaches its minimum value. This

random variable is given by

�(!) =

8<
:

0 if ! 2 AH ;

1 if ! = TH;

2 if ! = TT

We verify that� is nota stopping time:

f!; �(!) = 0g = AH 62 F0

f!; �(!) = 1g = fTHg 62 F1

f!; �(!) = 2g = fTTg 2 F2

5.3 Information up to a Stopping Time

Definition 5.2 Let � be a stopping time. We say that a setA � 
 is determined by time� provided
that

A \ f!; �(!) = kg 2 Fk ; 8k:
The collection of sets determined by� is a�-algebra, which we denote byF� .

Example 5.4 In the binomial model considered earlier, let

� = minfk; vk(Sk) = (5� Sk)
+g;

i.e.,

� (!) =

�
1 if ! 2 AT

2 if ! 2 AH

The setfHTg is determined by time� , but the setfTHg is not. Indeed,

fHTg \ f!; � (!) = 0g = � 2 F0

fHTg \ f!; � (!) = 1g = � 2 F1

fHTg \ f!; � (!) = 2g = fHTg 2 F2

but
fTHg \ f!; � (!) = 1g = fTHg 62 F1:

The atoms ofF� are
fHTg; fHHg; AT = fTH; TTg:

Notation 5.1 (Value of Stochastic Process at a Stopping Time)If (
;F;P) is a probability space,
fFkgnk=0 is a filtration underF , fXkgnk=0 is a stochastic process adapted to this filtration, and� is
a stopping time with respect to the same filtration, thenX� is anF� -measurable random variable
whose value at! is given by

X�(!)
4
= X�(!)(!):
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Theorem 3.17 (Optional Sampling)Suppose thatfYk;Fkg1k=0 (or fYk ;Fkgnk=0) is a submartin-
gale. Let� and� beboundedstopping times, i.e., there is a nonrandom numbern such that

� � n; � � n; almost surely.

If � � � almost surely, then
Y� � IE(Y�jF�):

Taking expectations, we obtainIEY� � IEY�, and in particular,Y0 = IEY0 � IEY�. If fYk;Fkg1k=0
is a supermartingale, then� � � impliesY� � IE(Y�jF� ).
If fYk ;Fkg1k=0 is a martingale, then� � � impliesY� = IE(Y�jF� ).

Example 5.5 In the example 5.4 considered earlier, we define�(!) = 2 for all ! 2 
. Under the risk-neutral
probability measure, the discounted stock price process(

5

4
)�kSk is a martingale. We compute

eIE
"�

4

5

�2
S2

����F�

#
:

The atoms ofF� arefHHg; fHTg; andAT . Therefore,

eIE
"�

4

5

�2

S2

����F�

#
(HH) =

�
4

5

�2

S2(HH);

eIE
"�

4

5

�2
S2

����F�

#
(HT ) =

�
4

5

�2

S2(HT );

and for! 2 AT ,

eIE
"�

4

5

�2
S2

����F�

#
(!) =

1

2

�
4

5

�2

S2(TH) +
1

2

�
4

5

�2
S2(TT )

=
1

2
� 2:56 + 1

2
� 0:64

= 1:60

In every case we have gotten (see Fig. 5.2)

eIE
"�

4

5

�2

S2

����F�

#
(!) =

�
4

5

��(!)
S�(!)(!):
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S  = 40

1

2

2

2

2

S  (HH) = 10.24

S  (HT)  = 2.56

S  (TH)  = 2.56

S  (TT)  = 0.64

1S  (T)  = 1.60(4/5)

S  (H) = 6.40(4/5)

(16/25)

(16/25)

(16/25)

(16/25)

Figure 5.2:Illustrating the optional sampling theorem.
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Chapter 6

Properties of American Derivative
Securities

6.1 The properties

Definition 6.1 An American derivative securityis a sequence of non-negative random variables
fGkgnk=0 such that eachGk is Fk-measurable. The owner of an American derivative security can
exercise at any timek, and if he does, he receives the paymentGk.

(a) The valueVk of the security at timek is

Vk = max
�

(1 + r)kfIE[(1 + r)��G� jFk];

where the maximum is over all stopping times� satisfying� � k almost surely.

(b) The discounted value processf(1 + r)�kVkgnk=0 is the smallest supermartingale which satisfies

Vk � Gk; 8k; almost surely.

(c) Any stopping time� which satisfies

V0 = fIE[(1 + r)��G� ]

is an optimal exercise time. In particular

�
4
= minfk;Vk = Gkg

is an optimal exercise time.

(d) The hedging portfolio is given by

�k(!1; : : : ; !k) =
Vk+1(!1; : : : ; !k; H)� Vk+1(!1; : : : ; !k; T )

Sk+1(!1; : : : ; !k; H)� Sk+1(!1; : : : ; !k; T )
; k = 0; 1; : : : ; n� 1:
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(e) Suppose for somek and!, we haveVk(!) = Gk(!). Then the owner of the derivative security
should exercise it. If he does not, then the seller of the security can immediately consume

Vk(!)� 1

1 + r
fIE[Vk+1jFk](!)

and still maintain the hedge.

6.2 Proofs of the Properties

Let fGkgnk=0 be a sequence of non-negative random variables such that eachGk isFk-measurable.
DefineTk to be the set of all stopping times� satisfyingk � � � n almost surely. Define also

Vk
4
= (1 + r)kmax

�2Tk
fIE [(1 + r)��G� jFk] :

Lemma 2.18 Vk � Gk for everyk.

Proof: Take� 2 Tk to be the constantk.

Lemma 2.19 The processf(1 + r)�kVkgnk=0 is a supermartingale.

Proof: Let �� attain the maximum in the definition ofVk+1, i.e.,

(1 + r)�(k+1)Vk+1 = fIE h(1 + r)��
�
G��jFk+1

i
:

Because�� is also inTk, we have

fIE[(1 + r)�(k+1)Vk+1jFk ] = fIE hfIE[(1 + r)��
�
G��jFk+1]jFk

i
= fIE[(1 + r)��

�
G��jFk ]

� max
�2Tk

fIE [(1 + r)��G� jFk]

= (1 + r)�kVk:

Lemma 2.20 If fYkgnk=0 is another process satisfying

Yk � Gk; k = 0; 1; : : : ; n; a.s.,

andf(1 + r)�kYkgnk=0 is a supermartingale, then

Yk � Vk; k = 0; 1; : : : ; n; a.s.
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Proof: The optional sampling theorem for the supermartingalef(1 + r)�kYkgnk=0 implies

fIE[(1 + r)��Y� jFk ] � (1 + r)�kYk ; 8� 2 Tk:

Therefore,

Vk = (1 + r)k max
�2Tk

fIE[(1 + r)��G� jFk]

� (1 + r)k max
�2Tk

fIE[(1 + r)��Y� jFk ]

� (1 + r)�k(1 + r)kYk

= Yk:

Lemma 2.21 Define

Ck = Vk � 1

1 + r
fIE[Vk+1jFk ]

= (1 + r)k
n
(1 + r)�kVk �fIE[(1 + r)�(k+1)Vk+1jFk ]

o
:

Sincef(1 + r)�kVkgnk=0 is a supermartingale,Ck must be non-negative almost surely. Define

�k(!1; : : : ; !k) =
Vk+1(!1; : : : ; !k; H)� Vk+1(!1; : : : ; !k; T )

Sk+1(!1; : : : ; !k; H)� Sk+1(!1; : : : ; !k; T )
:

SetX0 = V0 and define recursively

Xk+1 = �kSk+1 + (1 + r)(Xk � Ck ��kSk):

Then
Xk = Vk 8k:

Proof: We proceed by induction onk. The induction hypothesis is thatXk = Vk for some
k 2 f0; 1; : : : ; n� 1g, i.e., for each fixed(!1; : : : ; !k) we have

Xk(!1; : : : ; !k) = Vk(!1; : : : ; !k):

We need to show that

Xk+1(!1; : : : ; !k; H) = Vk+1(!1; : : : ; !k; H);

Xk+1(!1; : : : ; !k; T ) = Vk+1(!1; : : : ; !k; T ):

We prove the first equality; the proof of the second is similar. Note first that

Vk(!1; : : : ; !k)� Ck(!1; : : : ; !k)

=
1

1 + r
fIE[Vk+1jFk](!1; : : : ; !k)

=
1

1 + r
(~pVk+1(!1; : : : ; !k; H) + ~qVk+1(!1; : : : ; !k; T )) :
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Since(!1; : : : ; !k) will be fixed for the rest of the proof, we will suppress these symbols. For
example, the last equation can be written simply as

Vk � Ck =
1

1 + r
(~pVk+1(H) + ~qVk+1(T )) :

We compute

Xk+1(H) = �kSk+1(H) + (1 + r)(Xk � Ck ��kSk)

=
Vk+1(H)� Vk+1(T )

Sk+1(H)� Sk+1(T )
(Sk+1(H)� (1 + r)Sk)

+(1 + r)(Vk � Ck)

=
Vk+1(H)� Vk+1(T )

(u� d)Sk
(uSk � (1 + r)Sk)

+~pVk+1(H) + ~qVk+1(T )

= (Vk+1(H)� Vk+1(T ))~q + ~pVk+1(H) + ~qVk+1(T )

= Vk+1(H):

6.3 Compound European Derivative Securities

In order to derive the optimal stopping time for an American derivative security, it will be useful to
study compound European derivative securities, which are also interesting in their own right.

A compound European derivative security consists ofn + 1 different simple European derivative
securities (with the same underlying stock) expiring at times0; 1; : : : ; n; the security that expires
at timej has payoffCj . Thus a compound European derivative security is specified by the process
fCjgnj=0, where eachCj is F j-measurable, i.e., the processfCjgnj=0 is adapted to the filtration
fFkgnk=0.
Hedging a short position (one payment). Here is how we can hedge a short position in thej’th
European derivative security. The value of European derivative securityj at timek is given by

V
(j)
k = (1 + r)kfIE[(1 + r)�jCj jFk]; k = 0; : : : ; j;

and the hedging portfolio for that security is given by

�
(j)
k (!1; : : : ; !k) =

V
(j)
k+1(!1; : : : ; !k; H)� V

(j)
k+1(!1; : : : ; !k; T )

S
(j)
k+1(!1; : : : ; !k; H)� S

(j)
k+1(!1; : : : ; !k; T )

; k = 0; : : : ; j � 1:

Thus, starting with wealthV (j)
0

, and using the portfolio(�(j)
0
; : : : ;�

(j)
j�1), we can ensure that at

timej we have wealthCj .

Hedging a short position (all payments).Superpose the hedges for the individual payments. In
other words, start with wealthV0 =

Pn
j=0 V

(j)
0

. At each timek 2 f0; 1; : : : ; n� 1g, first make the
paymentCk and then use the portfolio

�k = �k
(k+1) + �k

(k+2) + : : :+ �k
(n)
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corresponding to all future payments. At the final timen, after making the final paymentCn, we
will have exactly zero wealth.

Suppose you own a compound European derivative securityfCjgnj=0. Compute

V0 =
nX
j=0

V
(j)
0

= fIE
2
4 nX
j=0

(1 + r)�jCj

3
5

and the hedging portfolio isf�kgn�1k=0 . You can borrowV0 and consume it immediately. This leaves
you with wealthX0 = �V0. In each periodk, receivethe paymentCk and then use the portfolio
��k . At the final timen, after receiving the last paymentCn, your wealth will reach zero, i.e., you
will no longer have a debt.

6.4 Optimal Exercise of American Derivative Security

In this section we derive the optimal exercise time for the owner of an American derivative security.
Let fGkgnk=0 be an American derivative security. Let� be the stopping time the owner plans to
use. (We assume that eachGk is non-negative, so we may assume without loss of generality that the
owner stops at expiration – timen– if not before). Using the stopping time� , in periodj the owner
will receive the payment

Cj = If�=jgGj :

In other words, once he chooses a stopping time, the owner has effectively converted the American
derivative security into a compound European derivative security, whose value is

V
(�)
0

= fIE
2
4 nX
j=0

(1 + r)�jCj

3
5

= fIE
2
4 nX
j=0

(1 + r)�jIf�=jgGj

3
5

= fIE[(1 + r)��G� ]:

The owner of the American derivative security can borrow this amount of money immediately, if
he chooses, and invest in the market so as to exaclty pay off his debt as the paymentsfCjgnj=0 are

received. Thus, his optimal behavior is to use a stopping time� which maximizesV (�)
0

.

Lemma 4.22 V
(�)
0

is maximized by the stopping time

�� = minfk;Vk = Gkg:

Proof: Recall the definition

V0
4
= max

�2T0
fIE [(1 + r)��G� ] = max

�2T0
V
(�)
0
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Let� 0 be a stopping time which maximizesV (�)
0

, i.e.,V0 = fIE h(1 + r)��
0
G� 0

i
:Becausef(1 + r)�kVkgnk=0

is a supermartingale, we have from the optional sampling theorem and the inequalityVk � Gk, the
following:

V0 � fIE h(1 + r)��
0
V� 0jF0

i
= fIE h(1 + r)��

0
V� 0
i

� fIE h(1 + r)��
0
G� 0

i
= V0:

Therefore,
V0 = fIE h(1 + r)��

0
V� 0
i
= fIE h(1 + r)��

0
G� 0

i
;

and
V� 0 = G� 0; a.s.

We have just shown that if� 0 attains the maximum in the formula

V0 = max
�2T0

fIE [(1 + r)��G� ] ; (4.1)

then
V� 0 = G� 0; a.s.

But we have defined
�� = minfk;Vk = Gkg;

and so we must have�� � � 0 � n almost surely. The optional sampling theorem implies

(1 + r)��
�
G�� = (1 + r)��

�
V��

� fIE h(1 + r)��
0
V� 0jF��

i
= fIE h(1 + r)��

0
G� 0jF��

i
:

Taking expectations on both sides, we obtain

fIE h(1 + r)��
�
G��

i
� fIE h(1 + r)��

0
G� 0

i
= V0:

It follows that�� also attains the maximum in (4.1), and is therefore an optimal exercise time for
the American derivative security.



Chapter 7

Jensen’s Inequality

7.1 Jensen’s Inequality for Conditional Expectations

Lemma 1.23 If ' : IR!IR is convex andIEj'(X)j<1, then

IE['(X)jG] � '(IE[X jG]):

For instance, ifG = f�;
g; '(x) = x2:

IEX2 � (IEX)2:

Proof: Since' is convex we can express it as follows (See Fig. 7.1):

'(x) = max
h�'

h is linear

h(x):

Now leth(x) = ax+ b lie below'. Then,

IE['(X)jG] � IE[aX + bjG]
= aIE[X jG] + b

= h(IE[X jG])

This implies

IE['(X)jG] � max
h�'

h is linear

h(IE[X jG])

= '(IE[X jG]):

91
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ϕ

Figure 7.1:Expressing a convex function as a max over linear functions.

Theorem 1.24 If fYkgnk=0 is a martingale and� is convex thenf'(Yk)gnk=0 is a submartingale.

Proof:

IE['(Yk+1)jFk] � '(IE[Yk+1jFk ])

= '(Yk):

7.2 Optimal Exercise of an American Call

This follows from Jensen’s inequality.

Corollary 2.25 Given a convex functiong : [0;1)!IR whereg(0) = 0. For instance,g(x) =

(x�K)+ is the payoff function for an American call. Assume thatr � 0. Consider the American
derivative security with payoffg(Sk) in periodk. The value of this security is the same as the value
of the simple European derivative security with final payoffg(Sn), i.e.,

fIE [(1 + r)�ng(Sn)] = max
�
fIE [(1 + r)��g(S�)] ;

where the LHS is the European value and the RHS is the American value. In particular� = n is an
optimal exercise time.

Proof: Becauseg is convex, for all� 2 [0; 1] we have (see Fig. 7.2):

g(�x) = g(�x+ (1� �):0)

� �g(x) + (1� �):g(0)

= �g(x):
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( x, g(x))λλ

( x, g( x))λ λ

(x,g(x))

x

Figure 7.2:Proof of Cor. 2.25

Therefore,

g

�
1

1 + r
Sk+1

�
� 1

1 + r
g(Sk+1)

and

fIE h(1 + r)�(k+1)g(Sk+1)jFk

i
= (1 + r)�kfIE � 1

1 + r
g(Sk+1)jFk

�

� (1 + r)�kfIE �g� 1

1 + r
Sk+1

�
jFk

�

� (1 + r)�kg
�fIE � 1

1 + r
Sk+1jFk

��

= (1 + r)�kg(Sk);

Sof(1 + r)�kg(Sk)gnk=0 is a submartingale. Let� be a stopping time satisfying0 � � � n. The
optional sampling theorem implies

(1 + r)��g(S�) � fIE [(1 + r)�ng(Sn)jF� ] :

Taking expectations, we obtain

fIE [(1 + r)��g(S�)] � fIE �fIE [(1 + r)�ng(Sn)jF� ]
�

= fIE [(1 + r)�ng(Sn)] :

Therefore, the value of the American derivative security is

max
�
fIE [(1 + r)��g(S�)] � fIE [(1 + r)�ng(Sn)] ;

and this last expression is the value of the European derivative security. Of course, the LHS cannot
be strictly less than the RHS above, since stopping at timen is always allowed, and we conclude
that

max
�
fIE [(1 + r)��g(S�)] = fIE [(1 + r)�ng(Sn)] :
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S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

Figure 7.3:A three period binomial model.

7.3 Stopped Martingales

Let fYkgnk=0 be a stochastic process and let� be a stopping time. We denote byfYk^�gnk=0 the
stopped process

Yk^�(!)(!); k = 0; 1; : : : ; n:

Example 7.1 (Stopped Process)Figure 7.3 shows our familiar 3-period binomial example.

Define

� (!) =

�
1 if !1 = T;

2 if !1 = H:

Then

S2^�(!)(!) =

8>><
>>:

S2(HH) = 16 if ! = HH;

S2(HT ) = 4 if ! = HT;

S1(T ) = 2 if ! = TH;

S1(T ) = 2 if ! = TT:

Theorem 3.26 A stopped martingale (or submartingale, or supermartingale) is still a martingale
(or submartingale, or supermartingale respectively).

Proof: Let fYkgnk=0 be a martingale, and� be a stopping time. Choose somek 2 f0; 1; : : : ; ng.
The setf� � kg is inFk, so the setf� � k + 1g = f� � kgc is also inFk. We compute

IE
h
Y(k+1)^� jFk

i
= IE

h
If��kgY� + If��k+1gYk+1jFk

i
= If��kgY� + If��k+1gIE[Yk+1jFk ]

= If��kgY� + If��k+1gYk
= Yk^� :
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Chapter 8

Random Walks

8.1 First Passage Time

Toss a coin infinitely many times. Then the sample space
 is the set of all infinite sequences
! = (!1; !2; : : :) ofH andT . Assume the tosses are independent, and on each toss, the probability
of H is 1

2
, as is the probability ofT . Define

Yj(!) =

(
1 if !j = H;

�1 if !j = T;

M0 = 0;

Mk =
kX

j=1

Yj ; k = 1; 2; : : :

The processfMkg1k=0 is asymmetric random walk(see Fig. 8.1) Its analogue in continuous time is
Brownian motion.

Define
� = minfk � 0;Mk = 1g:

If Mk never gets to 1 (e.g.,! = (TTTT : : : )), then� = 1. The random variable� is called the
first passage time to 1. It is the first time the number of heads exceeds by one the number of tails.

8.2 � is almost surely finite

It is shown in a Homework Problem thatfMkg1k=0 andfNkg1k=0 where

Nk = exp

(
�Mk � k log

 
e� + e��

2

!)

= e�Mk

�
2

e� + e��

�k

97
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Mk

k

Figure 8.1:The random walk processMk

e + e
2

θ −θ

θ

1

θ

1

2

e + eθ −θ

Figure 8.2:Illustrating two functions of�

are martingales. (TakeMk = �Sk in part (i) of the Homework Problem and take� = �� in part
(v).) SinceN0 = 1 and a stopped martingale is a martingale, we have

1 = IENk^� = IE

"
e�Mk^�

�
2

e� + e��

�k^�#
(2.1)

for every fixed� 2 IR (See Fig. 8.2 for an illustration of the various functions involved). We want
to letk!1 in (2.1), but we have to worry a bit that for some sequences! 2 
, �(!) =1.

We consider fixed� > 0, so �
2

e� + e��

�
< 1:

As k!1, �
2

e� + e��

�k^�
!
( �

2

e�+e��

��
if � <1;

0 if � =1
Furthermore,Mk^� � 1, because we stop this martingale when it reaches 1, so

0 � e�Mk^� � e�
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and

0 � e�Mk^�
�

2

e� + e��

�k^�
� e�:

In addition,

lim
k!1

e�Mk^�
�

2

e� + e��

�k^�
=

(
e�
�

2

e�+e��

��
if � <1;

0 if � =1:

Recall Equation (2.1):

IE

"
e�Mk^�

�
2

e� + e��

�k^�#
= 1

Lettingk!1, and using the Bounded Convergence Theorem, we obtain

IE

�
e�
�

2

e� + e��

��
If�<1g

�
= 1: (2.2)

For all� 2 (0; 1], we have

0 � e�
�

2

e� + e��

��
If�<1g � e;

so we can let�#0 in (2.2), using the Bounded Convergence Theorem again, to conclude

IE
h
If� <1g

i
= 1;

i.e.,
IPf� <1g = 1:

We know there are paths of the symmetric random walkfMkg1k=0 which never reach level 1. We
have just shown that these pathscollectivelyhave no probability. (In our infinite sample space
,
each pathindividuallyhas zero probability). We therefore do not need the indicatorIf� <1g in

(2.2), and we rewrite that equation as

IE

��
2

e� + e��

���
= e�� : (2.3)

8.3 The moment generating function for�

Let � 2 (0; 1) be given. We want to find� > 0 so that

� =

�
2

e� + e��

�
:

Solution:
�e� + �e�� � 2 = 0

�(e��)2 � 2e�� + � = 0
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e�� =
1� p

1� �2

�
:

We want� > 0, so we must havee�� < 1. Now 0 < � < 1, so

0 < (1� �)2 < (1� �) < 1� �2;

1� � <
p
1� �2;

1�
p
1� �2 < �;

1� p
1� �2

�
< 1

We take the negative square root:

e�� =
1� p

1� �2

�
:

Recall Equation (2.3):

IE

��
2

e� + e��

���
= e�� ; � > 0:

With � 2 (0; 1) and� > 0 related by

e�� =
1� p

1� �2

�
;

� =

�
2

e� + e��

�
;

this becomes

IE�� =
1�

p
1� �2

�
; 0 < � < 1: (3.1)

We have computed themoment generating functionfor the first passage time to 1.

8.4 Expectation of�

Recall that

IE�� =
1�p1� �2

�
; 0 < � < 1;

so

d

d�
IE�� = IE(����1)

=
d

d�

 
1�p1� �2

�

!

=
1�p1� �2

�2
p
1� �2

:
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Using the Monotone Convergence Theorem, we can let�"1 in the equation

IE(����1) =
1�p1� �2

�2
p
1� �2

;

to obtain

IE� =1:

Thus in summary:

�
4
= minfk;Mk = 1g;

IPf� <1g = 1;

IE� =1:

8.5 The Strong Markov Property

The random walk processfMkg1k=0 is a Markov process, i.e.,

IE [ random variable depending only onMk+1;Mk+2; : : : j Fk ]

= IE [ same random variablejMk] :

In discrete time, this Markov property implies theStrong Markov property:

IE [ random variable depending only onM�+1;M�+2; : : : j F� ]

= IE [ same random variablej M� ] :

for any almost surely finite stopping time� .

8.6 General First Passage Times

Define

�m
4
= minfk � 0;Mk = mg; m = 1; 2; : : :

Then�2 � �1 is the number of periods between the first arrival at level 1 and the first arrival at level
2. The distribution of�2 � �1 is the same as the distribution of�1 (see Fig. 8.3), i.e.,

IE��2��1 =
1�

p
1� �2

�
; � 2 (0; 1):
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τ1

τ1

τ2

τ2

Mk

k

−

Figure 8.3:General first passage times.

For� 2 (0; 1),

IE [��2 jF�1 ] = IE
�
��1��2��1 jF�1

�
= ��1IE[��2��1 jF�1 ]

(taking out what is known)

= ��1IE[��2��1 jM�1 ]

(strong Markov property)

= ��1IE[��2��1 ]

(M�1 = 1; not random)

= ��1

 
1�

p
1� �2

�

!
:

Take expectations of both sides to get

IE��2 = IE��1 :

 
1� p

1� �2

�

!

=

 
1�

p
1� �2

�

!
2

In general,

IE��m =

 
1�p1� �2

�

!m
; � 2 (0; 1):

8.7 Example: Perpetual American Put

Consider the binomial model, withu = 2; d = 1

2
; r = 1

4
, and payoff function(5� Sk)

+. The risk
neutral probabilities are~p = 1

2
, ~q = 1

2
, and thus

Sk = S0u
Mk ;
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whereMk is a symmetric random walk under the risk-neutral measure, denoted byfIP . Suppose
S0 = 4. Here are some possible exercise rules:

Rule 0: Stop immediately.�0 = 0; V (�0) = 1.

Rule 1: Stop as soon as stock price falls to 2, i.e., at time

��1
4
= minfk;Mk = �1g:

Rule 2: Stop as soon as stock price falls to 1, i.e., at time

��2
4
= minfk;Mk = �2g:

Because the random walk is symmetric underfIP , ��m has the same distribution underfIP as the
stopping time�m in the previous section. This observation leads to the following computations of
value.Value of Rule 1:

V (��1) = fIE �(1 + r)���1(5� S��1
)+
�

= (5� 2)+IE
h
(4
5
)��1

i

= 3:
1�

q
1� (4

5
)2

4

5

=
3

2
:

Value of Rule 2:

V (��2) = (5� 1)+fIE h(4
5
)��2

i
= 4:(1

2
)2

= 1:

This suggests that the optimal rule is Rule 1, i.e., stop (exercise the put) as soon as the stock price
falls to 2, and the value of the put is3

2
if S0 = 4.

Suppose instead we start withS0 = 8, and stop the first time the price falls to 2. This requires 2
down steps, so the value of this rule with this initial stock price is

(5� 2)+fIE h(4
5
)��2

i
= 3:(1

2
)2 =

3

4
:

In general, ifS0 = 2j for somej � 1, and we stop when the stock price falls to 2, thenj � 1 down
steps will be required and the value of the option is

(5� 2)+fIE h(4
5
)��(j�1)

i
= 3:(1

2
)j�1:

We define
v(2j)

4
= 3:(1

2
)j�1; j = 1; 2; 3; : : :
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If S0 = 2j for somej � 1, then the initial price is at or below 2. In this case, we exercise
immediately, and the value of the put is

v(2j)
4
= 5� 2j ; j = 1; 0;�1;�2; : : :

Proposed exercise rule:Exercise the put whenever the stock price is at or below 2. The value of
this rule is given byv(2j) as we just defined it. Since the put is perpetual, the initial time is no
different from any other time. This leads us to make the following:

Conjecture 1 The value of the perpetual put at timek is v(Sk).

How do we recognize the value of an American derivative security when we see it?

There are three parts to the proof of the conjecture. We must show:

(a) v(Sk) � (5� Sk)
+ 8k;

(b)
n
(4
5
)kv(Sk)

o1
k=0

is a supermartingale,

(c) fv(Sk)g1k=0 is the smallest process with properties (a) and (b).

Note: To simplify matters, we shall only consider initial stock prices of the formS0 = 2j , soSk is
always of the form2j , with a possibly differentj.

Proof: (a). Just check that

v(2j)
4
= 3:(1

2
)j�1 � (5� 2j)+ for j � 1;

v(2j)
4
= 5� 2j � (5� 2j)+ for j � 1:

This is straightforward.

Proof: (b). We must show that

v(Sk) � fIE h4
5
v(Sk+1)jFk

i
= 4

5
:1
2
v(2Sk) +

4

5
:1
2
v(1

2
Sk):

By assumption,Sk = 2j for somej. We must show that

v(2j) � 2

5
v(2j+1) + 2

5
v(2j�1):

If j � 2, thenv(2j) = 3:(1
2
)j�1 and

2

5
v(2j+1) + 2

5
v(2j�1)

= 2

5
:3:(1

2
)j + 2

5
:3:(1

2
)j�2

= 3:

�
2

5
:
1

4
+ 2

5

�
(1
2
)j�2

= 3:1
2
:(1
2
)j�2

= v(2j):
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If j = 1, thenv(2j) = v(2) = 3 and

2

5
v(2j+1) + 2

5
v(2j�1)

= 2

5
v(4) + 2

5
v(1)

= 2

5
:3:1

2
+ 2

5
:4

= 3=5 + 8=5

= 21
5
< v(2) = 3

There is a gap of size4
5
.

If j � 0, thenv(2j) = 5� 2j and

2

5
v(2j+1) + 2

5
v(2j�1)

= 2

5
(5� 2j+1) + 2

5
(5� 2j�1)

= 4� 2

5
(4 + 1)2j�1

= 4� 2j < v(2j) = 5� 2j :

There is a gap of size 1. This concludes the proof of (b).

Proof: (c). SupposefYkgnk=0 is some other process satisfying:

(a’) Yk � (5� Sk)
+ 8k;

(b’) f(4
5
)kYkg1k=0 is a supermartingale.

We must show that

Yk � v(Sk) 8k: (7.1)

Actually, since the put is perpetual, every timek is like every other time, so it will suffice to show

Y0 � v(S0); (7.2)

provided we letS0 in (7.2) be any number of the form2j . With appropriate (but messy) conditioning
onFk, the proof we give of (7.2) can be modified to prove (7.1).

For j � 1,
v(2j) = 5� 2j = (5� 2j)+;

so ifS0 = 2j for somej � 1, then (a’) implies

Y0 � (5� 2j)+ = v(S0):

Suppose now thatS0 = 2j for somej � 2, i.e.,S0 � 4. Let

� = minfk;Sk = 2g
= minfk;Mk = j � 1g:
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Then

v(S0) = v(2j) = 3:(1
2
)j�1

= IE
h
(4
5
)�(5� S� )

+

i
:

Becausef(4
5
)kYkg1k=0 is a supermartingale

Y0 � IE
h
(4
5
)�Y�

i
� IE

h
(4
5
)� (5� S�)

+
i
= v(S0):

Comment on the proof of (c): If the candidate value process is the actual value of a particular
exercise rule, then (c) will be automatically satisfied. In this case, we constructedv so thatv(Sk) is
the value of the put at timek if the stock price at timek isSk andif we exercise the put the first time
(k, or later) that the stock price is 2 or less.In such a situation, we need only verify properties (a)
and (b).

8.8 Difference Equation

If we imagine stock prices which can fall at any point in(0;1), not just at points of the form2j for
integersj, then we can imagine the functionv(x), defined for allx > 0, which gives the value of
the perpetual American put when the stock price isx. This function should satisfy the conditions:

(a) v(x) � (K � x)+; 8x,

(b) v(x) � 1

1+r
[~pv(ux) + ~qv(dx)] ; 8x;

(c) At eachx, either (a) or (b) holds with equality.

In the example we worked out, we have

For j � 1 : v(2j) = 3:(1
2
)j�1 =

6

2j
;

For j � 1 : v(2j) = 5� 2j :

This suggests the formula

v(x) =

(
6

x
; x � 3;

5� x; 0 < x � 3:

We then have (see Fig. 8.4):

(a) v(x) � (5� x)+; 8x;

(b) v(x) � 4

5

h
1

2
v(2x) + 1

2
v(x

2
)
i

for everyx except for2 < x < 4.
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5

5
v(x)

x

(3,2)

Figure 8.4:Graph ofv(x).

Check of condition (c):

� If 0 < x � 3, then (a) holds with equality.

� If x � 6, then (b) holds with equality:

4

5

�
1

2
v(2x) + 1

2
v(
x

2
)

�
= 4

5

�
1

2

6

2x
+ 1

2

12

x

�
=

6

x
:

� If 3 < x < 4 or 4 < x < 6, then both (a) and (b) are strict. This is an artifact of the
discreteness of the binomial model. This artifact will disappear in the continuous model, in
which an analogue of (a) or (b) holds with equality at every point.

8.9 Distribution of First Passage Times

Let fMkg1k=0 be a symetric random walk under a probability measureIP , withM0 = 0. Defining

� = minfk � 0;Mk = 1g;

we recall that

IE�� =
1�p1� �2

�
; 0 < � < 1:

We will use this moment generating function to obtain the distribution of� . We first obtain the
Taylor series expasion ofIE�� as follows:
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f(x) = 1�p1� x; f(0) = 0

f 0(x) = 1

2
(1� x)�

1

2 ; f 0(0) = 1

2

f 00(x) =
1

4
(1� x)�

3

2 ; f 00(0) =
1

4

f 000(x) =
3

8
(1� x)�

5
2 ; f 000(0) =

3

8
: : :

f (j)(x) =
1� 3� : : :� (2j � 3)

2j
(1� x)�

(2j�1)

2 ;

f (j)(0) =
1� 3� : : :� (2j � 3)

2j

=
1� 3� : : :� (2j � 3)

2j
:
2� 4� : : :� (2j � 2)

2j�1(j � 1)!

=
�
1

2

�2j�1 (2j � 2)!

(j � 1)!

The Taylor series expansion off(x) is given by

f(x) = 1� p
1� x

=
1X
j=0

1

j!
f (j)(0)xj

=
1X
j=1

�
1

2

�
2j�1 (2j � 2)!

j!(j � 1)!
xj

=
x

2
+

1X
j=2

�
1

2

�2j�1 1

(j � 1)

 
2j � 2

j

!
xj :

So we have

IE�� =
1�p1� �2

�

=
1

�
f(�2)

=
�

2
+

1X
j=2

�
�

2

�2j�1 1

(j � 1)

 
2j � 2

j

!
:

But also,

IE�� =
1X
j=1

�2j�1IPf� = 2j � 1g:
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Figure 8.5:Reflection principle.

Figure 8.6:Example withj = 2.

Therefore,

IPf� = 1g = 1

2
;

IPf� = 2j � 1g =

�
1

2

�2j�1 1

(j � 1)

 
2j � 2

j

!
; j = 2; 3; : : :

8.10 The Reflection Principle

To count how many paths reach level 1 by time2j � 1, count all those for whichM2j�1 = 1 and
double count all those for whichM2j�1 � 3. (See Figures 8.5, 8.6.)
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In other words,

IPf� � 2j � 1g = IPfM2j�1 = 1g+ 2IPfM2j�1 � 3g
= IPfM2j�1 = 1g+ IPfM2j�1 � 3g+ IPfM2j�1 � �3g
= 1� IPfM2j�1 = �1g:

For j � 2,

IPf� = 2j � 1g = IPf� � 2j � 1g � IPf� � 2j � 3g
= [1� IPfM2j�1 = �1g]� [1� IPfM2j�3 = �1g]
= IPfM2j�3 = �1g � IPfM2j�1 = �1g
=

�
1

2

�2j�3 (2j � 3)!

(j � 1)!(j � 2)!
�
�
1

2

�2j�1 (2j � 1)!

j!(j � 1)!

=
�
1

2

�2j�1 (2j � 3)!

j!(j � 1)!
[4j(j � 1)� (2j � 1)(2j � 2)]

=
�
1

2

�2j�1 (2j � 3)!

j!(j � 1)!
[2j(2j � 2)� (2j � 1)(2j � 2)]

=
�
1

2

�2j�1 (2j � 2)!

j!(j � 1)!

=
�
1

2

�
2j�1 1

(j � 1)

 
2j � 2

j

!
:



Chapter 9

Pricing in terms of Market Probabilities:
The Radon-Nikodym Theorem.

9.1 Radon-Nikodym Theorem

Theorem 1.27 (Radon-Nikodym)Let IP andfIP be two probability measures on a space(
;F).
Assume that for everyA 2 F satisfyingIP (A) = 0, we also havefIP (A) = 0. Then we say thatfIP is absolutely continuouswith respect to IP. Under this assumption, there is a nonegative random
variableZ such that

fIP (A) =

Z
A
ZdIP; 8A 2 F ; (1.1)

andZ is called theRadon-Nikodym derivativeoffIP with respect to IP.

Remark 9.1 Equation (1.1) implies the apparently stronger condition

fIEX = IE[XZ]

for every random variableX for whichIEjXZj <1.

Remark 9.2 If fIP is absolutely continuous with respect to IP, and IP is absolutely continuous with
respect tofIP , we say that IP andfIP areequivalent.IP andfIP are equivalent if and only if

IP (A) = 0 exactly whenfIP (A) = 0; 8A 2 F :
If IP andfIP are equivalent andZ is the Radon-Nikodym derivative offIP w.r.t. IP, then 1

Z is the

Radon-Nikodym derivative of IP w.r.t.fIP , i.e.,

fIEX = IE[XZ] 8X; (1.2)

IEY = fIE[Y:
1

Z
] 8Y: (1.3)

(LetX andY be related by the equationY = XZ to see that (1.2) and (1.3) are the same.)
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Example 9.1 (Radon-Nikodym Theorem)Let 
 = fHH;HT; TH; TTg, the set of coin toss sequences
of length 2. LetP correspond to probability1

3
for H and 2

3
for T , and leteIP correspond to probability1

2
for

H and 1

2
for T . ThenZ(!) =

eIP (!)
IP (!) , so

Z(HH) =
9

4
; Z(HT ) =

9

8
; Z(TH) =

9

8
; Z(TT ) =

9

16
:

9.2 Radon-Nikodym Martingales

Let 
 be the set of all sequences ofn coin tosses. Let IP be the market probability measure and letfIP be the risk-neutral probability measure. Assume

IP (!) > 0; fIP (!) > 0; 8! 2 
;

so that IP andfIP are equivalent. The Radon-Nikodym derivative offIP with respect to IP is

Z(!) =
fIP (!)

IP (!)
:

Define the IP-martingale

Zk
4
= IE[ZjFk ]; k = 0; 1; : : : ; n:

We can check thatZk is indeed a martingale:

IE[Zk+1jFk] = IE [IE[ZjFk+1]jFk]

= IE[ZjFk ]

= Zk :

Lemma 2.28 If X isFk-measurable, thenfIEX = IE[XZk].

Proof:

fIEX = IE[XZ]

= IE [IE[XZjFk]]

= IE [X:IE[ZjFk]]

= IE[XZk]:

Note that Lemma 2.28 implies that ifX isFk-measurable, then for anyA 2 Fk,

fIE[IAX ] = IE[ZkIAX ];

or equivalently, Z
A
XdfIP =

Z
A
XZkdIP:
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0

1

1

2

2

2

2

Z  = 1

Z  (H) = 3/2

Z  (T)  = 3/4

Z  (HH) = 9/4

Z  (HT)  = 9/8

Z  (TH)  = 9/8

Z  (TT)  = 9/16

2/3

1/3

1/3

2/3

1/3

2/3

Figure 9.1:Showing theZk values in the 2-period binomialmodel example. The probabilitiesshown
are for IP, notfIP .

Lemma 2.29 If X isFk-measurable and0 � j � k, then

fIE[X jFj ] =
1

Zj
IE[XZkjFj ]:

Proof: Note first that 1
Zj

IE[XZkjFj ] isF j-measurable. So for anyA 2 Fj , we have

Z
A

1

Zj
IE[XZkjFj ]dfIP =

Z
A
IE[XZkjFj ]dIP (Lemma 2.28)

=

Z
A
XZkdIP (Partial averaging)

=

Z
A
XdfIP (Lemma 2.28)

Example 9.2 (Radon-Nikodym Theorem, continued)We show in Fig. 9.1 the values of the martingaleZk.
We always haveZ0 = 1, since

Z0 = IEZ =

Z



ZdIP = eIP (
) = 1:

9.3 The State Price Density Process

In order to express the value of a derivative security in terms of the market probabilities, it will be
useful to introduce the followingstate price density process:

�k = (1 + r)�kZk; k = 0; : : : ; n:
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We then have the following pricing formulas: For aSimple European derivative securitywith
payoffCk at timek,

V0 = fIE h(1 + r)�kCk

i
= IE

h
(1 + r)�kZkCk

i
(Lemma 2.28)

= IE[�kCk]:

More generally for0 � j � k,

Vj = (1 + r)jfIE h(1 + r)�kCkjFj

i

=
(1 + r)j

Zj
IE
h
(1 + r)�kZkCkjFj

i
(Lemma 2.29)

=
1

�j
IE[�kCkjFj ]

Remark 9.3 f�jVjgkj=0 is a martingale under IP, as we can check below:

IE[�j+1Vj+1jFj ] = IE [IE[�kCkjFj+1]jFj ]

= IE[�kCkjFj ]

= �jVj :

Now for anAmerican derivative security fGkgnk=0:

V0 = sup
�2T0

fIE [(1 + r)��G� ]

= sup
�2T0

IE [(1 + r)��Z�G� ]

= sup
�2T0

IE[��G� ]:

More generally for0 � j � n,

Vj = (1 + r)j sup
�2Tj

fIE [(1 + r)��G� jFj ]

= (1 + r)j sup
�2Tj

1

Zj
IE [(1 + r)��Z�G� jFj ]

=
1

�j
sup
�2Tj

IE[��G� jFj ]:

Remark 9.4 Note that

(a) f�jVjgnj=0 is a supermartingale under IP,

(b) �jVj � �jGj 8j;
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S  = 40

S  (H) = 8

S  (T)  = 2

S  (HH) = 16

S  (TT)  = 1

S  (HT)  = 4

S  (TH)  = 4

1

1

2

2

2

2

ζ   = 1.00

ζ  (Η) = 1.20

ζ  (Τ) = 0.6

ζ  (ΗΗ) = 1.44

ζ  (ΗΤ) = 0.72

ζ  (ΤΗ) = 0.72

ζ  (ΤΤ) = 0.36

0

1

1

2

2

2

2

1/3

2/3

1/3

2/3

1/3

2/3

Figure 9.2:Showing the state price values�k . The probabilities shown are for IP, notfIP .

(c) f�jVjgnj=0 is the smallest process having properties (a) and (b).

We interpret�k by observing that�k(!)IP (!) is the value at time zero of a contract which pays $1
at timek if ! occurs.

Example 9.3 (Radon-NikodymTheorem, continued)We illustrate the use of the valuation formulas for
European and American derivative securities in terms of market probabilities. Recall thatp = 1

3
, q = 2

3
. The

state price values�k are shown in Fig. 9.2.

For aEuropean Call with strike price 5, expiration time 2, we have

V2(HH) = 11; �2(HH)V2(HH) = 1:44� 11 = 15:84:

V2(HT ) = V2(TH) = V2(TT ) = 0:

V0 =
1

3
� 1

3
� 15:84 = 1:76:

�2(HH)

�1(HH)
V2(HH) =

1:44

1:20
� 11 = 1:20� 11 = 13:20

V1(H) =
1

3
� 13:20 = 4:40

Compare with the risk-neutral pricing formulas:

V1(H) =
2

5
V1(HH) +

2

5
V1(HT ) = 2

5
� 11 = 4:40;

V1(T ) =
2

5
V1(TH) +

2

5
V1(TT ) = 0;

V0 =
2

5
V1(H) +

2

5
V1(T ) =

2

5
� 4:40 = 1:76:

Now consider anAmerican put with strike price 5 and expiration time 2. Fig. 9.3 shows the values of
�k(5� Sk)

+. We compute the value of the put under various stopping times� :

(0) Stop immediately: value is 1.

(1) If � (HH) = � (HT ) = 2; � (TH) = � (TT ) = 1, the value is

1

3
� 2

3
� 0:72 + 2

3
� 1:80 = 1:36:
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(5-S0)+=1ζ0

(5-S0)+=1

(5 - S1(H))+= 0

(H)ζ1

(5 - S +(HH)) = 02
(5 - S +(HH)) = 02ζ2(HH)

1/3

2/3

1/3

2/3

1/3

2/3

ζ1

(5 - S1
+

(5 - S1
+(T))

(T))

(T)

= 3

= 1.80

(5 - S1(H))+= 0
(5 - S +

2

(5 - S +
2ζ2

(5 - S +
2

(5 - S +
2ζ2

(5 - S +
2

(5 - S +
2ζ2

(HT))

(HT) (HT))

= 1

= 0.72

(TH))

(TH) (TH))

= 1

= 0.72

(TT))

(TT) (TT))

= 4

= 1.44

Figure 9.3:Showing the values�k(5� Sk)
+ for an American put. The probabilities shown are for

IP, notfIP .

(2) If we stop at time 2, the value is

1

3
� 2

3
� 0:72 + 2

3
� 1

3
� 0:72 + 2

3
� 2

3
� 1:44 = 0:96

We see that (1) is optimal stopping rule.

9.4 Stochastic Volatility Binomial Model

Let
 be the set of sequences ofn tosses, and let0 < dk < 1+rk < uk, where for eachk, dk; uk; rk
areFk-measurable. Also let

~pk =
1 + rk � dk

uk � dk
; ~qk =

uk � (1 + rk)

uk � dk
:

LetfIP be the risk-neutral probability measure:

fIPf!1 = Hg = ~p0;

fIP f!1 = Tg = ~q0;

and for2 � k � n, fIP [!k+1 = H jFk] = ~pk;

fIP [!k+1 = T jFk] = ~qk :

Let IP be the market probability measure, and assumeIPf!g > 0 8! 2 
. Then IP andfIP are
equivalent. Define

Z(!) =
fIP (!)

IP (!)
8! 2 
;
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Zk = IE[ZjFk ]; k = 0; 1; : : : ; n:

We define themoney market price processas follows:

M0 = 1;

Mk = (1 + rk�1)Mk�1; k = 1; : : : ; n:

Note thatMk is Fk�1-measurable.

We then define thestate price processto be

�k =
1

Mk
Zk; k = 0; : : : ; n:

As before the portfolio process isf�kgn�1k=0 . The self-financing value process (wealth process)
consists ofX0, the non-random initial wealth, and

Xk+1 = �kSk+1 + (1 + rk)(Xk ��kSk); k = 0; : : : ; n� 1:

Then the following processes are martingales underfIP :

�
1

Mk
Sk

�n
k=0

and
�

1

Mk
Xk

�n
k=0

;

and the following processes are martingales under IP:

f�kSkgnk=0 and f�kXkgnk=0:

We thus have the following pricing formulas:

Simple European derivative security with payoffCk at timek:

Vj = Mj
fIE � Ck

Mk

����Fj

�

=
1

�j
IE [�kCkjFj ]

American derivative security fGkgnk=0:

Vj = Mj sup
�2Tj

fIE �G�

M�

����F j

�

=
1

�j
sup
�2Tj

IE [��G� jFj ] :

The usual hedging portfolio formulas still work.
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9.5 Another Applicaton of the Radon-Nikodym Theorem

Let (
;F; Q) be a probability space. LetG be a sub-�-algebra ofF , and letX be a non-negative
random variable with

R

X dQ = 1. We construct the conditional expectation (underQ) of X

givenG. OnG, define two probability measures

IP (A) = Q(A) 8A 2 G;

fIP (A) =

Z
A
XdQ 8A 2 G:

WheneverY is aG-measurable random variable, we haveZ


Y dIP =

Z


Y dQ;

if Y = 1A for someA 2 G, this is just the definition ofIP , and the rest follows from the “standard
machine”. IfA 2 G andIP (A) = 0, thenQ(A) = 0, sofIP (A) = 0. In other words, the measurefIP
is absolutely continuous with respect to the measurefIP . The Radon-Nikodym theorem implies that
there exists aG-measurable random variableZ such that

fIP (A)
4
=

Z
A
Z dIP 8A 2 G;

i.e., Z
A
X dQ =

Z
A
Z dIP 8A 2 G:

This shows thatZ has the “partial averaging” property, and sinceZ is G-measurable, it is the con-
ditional expectation (under the probability measureQ) of X givenG. The existence of conditional
expectations is a consequence of the Radon-Nikodym theorem.
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Capital Asset Pricing

10.1 An Optimization Problem

Consider an agent who has initial wealthX0 and wants to invest in the stock and money markets so
as to maximize

IE logXn:

Remark 10.1 Regardless of the portfolio used by the agent,f�kXkg1k=0 is a martingale under IP, so

IE�nXn = X0 (BC)

Here, (BC) stands for “Budget Constraint”.

Remark 10.2 If � is any random variable satisfying (BC), i.e.,

IE�n� = X0;

then there is a portfolio which starts with initial wealthX0 and producesXn = � at timen. To see
this, just regard� as a simple European derivative security paying off at timen. ThenX0 is its value
at time 0, and starting from this value, there is a hedging portfolio which producesXn = �.

Remarks 10.1 and 10.2 show that the optimalXn for the capital asset pricing problem can be
obtained by solving the following

Constrained Optimization Problem:
Find a random variable� which solves:

Maximize IE log �

Subject to IE�n� = X0:

Equivalently, we wish to
Maximize

X
!2


(log �(!)) IP (!)
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Subject to
X
!2


�n(!)�(!)IP (!) � X0 = 0:

There are2n sequences! in 
. Call them!1; !2; : : : ; !2n . Adopt the notation

x1 = �(!1); x2 = �(!2); : : : ; x2n = �(!2n):

We can thus restate the problem as:

Maximize
2
nX

k=1

(log xk)IP (!k)

Subject to
2
nX

k=1

�n(!k)xkIP (!k) � Xo = 0:

In order to solve this problem we use:

Theorem 1.30 (Lagrange Multiplier) If (x�1; : : : ; x
�
m) solve the problem

Maxmize f(x1; : : : ; xm)

Subject to g(x1; : : : ; xm) = 0;

then there is a number� such that

@

@xk
f(x�1; : : : ; x

�
m) = �

@

@xk
g(x�1; : : : ; x

�
m); k = 1; : : : ; m; (1.1)

and

g(x�1; : : : ; x
�
m) = 0: (1.2)

For our problem, (1.1) and (1.2) become

1

x�k
IP (!k) = ��n(!k)IP (!k); k = 1; : : : ; 2n; (1:10)

2
nX

k=1

�n(!k)x
�
kIP (!k) = X0: (1:20)

Equation (1.1’) implies

x�k =
1

��n(!k)
:

Plugging this into (1.2’) we get

1

�

2
nX

k=1

IP (!k) = X0 =) 1

�
= X0:



CHAPTER 10. Capital Asset Pricing 121

Therefore,

x�k =
X0

�n(!k)
; k = 1; : : : ; 2n:

Thus we have shown that if�� solves the problem

Maximize IE log �

Subject to IE(�n�) = X0;
(1.3)

then

�� =
X0

�n
: (1.4)

Theorem 1.31 If �� is given by (1.4), then�� solves the problem (1.3).

Proof: Fix Z > 0 and define
f(x) = log x� xZ:

We maximizef overx > 0:

f 0(x) =
1

x
� Z = 0 () x =

1

Z
;

f 00(x) = � 1

x2
< 0; 8x 2 IR:

The functionf is maximized atx� = 1

Z
, i.e.,

log x� xZ � f(x�) = log
1

Z
� 1; 8x > 0; 8Z > 0: (1.5)

Let � be any random variable satisfying

IE(�n�) = X0

and let

�� =
X0

�n
:

From (1.5) we have

log � � �

�
�n

X0

�
� log

�
X0

�n

�
� 1:

Taking expectations, we have

IE log � � 1

X0

IE(�n�) � IE log �� � 1;

and so
IE log � � IE log ��:
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In summary, capital asset pricing works as follows: Consider an agent who has initial wealthX0

and wants to invest in the stock and money market so as to maximize

IE logXn:

The optimalXn isXn = X0

�n
, i.e.,

�nXn = X0:

Sincef�kXkgnk=0 is a martingale under IP, we have

�kXk = IE[�nXnjFk ] = X0; k = 0; : : : ; n;

so

Xk =
X0

�k
;

and the optimal portfolio is given by

�k(!1; : : : ; !k) =

X0

�k+1(!1; : : : ; !k;H)
� X0

�k+1(!1; : : : ; !k;T )

Sk+1(!1; : : : ; !k; H)� Sk+1(!1; : : : ; !k; T )
:



Chapter 11

General Random Variables

11.1 Law of a Random Variable

Thus far we have considered only random variables whose domain and range are discrete. We now
consider a general random variableX : 
!IR defined on the probability space(
;F;P). Recall
that:

� F is a�-algebra of subsets of
.

� IP is a probability measure onF , i.e.,IP (A) is defined for everyA 2 F .

A functionX : 
!IR is a random variable if and only if for everyB 2 B(IR) (the�-algebra of
Borel subsets of IR), the set

fX 2 Bg 4
= X�1(B)

4
= f!;X(!) 2 Bg 2 F ;

i.e., X : 
!IR is a random variable if and only ifX�1 is a function fromB(IR) to F(See Fig.
11.1)

Thus any random variableX induces a measure�X on the measurable space(IR;B(IR)) defined
by

�X(B) = IP
�
X�1(B)

�
8B 2 B(IR);

where the probabiliy on the right is defined sinceX�1(B) 2 F . �X is often called theLaw ofX –
in Williams’ book this is denoted byLX .

11.2 Density of a Random Variable

Thedensity ofX (if it exists) is a functionfX : IR![0;1) such that

�X(B) =

Z
B
fX(x) dx 8B 2 B(IR):

123
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R

ΩB}ε
B

X

{X

Figure 11.1:Illustrating a real-valued random variableX .

We then write
d�X(x) = fX(x)dx;

where the integral is with respect to the Lebesgue measure on IR. fX is the Radon-Nikodym deriva-
tive of �X with respect to the Lebesgue measure. ThusX has a density if and only if�X is
absolutely continuous with respect to Lebesgue measure, which means that wheneverB 2 B(IR)
has Lebesgue measure zero, then

IPfX 2 Bg = 0:

11.3 Expectation

Theorem 3.32 (Expectation of a function ofX) Leth : IR!IR be given. Then

IEh(X)
4
=

Z


h(X(!)) dIP (!)

=

Z
IR
h(x) d�X(x)

=

Z
IR
h(x)fX(x) dx:

Proof: (Sketch). Ifh(x) = 1B(x) for someB � IR, then these equations are

IE1B(X)
4
= PfX 2 Bg
= �X(B)

=

Z
B
fX(x) dx;

which are true by definition. Now use the “standard machine” to get the equations for generalh.
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Ωε

(X,Y)

{ (X,Y) C}

C

x

y

Figure 11.2:Two real-valued random variablesX; Y .

11.4 Two random variables

Let X; Y be two random variables
!IR defined on the space(
;F;P). ThenX; Y induce a
measure onB(IR2) (see Fig. 11.2) called thejoint law of (X; Y ), defined by

�X;Y (C)
4
= IPf(X; Y ) 2 Cg 8C 2 B(IR2):

Thejoint density of(X; Y ) is a function

fX;Y : IR2![0;1)

that satisfies

�X;Y (C) =

ZZ
C

fX;Y (x; y) dxdy 8C 2 B(IR2):

fX;Y is the Radon-Nikodym derivative of�X;Y with respect to the Lebesgue measure (area) onIR2.

We compute the expectation of a function ofX; Y in a manner analogous to the univariate case:

IEk(X; Y )
4
=

Z


k(X(!); Y (!)) dIP (!)

=

ZZ
IR2

k(x; y) d�X;Y (x; y)

=

ZZ
IR2

k(x; y)fX;Y (x; y) dxdy
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11.5 Marginal Density

Suppose(X; Y ) has joint densityfX;Y . LetB � IR be given. Then

�Y (B) = IPfY 2 Bg
= IPf(X; Y ) 2 IR� Bg
= �X;Y (IR� B)

=

Z
B

Z
IR
fX;Y (x; y) dxdy

=

Z
B
fY (y) dy;

where

fY (y)
4
=

Z
IR
fX;Y (x; y) dx:

Therefore,fY (y) is the (marginal) density forY .

11.6 Conditional Expectation

Suppose(X; Y ) has joint densityfX;Y . Let h : IR!IR be given. Recall thatIE[h(X)jY ] 4
=

IE[h(X)j�(Y )] depends on! throughY , i.e., there is a functiong(y) (g depending onh) such that

IE[h(X)jY ](!) = g(Y (!)):

How do we determineg?

We can characterizeg usingpartial averaging:Recall thatA 2 �(Y )()A = fY 2 Bg for some
B 2 B(IR). Then the following are equivalent characterizations ofg:

Z
A
g(Y ) dIP =

Z
A
h(X) dIP 8A 2 �(Y ); (6.1)

Z


1B(Y )g(Y ) dIP =

Z


1B(Y )h(X) dIP 8B 2 B(IR); (6.2)

Z
IR
1B(y)g(y)�Y (dy) =

ZZ
IR2

1B(y)h(x) d�X;Y (x; y) 8B 2 B(IR); (6.3)

Z
B
g(y)fY (y) dy =

Z
B

Z
IR
h(x)fX;Y (x; y) dxdy 8B 2 B(IR): (6.4)
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11.7 Conditional Density

A functionfXjY (xjy) : IR2![0;1) is called aconditional densityfor X givenY provided that for
any functionh : IR!IR:

g(y) =

Z
IR
h(x)fXjY (xjy) dx: (7.1)

(Hereg is the function satisfying
IE [h(X)jY ] = g(Y );

andg depends onh, butfXjY does not.)

Theorem 7.33 If (X; Y ) has a joint densityfX;Y , then

fXjY (xjy) =
fX;Y (x; y)

fY (y)
: (7.2)

Proof: Just verify thatg defined by (7.1) satisfies (6.4): ForB 2 B(IR);Z
B

Z
IR
h(x)fXjY (xjy) dx| {z }

g(y)

fY (y) dy =

Z
B

Z
IR
h(x)fX;Y (x; y) dxdy:

Notation 11.1 Let g be the function satisfying

IE[h(X)jY ] = g(Y ):

The functiong is often written as

g(y) = IE[h(X)jY = y];

and (7.1) becomes

IE[h(X)jY = y] =

Z
IR
h(x)fXjY (xjy) dx:

In conclusion, to determineIE[h(X)jY ] (a function of!), first compute

g(y) =

Z
IR
h(x)fXjY (xjy) dx;

and then replace the dummy variabley by the random variableY :

IE[h(X)jY ](!) = g(Y (!)):

Example 11.1 (Jointly normal random variables) Given parameters:�1 > 0; �2 > 0;�1 < � < 1. Let
(X;Y ) have the joint density

fX;Y (x; y) =
1

2��1�2
p
1� �2

exp

�
� 1

2(1� �2)

�
x2

�2
1

� 2�
x

�1

y

�2
+

y2

�2
2

��
:
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The exponent is

� 1

2(1� �2)

�
x2

�2
1

� 2�
x

�1

y

�2
+

y2

�2
2

�

= � 1

2(1� �2)

"�
x

�1
� �

y

�2

�2

+
y2

�2
2

(1� �2)

#

= � 1

2(1� �2)

1

�2
1

�
x� ��1

�2
y

�2

� 1

2

y2

�2
2

:

We can compute theMarginal density ofY as follows

fY (y) =
1

2��1�2
p
1� �2

Z
1

�1

e
� 1

2(1��2)�2
1

�
x� ��1

�2
y
�2

dx:e
�1

2

y2

�2
2

=
1

2��2

Z 1

�1

e�
u2

2 du:e
�1

2

y2

�2
2

using the substitutionu =
1p

1��2�1

�
x� ��1

�2
y
�

, du =
dxp

1��2�1

=
1p
2� �2

e
�1

2

y2

�2
2 :

ThusY is normal with mean 0 and variance�22.

Conditional density. From the expressions

fX;Y (x; y) =
1

2��1�2
p
1� �2

e
�

1

2(1��2)

1

�2
1

�
x�

��1
�2

y
�2
e
�1

2

y2

�2
2 ;

fY (y) =
1p
2� �2

e
�1

2

y2

�2
2 ;

we have

fXjY (xjy) =
fX;Y (x; y)

fY (y)

=
1p
2� �1

1p
1� �2

e
� 1

2(1��2)
1

�2
1

�
x� ��1

�2
y
�2
:

In thex-variable,fXjY (xjy) is a normal density with mean��1
�2

y and variance(1� �2)�21. Therefore,

IE[XjY = y] =

Z 1

�1

xfXjY (xjy) dx =
��1

�2
y;

IE

"�
X � ��1

�2
y

�2 ����Y = y

#

=

Z 1

�1

�
x� ��1

�2
y

�2

fXjY (xjy) dx

= (1 � �2)�2
1
:



CHAPTER 11. General Random Variables 129

From the above two formulas we have the formulas

IE[XjY ] =
��1

�2
Y; (7.3)

IE

"�
X � ��1

�2
Y

�2 ����Y
#
= (1� �2)�2

1
: (7.4)

Taking expectations in (7.3) and (7.4) yields

IEX =
��1

�2
IEY = 0; (7.5)

IE

"�
X � ��1

�2
Y

�2
#
= (1� �2)�2

1
: (7.6)

Based onY , the best estimator ofX is ��1
�2

Y . This estimator is unbiased (has expected error zero) and the
expected square error is(1� �2)�21. No other estimator based onY can have a smaller expected square error
(Homework problem 2.1).

11.8 Multivariate Normal Distribution

Please see Oksendal Appendix A.

LetX denote the column vector of random variables(X1; X2; : : : ; Xn)
T , andx the corresponding

column vector of values(x1; x2; : : : ; xn)T . X has a multivariate normal distribution if and only if
the random variables have the joint density

fX(x) =

p
detA

(2�)n=2
exp

n
�1

2
(X� �)T:A:(X� �)

o
:

Here,

�
4
= (�1; : : : ; �n)

T = IEX
4
= (IEX1; : : : ; IEXn)

T ;

andA is ann � n nonsingular matrix.A�1 is the covariance matrix

A�1 = IE
h
(X� �):(X� �)T

i
;

i.e. the(i; j)thelement ofA�1 is IE(Xi��i)(Xj��j). The random variables inX are independent
if and only ifA�1 is diagonal, i.e.,

A�1 = diag(�2
1
; �2

2
; : : : ; �2n);

where�2j = IE(Xj � �j)
2 is the variance ofXj .
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11.9 Bivariate normal distribution

Taken = 2 in the above definitions, and let

�
4
=
IE(X1 � �1)(X2 � �2)

�1�2
:

Thus,

A�1 =

"
�21 ��1�2

��1�2 �2
2

#
;

A =

2
4 1

�21(1��2)
� �
�1�2(1��2)

� �
�1�2(1��2)

1

�22(1��2)

3
5 ;

p
detA =

1

�1�2
p
1� �2

;

and we have the formula from Example 11.1, adjusted to account for the possibly non-zero expec-
tations:

fX1;X2
(x1; x2) =

1

2��1�2
p
1� �2

exp

(
� 1

2(1� �2)

"
(x1 � �1)

2

�2
1

� 2�(x1� �1)(x2 � �2)

�1�2
+

(x2 � �2)
2

�2
2

#)
:

11.10 MGF of jointly normal random variables

Let u = (u1; u2; : : : ; un)
T denote a column vector with components inIR, and letX have a

multivariate normal distribution with covariance matrixA�1 and mean vector�. Then the moment
generating function is given by

IEeu
T :X =

Z 1

�1
: : :

Z 1

�1
eu

T :XfX1; X2; : : : ; Xn
(x1; x2; : : : ; xn) dx1 : : : dxn

= exp
n
1

2
u
TA�1u+ uT�

o
:

If any n random variablesX1; X2; : : : ; Xn have this moment generating function, then they are
jointly normal, and we can read out the means and covariances. The random variables are jointly
normaland independentif and only if for any real column vectoru = (u1; : : : ; un)

T

IEeu
T :X 4

= IE exp

8<
:

nX
j=1

ujXj

9=
; = exp

8<
:

nX
j=1

[1
2
�2ju

2

j + uj�j ]

9=
; :
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Semi-Continuous Models

12.1 Discrete-time Brownian Motion

LetfYjgnj=1 be a collection of independent, standard normal random variables defined on(
;F;P),
where IP is themarket measure. As before we denote the column vector(Y1; : : : ; Yn)

T byY. We
therefore have for any real colum vectoru = (u1; : : : ; un)

T ,

IEeu
T
Y = IE exp

8<
:

nX
j=1

ujYj

9=
; = exp

8<
:

nX
j=1

1

2
u2j

9=
; :

Define thediscrete-time Brownian motion(See Fig. 12.1):

B0 = 0;

Bk =
kX

j=1

Yj ; k = 1; : : : ; n:

If we knowY1; Y2; : : : ; Yk, then we knowB1; B2; : : : ; Bk. Conversely, if we knowB1; B2; : : : ; Bk,
then we knowY1 = B1; Y2 = B2 � B1; : : : ; Yk = Bk �Bk�1. Define the filtration

F0 = f�;
g;
Fk = �(Y1; Y2; : : : ; Yk) = �(B1; B2; : : : ; Bk); k = 1; : : : ; n:

Theorem 1.34 fBkgnk=0 is a martingale (under IP).

Proof:

IE [Bk+1jFk ] = IE [Yk+1 + Bk jFk]

= IEYk+1 + Bk

= Bk :

131
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Figure 12.1:Discrete-time Brownian motion.

Theorem 1.35 fBkgnk=0 is a Markov process.

Proof: Note that
IE[h(Bk+1)jFk] = IE[h(Yk+1 + Bk)jFk]:

Use the Independence Lemma. Define

g(b) = IEh(Yk+1 + b) =
1p
2�

Z 1

�1
h(y + b)e�

1

2
y2 dy:

Then
IE[h(Yk+1 +Bk)jFk] = g(Bk);

which is a function ofBk alone.

12.2 The Stock Price Process

Given parameters:

� � 2 IR, themean rate of return.

� � > 0, thevolatility.

� S0 > 0, the initial stock price.

Thestock price processis then given by

Sk = S0 exp
n
�Bk + (�� 1

2
�2)k

o
; k = 0; : : : ; n:

Note that
Sk+1 = Sk exp

n
�Yk+1 + (�� 1

2
�2)
o
;
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IE[Sk+1jFk ] = SkIE[e�Yk+1 jFk ]:e
��1

2
�2

= Ske
1

2
�2

e��
1

2
�2

= e�Sk:

Thus

� = log
IE[Sk+1jFk]

Sk
= log IE

�
Sk+1

Sk

����Fk

�
;

and

var

�
log

Sk+1

Sk

�
= var

�
�Yk+1 + (�� 1

2
�2)
�
= �2:

12.3 Remainder of the Market

The other processes in the market are defined as follows.

Money market process:
Mk = erk; k = 0; 1; : : : ; n:

Portfolio process:

� �0;�1; : : : ;�n�1;

� Each�k isFk-measurable.

Wealth process:

� X0 given, nonrandom.

�

Xk+1 = �kSk+1 + er(Xk ��kSk)

= �k(Sk+1 � erSk) + erXk

� EachXk isFk-measurable.

Discounted wealth process:

Xk+1

Mk+1
= �k

�
Sk+1
Mk+1

� Sk
Mk

�
+ Xk
Mk

:

12.4 Risk-Neutral Measure

Definition 12.1 LetfIP be a probability measure on(
;F), equivalent to the market measure IP. Ifn
Sk
Mk

on
k=0

is a martingale underfIP , we say thatfIP is arisk-neutral measure.
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Theorem 4.36 If fIP is a risk-neutral measure, then every discounted wealth process
n
Xk
Mk

on
k=0

is

a martingale underfIP , regardless of the portfolio process used to generate it.

Proof:

fIE �Xk+1

Mk+1

����Fk

�
= fIE ��k

�
Sk+1
Mk+1

� Sk
Mk

�
+

Xk
Mk

����Fk

�

= �k

�fIE � Sk+1
Mk+1

����Fk

�
� Sk
Mk

�
+ Xk
Mk

= Xk
Mk

:

12.5 Risk-Neutral Pricing

Let Vn be the payoff at timen, and say it isFn-measurable. Note thatVn may be path-dependent.

Hedging a short position:

� Sell the simple European derivative securityVn.

� ReceiveX0 at time 0.

� Construct a portfolio process�0; : : : ;�n�1 which starts withX0 and ends withXn = Vn.

� If there is a risk-neutral measurefIP , then

X0 = fIE Xn
Mn

= fIE Vn
Mn

:

Remark 12.1 Hedging in this “semi-continuous” model is usually not possible because there are
not enough trading dates. This difficulty will disappear when we go to the fully continuous model.

12.6 Arbitrage

Definition 12.2 An arbitrageis a portfolio which starts withX0 = 0 and ends withXn satisfying

IP (Xn � 0) = 1; IP (Xn > 0) > 0:

(IP here is the market measure).

Theorem 6.37 (Fundamental Theorem of Asset Pricing: Easy part)If there is a risk-neutralmea-
sure, then there is no arbitrage.
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Proof: LetfIP be a risk-neutral measure, letX0 = 0, and letXn be the final wealth corresponding

to any portfolio process. Since
n
Xk
Mk

on
k=0

is a martingale underfIP ,

fIE Xn
Mn

= fIE X0

M0
= 0: (6.1)

SupposeIP (Xn � 0) = 1. We have

IP (Xn � 0) = 1 =) IP (Xn < 0) = 0 =) fIP (Xn < 0) = 0 =) fIP (Xn � 0) = 1:

(6.2)

(6.1) and (6.2) implyfIP (Xn = 0) = 1. We have

fIP (Xn = 0) = 1 =) fIP (Xn > 0) = 0 =) IP (Xn > 0) = 0:

This is not an arbitrage.

12.7 Stalking the Risk-Neutral Measure

Recall that

� Y1; Y2; : : : ; Yn are independent, standard normal random variables on some probability space
(
;F ;P).

� Sk = S0 exp
n
�Bk + (�� 1

2
�2)k

o
.

�

Sk+1 = S0 exp
n
�(Bk + Yk+1) + (�� 1

2
�2)(k + 1)

o
= Sk exp

n
�Yk+1 + (�� 1

2
�2)
o
:

Therefore,
Sk+1
Mk+1

= Sk
Mk

: exp
n
�Yk+1 + (� � r � 1

2
�2)
o
;

IE

�
Sk+1
Mk+1

����Fk

�
= Sk

Mk
:IE [exp f�Yk+1g jFk ] : expf� � r � 1

2
�2g

= Sk
Mk

: expf1
2
�2g: expf�� r � 1

2
�2g

= e��r : Sk
Mk

:

If � = r, the market measure is risk neutral. If� 6= r, we must seek further.
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Sk+1
Mk+1

= Sk
Mk

: exp
n
�Yk+1 + (�� r � 1

2
�2)
o

= Sk
Mk

: exp
n
�(Yk+1 +

��r
�

)� 1

2
�2
o

= Sk
Mk

: exp
n
� ~Yk+1 � 1

2
�2
o
;

where
~Yk+1 = Yk+1 +

��r
�
:

The quantity��r
�

is denoted� and is called themarket price of risk.

We want a probability measurefIP under which~Y1; : : : ; ~Yn are independent, standard normal ran-
dom variables. Then we would have

fIE � Sk+1
Mk+1

����Fk

�
= Sk

Mk
:fIE hexpf� ~Yk+1gjFk

i
: expf�1

2
�2g

= Sk
Mk

: expf1
2
�2g: expf�1

2
�2g

= Sk
Mk

:

Cameron-Martin-Girsanov’s Idea: Define the random variable

Z = exp

2
4 nX
j=1

(��Yj � 1

2
�2)

3
5 :

Properties ofZ:

� Z � 0.

�

IEZ = IE exp

8<
:

nX
j=1

(��Yj)
9=
; : exp

�
�n
2
�2
�

= exp

�
n

2
�2
�
: exp

�
�n
2
�2
�
= 1:

Define fIP (A) =

Z
A
Z dIP 8A 2 F :

ThenfIP (A) � 0 for all A 2 F and

fIP (
) = IEZ = 1:

In other words,fIP is a probability measure.
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We show thatfIP is a risk-neutral measure. For this, it suffices to show that

~Y 1 = Y1 + �; : : : ; ~Yn = Yn + �

are independent, standard normal underfIP .

Verification:

� Y1; Y2; : : : ; Yn: Independent, standard normal under IP, and

IE exp

2
4 nX
j=1

ujYj

3
5 = exp

2
4 nX
j=1

1

2
u2j

3
5 :

� ~Y = Y1 + �; : : : ; ~Yn = Yn + �:

� Z > 0 almost surely.

� Z = exp
hPn

j=1(��Yj � 1

2
�2)
i
;

fIP (A) =

Z
A
Z dIP 8A 2 F ;

fIEX = IE(XZ) for every random variableX .

� Compute the moment generating function of( ~Y1; : : : ; ~Yn) underfIP :

fIE exp

2
4 nX
j=1

uj ~Yj

3
5 = IE exp

2
4 nX
j=1

uj(Yj + �) +
nX
j=1

(��Yj � 1

2
�2)

3
5

= IE exp

2
4 nX
j=1

(uj � �)Yj

3
5 : exp

2
4 nX
j=1

(uj� � 1

2
�2)

3
5

= exp

2
4 nX
j=1

1

2
(uj � �)2

3
5 : exp

2
4 nX
j=1

(uj� � 1

2
�2)

3
5

= exp

2
4 nX
j=1

�
(1
2
u2j � uj� +

1

2
�2) + (uj� � 1

2
�2)
�35

= exp

2
4 nX
j=1

1

2
u2j

3
5 :
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12.8 Pricing a European Call

Stock price at timen is

Sn = S0 exp
n
�Bn + (�� 1

2
�2)n

o

= S0 exp

8<
:�

nX
j=1

Yj + (�� 1

2
�2)n

9=
;

= S0 exp

8<
:�

nX
j=1

(Yj +
��r
�

)� (�� r)n+ (�� 1

2
�2)n

9=
;

= S0 exp

8<
:�

nX
j=1

~Yj + (r� 1

2
�2)n

9=
; :

Payoff at timen is (Sn �K)+. Price at time zero is

fIE (Sn �K)+

Mn
= fIE

2
4e�rn

0
@S0 exp

8<
:�

nX
j=1

~Yj + (r � 1

2
�2)n

9=
;�K

1
A
+3
5

=

Z 1

�1
e�rn

�
S0 exp

n
�b+ (r� 1

2
�2)n

o
�K

�
+

:
1p
2�n

e
� b2

2n2 db

since
Pn

j=1
~Yj is normal with mean 0, variancen, underfIP .

This is theBlack-Scholesprice. It does not depend on�.
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Brownian Motion

13.1 Symmetric Random Walk

Toss a fair coin infinitely many times. Define

Xj(!) =

(
1 if !j = H;

�1 if !j = T:

Set

M0 = 0

Mk =
kX

j=1

Xj ; k � 1:

13.2 The Law of Large Numbers

We will use the method of moment generating functions to derive the Law of Large Numbers:

Theorem 2.38 (Law of Large Numbers:)

1

k
Mk!0 almost surely, as k!1:

139
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Proof:

'k(u) = IE exp

�
u

k
Mk

�

= IE exp

8<
:

kX
j=1

u

k
Xj

9=
; (Def. of Mk :)

=
kY

j=1

IE exp

�
u

k
Xj

�
(Independence of theXj ’s)

=
�
1

2
e
u
k + 1

2
e�

u
k

�k
;

which implies,

log'k(u) = k log
�
1

2
e
u
k + 1

2
e�

u
k

�

Let x = 1

k
. Then

lim
k!1

log'k(u) = lim
x!0

log
�
1

2
eux + 1

2
e�ux

�
x

= lim
x!0

u
2
eux � u

2
e�ux

1

2
eux + 1

2
e�ux

(L’H ôpital’s Rule)

= 0:

Therefore,

lim
k!1

'k(u) = e0 = 1;

which is the m.g.f. for the constant 0.

13.3 Central Limit Theorem

We use the method of moment generating functions to prove the Central Limit Theorem.

Theorem 3.39 (Central Limit Theorem)

1p
k
Mk! Standard normal, as k!1:

Proof:

'k(u) = IE exp

�
up
k
Mk

�

=
�
1

2
e

up
k + 1

2
e
� up

k

�k
;
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so that,

log'k(u) = k log
�
1

2
e

up
k + 1

2
e
� up

k

�
:

Let x = 1p
k
. Then

lim
k!1

log'k(u) = lim
x!0

log
�
1

2
eux + 1

2
e�ux

�
x2

= lim
x!0

u
2
eux � u

2
e�ux

2x
�
1

2
eux + 1

2
e�ux

� (L’H ôpital’s Rule)

= lim
x!0

1
1

2
eux + 1

2
e�ux

: lim
x!0

u
2
eux � u

2
e�ux

2x

= lim
x!0

u
2
eux � u

2
e�ux

2x

= lim
x!0

u2

2
eux � u2

2
e�ux

2
(L’H ôpital’s Rule)

= 1

2
u2:

Therefore,

lim
k!1

'k(u) = e
1

2
u2 ;

which is the m.g.f. for a standard normal random variable.

13.4 Brownian Motion as a Limit of Random Walks

Let n be a positive integer. Ift � 0 is of the formk
n

, then set

B(n)(t) =
1p
n
Mtn =

1p
n
Mk:

If t � 0 is not of the formk
n , then defineB(n)(t) by linear interpolation (See Fig. 13.1).

Here are some properties ofB(100)(t):
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k/n (k+1)/n
Figure 13.1:Linear Interpolation to defineB(n)(t).

Properties of B(100)(1) :

B(100)(1) =
1

10

100X
j=1

Xj (Approximately normal)

IEB(100)(1) =
1

10

100X
j=1

IEXj = 0:

var(B(100)(1)) =
1

100

100X
j=1

var(Xj) = 1

Properties of B(100)(2) :

B(100)(2) =
1

10

200X
j=1

Xj (Approximately normal)

IEB(100)(2) = 0:

var(B(100)(2)) = 2:

Also note that:

� B(100)(1) andB(100)(2)�B(100)(1) are independent.

� B(100)(t) is a continuous function oft.

To get Brownian motion, letn!1 in B(n)(t); t � 0.

13.5 Brownian Motion

(Please refer to Oksendal, Chapter 2.)
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t

(Ω, F,P)

ω

B(t) = B(t,ω)

Figure 13.2:Continuous-time Brownian Motion.

A random variableB(t) (see Fig. 13.2) is called a Brownian Motion if it satisfies the following
properties:

1. B(0) = 0,

2. B(t) is a continuous function oft;

3. B has independent, normally distributed increments: If

0 = t0 < t1 < t2 < : : : < tn

and

Y1 = B(t1)�B(t0); Y2 = B(t2)�B(t1); : : : Yn = B(tn)�B(tn�1);

then

� Y1; Y2; : : : ; Yn are independent,
� IEYj = 0 8j;
� var(Yj) = tj � tj�1 8j:

13.6 Covariance of Brownian Motion

Let 0 � s � t be given. ThenB(s) andB(t) � B(s) are independent, soB(s) andB(t) =

(B(t)� B(s)) +B(s) are jointly normal. Moreover,

IEB(s) = 0; var(B(s)) = s;

IEB(t) = 0; var(B(t)) = t;

IEB(s)B(t) = IEB(s)[(B(t)�B(s)) +B(s)]

= IEB(s)(B(t)� B(s))| {z }
0

+ IEB2(s)| {z }
s

= s:
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Thus for anys � 0, t � 0 (not necessarilys � t), we have

IEB(s)B(t) = s ^ t:

13.7 Finite-Dimensional Distributions of Brownian Motion

Let
0 < t1 < t2 < : : : < tn

be given. Then
(B(t1); B(t2); : : : ; B(tn))

is jointly normal with covariance matrix

C =

2
6664

IEB2(t1) IEB(t1)B(t2) : : : IEB(t1)B(tn)

IEB(t2)B(t1) IEB2(t2) : : : IEB(t2)B(tn)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

IEB(tn)B(t1) IEB(tn)B(t2) : : : IEB2(tn)

3
7775

=

2
6664
t1 t1 : : : t1
t1 t2 : : : t2
: : : : : : : : : : : : : : :

t1 t2 : : : tn

3
7775

13.8 Filtration generated by a Brownian Motion

fF(t)gt�0
Required properties:

� For eacht, B(t) isF(t)-measurable,

� For eacht and fort < t1 < t2 < � � �< tn, the Brownian motion increments

B(t1)�B(t); B(t2)�B(t1); : : : ; B(tn)�B(tn�1)

areindependent ofF(t).

Here is one way to constructF(t). First fix t. Let s 2 [0; t] andC 2 B(IR) be given. Put the set

fB(s) 2 Cg = f! : B(s; !) 2 Cg
in F(t). Do this for all possible numberss 2 [0; t] andC 2 B(IR). Then put in every other set
required by the�-algebra properties.

ThisF(t) contains exactly the information learned by observing the Brownian motion upto timet.
fF(t)gt�0 is called thefiltration generated by the Brownian motion.
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13.9 Martingale Property

Theorem 9.40 Brownian motion is a martingale.

Proof: Let 0 � s � t be given. Then

IE[B(t)jF(s)] = IE[(B(t)� B(s)) +B(s)jF(s)]

= IE[B(t)� B(s)] + B(s)

= B(s):

Theorem 9.41 Let� 2 IR be given. Then

Z(t) = exp
n
��B(t) � 1

2
�2t
o

is a martingale.

Proof: Let 0 � s � t be given. Then

IE[Z(t)jF(s)] = IE

�
expf��(B(t) �B(s) +B(s))� 1

2
�2((t� s) + s)g

����F(s)

�

= IE

�
Z(s) expf��(B(t) � B(s))� 1

2
�2(t � s)g

����F(s)

�

= Z(s)IE
h
expf��(B(t) � B(s))� 1

2
�2(t� s)g

i
= Z(s) exp

n
1

2
(��)2 var(B(t)� B(s))� 1

2
�2(t� s)

o
= Z(s):

13.10 The Limit of a Binomial Model

Consider then’th Binomial model with the following parameters:

� un = 1 + �p
n
: “Up” factor. (� > 0).

� dn = 1� �p
n
: “Down” factor.

� r = 0.

� ~pn = 1�dn
un�dn = �=

p
n

2�=
p
n
= 1

2
.

� ~qn = 1

2
.
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Let ]k(H) denote the number ofH in the firstk tosses, and let]k(T ) denote the number ofT in the
first k tosses. Then

]k(H) + ]k(T ) = k;

]k(H)� ]k(T ) = Mk;

which implies,

]k(H) = 1

2
(k +Mk)

]k(T ) =
1

2
(k �Mk):

In then’th model, taken steps per unit time. SetS(n)
0

= 1. Let t = k
n for somek, and let

S(n)(t) =

�
1 +

�p
n

�1

2
(nt+Mnt)

�
1� �p

n

�1

2
(nt�Mnt)

:

UnderfIP , the price processS(n) is a martingale.

Theorem 10.42Asn!1, the distribution ofS(n)(t) converges to the distribution of

expf�B(t) � 1

2
�2tg;

whereB is a Brownian motion. Note that the correction�1

2
�2t is necessary in order to have a

martingale.

Proof: Recall that from the Taylor series we have

log(1 + x) = x � 1

2
x2 + O(x3);

so

logS(n)(t) = 1

2
(nt +Mnt) log(1 +

�p
n
) + 1

2
(nt �Mnt) log(1� �p

n
)

= nt

�
1

2
log(1 +

�p
n
) + 1

2
log(1� �p

n
)

�

+Mnt

�
1

2
log(1 +

�p
n
)� 1

2
log(1� �p

n
)

�

= nt

 
1

2

�p
n
� 1

4

�2

n
� 1

2

�p
n
� 1

4

�2

n
+O(n�3=2)

!

+Mnt

 
1

2

�p
n
� 1

4

�2

n
+ 1

2

�p
n
+

1

4

�2

n
+O(n�3=2)

!

= �1

2
�2t+ O(n�

1

2 )

+ �

�
1p
n
Mnt

�
| {z }

!Bt

+

�
1

n
Mnt

�
| {z }
!0

O(n�
1

2 )

As n!1, the distribution oflogS(n)(t) approaches the distribution of�B(t) � 1

2
�2t.
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B(t) = B(t,ω)

tω
x

(Ω, F,  P )x

Figure 13.3:Continuous-time Brownian Motion, starting atx 6= 0.

13.11 Starting at Points Other Than 0

(The remaining sections in this chapter were taught Dec 7.)

For a Brownian motionB(t) that starts at 0, we have:

IP (B(0) = 0) = 1:

For a Brownian motionB(t) that starts atx, denote the corresponding probability measure byIP x

(See Fig. 13.3), and for such a Brownian motion we have:

IPx(B(0) = x) = 1:

Note that:

� If x 6= 0, thenIP x puts all its probability on a completely different set from IP.

� The distribution ofB(t) underIP x is the same as the distribution ofx+B(t) under IP.

13.12 Markov Property for Brownian Motion

We prove that

Theorem 12.43Brownian motion has the Markov property.

Proof:

Let s � 0; t � 0 be given (See Fig. 13.4).

IE

�
h(B(s + t))

����F(s)

�
= IE

2
664h(B(s+ t)�B(s)| {z }

Independent ofF(s)

+ B(s)| {z }
F(s)-measurable

)

����F(s)

3
775
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s s+t

restart

B(s)

Figure 13.4:Markov Property of Brownian Motion.

Use the Independence Lemma. Define

g(x) = IE [h(B(s+ t) �B(s) + x )]

= IE

2
664h( x+ B(t)| {z }

same distribution asB(s+ t)�B(s)

)

3
775

= IExh(B(t)):

Then

IE

�
h (B(s + t) )

����F(s)

�
= g(B(s))

= EB(s)h(B(t)):

In fact Brownian motion has thestrong Markov property.

Example 13.1 (Strong Markov Property) See Fig. 13.5. Fixx > 0 and define

� = minft � 0; B(t) = xg :

Then we have:

IE

�
h(B(� + t) )

����F(� )
�
= g(B(� )) = IExh(B(t)):
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τ + t

restart

τ

x

Figure 13.5:Strong Markov Property of Brownian Motion.

13.13 Transition Density

Let p(t; x; y) be the probability that the Brownian motion changes value fromx to y in time t, and
let � be defined as in the previous section.

p(t; x; y) =
1p
2�t

e�
(y�x)2

2t

g(x) = IExh(B(t)) =

1Z
�1

h(y)p(t; x; y) dy:

IE

�
h(B(s+ t))

����F(s)

�
= g(B(s)) =

1Z
�1

h(y)p(t; B(s); y) dy:

IE

�
h(B(� + t))

����F(�)

�
=

1Z
�1

h(y)p(t; x; y) dy:

13.14 First Passage Time

Fix x > 0. Define
� = min ft � 0; B(t) = xg :

Fix � > 0. Then

exp
n
�B(t ^ �)� 1

2
�2(t ^ �)

o
is a martingale, and

IE exp
n
�B(t ^ �)� 1

2
�2(t ^ �)

o
= 1:
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We have

lim
t!1 exp

n
�1

2
�2(t ^ �)

o
=

8<
:e

�1

2
�2� if � <1;

0 if � =1;
(14.1)

0 � expf�B(t ^ �)� 1

2
�2(t ^ �)g � e�x:

Let t!1 in (14.1), using the Bounded Convergence Theorem, to get

IE
h
expf�x� 1

2
�2�g1f�<1g

i
= 1:

Let �#0 to getIE1f�<1g = 1, so

IPf� <1g = 1;

IE expf�1

2
�2�g = e��x: (14.2)

Let � = 1

2
�2. We have the m.g.f.:

IEe��� = e�x
p
2�; � > 0: (14.3)

Differentiation of (14.3) w.r.t.� yields

�IE ��e��� � = � xp
2�

e�x
p
2�:

Letting�#0, we obtain

IE� =1: (14.4)

Conclusion.Brownian motion reaches levelx with probability 1. The expected time to reach level
x is infinite.

We use the Reflection Principle below (see Fig. 13.6).

IPf� � t; B(t) < xg = IPfB(t) > xg
IPf� � tg = IPf� � t; B(t) < xg+ IPf� � t; B(t) > xg

= IPfB(t) > xg+ IPfB(t) > xg
= 2IPfB(t) > xg

=
2p
2�t

1Z
x

e�
y2

2t dy
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τ

x

shadow path

Brownian motion

t

Figure 13.6:Reflection Principle in Brownian Motion.

Using the substitutionz = yp
t
; dz = dyp

t
we get

IPf� � tg = 2p
2�

1Z
xp
t

e�
z2

2 dz:

Density:

f� (t) =
@

@t
IPf� � tg = xp

2�t3
e�

x2

2t ;

which follows from the fact that if

F (t) =

bZ
a(t)

g(z) dz;

then
@F

@t
= �@a

@t
g(a(t)):

Laplace transform formula:

IEe��� =

1Z
0

e��tf� (t)dt = e�x
p
2�:
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Chapter 14

The It ô Integral

The following chapters deal withStochastic Differential Equations in Finance. References:

1. B. Oksendal,Stochastic Differential Equations, Springer-Verlag,1995

2. J. Hull,Options, Futures and other Derivative Securities,Prentice Hall, 1993.

14.1 Brownian Motion

(See Fig. 13.3.)(
;F;P) is given, always in the background, even when not explicitly mentioned.
Brownian motion,B(t; !) : [0;1)� 
!IR, has the following properties:

1. B(0) = 0; Technically,IPf!;B(0; !) = 0g = 1,

2. B(t) is a continuous function oft,

3. If 0 = t0 � t1 � : : : � tn, then the increments

B(t1)�B(t0); : : : ; B(tn)�B(tn�1)

areindependent,normal,and

IE[B(tk+1)� B(tk)] = 0;

IE[B(tk+1)� B(tk)]
2 = tk+1 � tk :

14.2 First Variation

Quadratic variation is a measure of volatility. First we will considerfirst variation, FV (f), of a
functionf(t).

153
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t

t

1

2
t

f(t)

T

Figure 14.1:Example functionf(t).

For the function pictured in Fig. 14.1, the first variation over the interval[0; T ] is given by:

FV[0;T ](f) = [f(t1)� f(0)]� [f(t2)� f(t1)] + [f(T )� f(t2)]

=

t1Z
0

f 0(t) dt+
t2Z
t1

(�f 0(t)) dt+
TZ

t2

f 0(t) dt:

=

TZ
0

jf 0(t)j dt:

Thus, first variation measures the total amount of up and down motion of the path.

The general definition of first variation is as follows:

Definition 14.1 (First Variation) Let� = ft0; t1; : : : ; tng be apartitionof [0; T ], i.e.,

0 = t0 � t1 � : : : � tn = T:

Themeshof the partition is defined to be

jj�jj = max
k=0;::: ;n�1

(tk+1 � tk):

We then define

FV[0;T ](f) = lim
jj�jj!0

n�1X
k=0

jf(tk+1)� f(tk)j:

Supposef is differentiable. Then the Mean Value Theorem implies that in each subinterval[tk; tk+1],
there is a pointt�k such that

f(tk+1)� f(tk) = f 0(t�k)(tk+1 � tk):
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Then
n�1X
k=0

jf(tk+1)� f(tk)j =
n�1X
k=0

jf 0(t�k)j(tk+1 � tk);

and

FV[0;T ](f) = lim
jj�jj!0

n�1X
k=0

jf 0(t�k)j(tk+1 � tk)

=

TZ
0

jf 0(t)j dt:

14.3 Quadratic Variation

Definition 14.2 (Quadratic Variation) Thequadratic variationof a functionf on an interval[0; T ]
is

hfi(T ) = lim
jj�jj!0

n�1X
k=0

jf(tk+1)� f(tk)j2:

Remark 14.1 (Quadratic Variation of Differentiable Functions) If f is differentiable, thenhfi(T ) =
0, because

n�1X
k=0

jf(tk+1)� f(tk)j2 =
n�1X
k=0

jf 0(t�k)j2(tk+1 � tk)
2

� jj�jj:
n�1X
k=0

jf 0(t�k)j2(tk+1 � tk)

and

hfi(T ) � lim
jj�jj!0

jj�jj: lim
jj�jj!0

n�1X
k=0

jf 0(t�k)j2(tk+1 � tk)

= lim
jj�jj!0

jj�jj
TZ
0

jf 0(t)j2 dt

= 0:

Theorem 3.44

hBi(T ) = T;

or more precisely,
IPf! 2 
; hB(:; !)i(T ) = Tg = 1:

In particular, the paths of Brownian motion are not differentiable.
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Proof: (Outline) Let� = ft0; t1; : : : ; tng be a partition of[0; T ]. To simplify notation, setDk =

B(tk+1)�B(tk). Define thesample quadratic variation

Q� =
n�1X
k=0

D2

k:

Then

Q� � T =
n�1X
k=0

[D2

k � (tk+1 � tk)]:

We want to show that
lim

jj�jj!0

(Q� � T ) = 0:

Consider an individual summand

D2

k � (tk+1 � tk) = [B(tk+1)� B(tk)]
2 � (tk+1 � tk):

This has expectation 0, so

IE(Q� � T ) = IE

n�1X
k=0

[D2

k � (tk+1 � tk)] = 0:

For j 6= k, the terms
D2

j � (tj+1 � tj) and D2

k � (tk+1 � tk)

are independent, so

var(Q� � T ) =
n�1X
k=0

var[D2

k � (tk+1 � tk)]

=
n�1X
k=0

IE[D4

k � 2(tk+1 � tk)D
2

k + (tk+1 � tk)
2]

=
n�1X
k=0

[3(tk+1 � tk)
2 � 2(tk+1 � tk)

2 + (tk+1 � tk)
2]

(if X is normal with mean 0 and variance�2, thenIE(X4) = 3�4)

= 2
n�1X
k=0

(tk+1 � tk)
2

� 2jj�jj
n�1X
k=0

(tk+1 � tk)

= 2jj�jj T:

Thus we have

IE(Q� � T ) = 0;

var(Q� � T ) � 2jj�jj:T:
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As jj�jj!0, var(Q� � T )!0, so

lim
jj�jj!0

(Q� � T ) = 0:

Remark 14.2 (Differential Representation) We know that

IE[(B(tk+1)�B(tk))
2 � (tk+1 � tk)] = 0:

We showed above that

var[(B(tk+1)�B(tk))
2 � (tk+1 � tk)] = 2(tk+1 � tk)

2:

When(tk+1 � tk) is small,(tk+1 � tk)
2 is verysmall, and we have the approximate equation

(B(tk+1)� B(tk))
2 ' tk+1 � tk ;

which we can write informally as
dB(t) dB(t) = dt:

14.4 Quadratic Variation as Absolute Volatility

On any time interval[T1; T2], we can sample the Brownian motion at times

T1 = t0 � t1 � : : : � tn = T2

and compute thesquared sample absolute volatility

1

T2 � T1

n�1X
k=0

(B(tk+1)�B(tk))
2:

This is approximately equal to

1

T2 � T1
[hBi(T2)� hBi(T1)] = T2 � T1

T2 � T1
= 1:

As we increase the number of sample points, this approximation becomes exact. In other words,
Brownian motion hasabsolute volatility 1.

Furthermore, consider the equation

hBi(T ) = T =

TZ
0

1 dt; 8T � 0:

This says that quadratic variation for Brownian motion accumulates at rate 1at all times along
almost every path.
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14.5 Construction of the Itô Integral

The integrator is Brownian motionB(t); t � 0, with associated filtrationF(t); t � 0, and the
following properties:

1. s � t=) every set inF(s) is also inF(t),

2. B(t) isF(t)-measurable,8t,
3. Fort � t1 � : : : � tn, the incrementsB(t1)� B(t); B(t2)� B(t1); : : : ; B(tn)� B(tn�1)

are independent ofF(t).

Theintegrand is �(t); t � 0, where

1. �(t) isF(t)-measurable8t (i.e.,� is adapted)

2. � is square-integrable:

IE

TZ
0

�2(t) dt <1; 8T:

We want to define theIt ô Integral:

I(t) =

tZ
0

�(u) dB(u); t � 0:

Remark 14.3 (Integral w.r.t. a differentiable function) If f(t) is a differentiable function, then
we can define

tZ
0

�(u) df(u) =

Z t

0

�(u)f 0(u) du:

This won’t work when the integrator is Brownian motion, because the paths of Brownian motion
are not differentiable.

14.6 Itô integral of an elementary integrand

Let� = ft0; t1; : : : ; tng be a partition of[0; T ], i.e.,

0 = t0 � t1 � : : : � tn = T:

Assume that�(t) is constant on each subinterval[tk ; tk+1] (see Fig. 14.2). We call such a� an
elementary process.

The functionsB(t) and�(tk) can be interpreted as follows:

� Think ofB(t) as theprice per unit shareof an asset at timet.
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Figure 14.2:An elementary function�.

� Think of t0; t1; : : : ; tn as thetrading datesfor the asset.

� Think of �(tk) as thenumber of shares of the asset acquiredat trading datetk and held until
trading datetk+1.

Then the Itô integralI(t) can be interpreted as thegain from tradingat timet; this gain is given by:

I(t) =

8>>>><
>>>>:

�(t0)[B(t)� B(t0)| {z }
=B(0)=0

]; 0 � t � t1

�(t0)[B(t1)� B(t0)] + �(t1)[B(t)�B(t1)]; t1 � t � t2

�(t0)[B(t1)� B(t0)] + �(t1)[B(t2)�B(t1)] + �(t2)[B(t)� B(t2)]; t2 � t � t3:

In general, iftk � t � tk+1,

I(t) =
k�1X
j=0

�(tj)[B(tj+1)�B(tj)] + �(tk)[B(t)� B(tk)]:

14.7 Properties of the It̂o integral of an elementary process

AdaptednessFor eacht; I(t) isF(t)-measurable.

Linearity If

I(t) =

tZ
0

�(u) dB(u); J(t) =

tZ
0


(u) dB(u)

then

I(t)� J(t) =

Z t

0

(�(u)� 
(u)) dB(u)
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Figure 14.3:Showings andt in different partitions.

and

cI(t) =

Z t

0

c�(u)dB(u):

Martingale I(t) is a martingale.

We prove the martingale property for the elementary process case.

Theorem 7.45 (Martingale Property)

I(t) =
k�1X
j=0

�(tj)[B(tj+1)�B(tj)] + �(tk)[B(t)�B(tk)]; tk � t � tk+1

is a martingale.

Proof: Let 0 � s � t be given. We treat the more difficult case thats and t are in different
subintervals, i.e., there are partition pointst` andtk such thats 2 [t`; t`+1] andt 2 [tk; tk+1] (See
Fig. 14.3).

Write

I(t) =
`�1X
j=0

�(tj)[B(tj+1)�B(tj)] + �(t`)[B(t`+1)�B(t`)]

+
k�1X
j=`+1

�(tj)[B(tj+1)�B(tj)] + �(tk)[B(t)�B(tk)]

We compute conditional expectations:

IE

2
4`�1X
j=0

�(tj)(B(tj+1)� B(tj))

����F(s)

3
5 =

`�1X
j=0

�(tj)(B(tj+1)�B(tj)):

IE

�
�(t`)(B(t`+1)�B(t`))

����F(s)

�
= �(t`) (IE[B(t`+1)jF(s)]� B(t`))

= �(t`)[B(s)�B(t`)]
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These first two terms add up toI(s). We show that the third and fourth terms are zero.

IE

2
4 k�1X
j=`+1

�(tj)(B(tj+1)� B(tj))

����F(s)

3
5 =

k�1X
j=`+1

IE

�
IE

�
�(tj)(B(tj+1)� B(tj))

����F(tj)

� ����F(s)

�

=
k�1X
j=`+1

IE

2
64�(tj) (IE[B(tj+1)jF(tj)]� B(tj))| {z }

=0

����F(s)

3
75

IE

�
�(tk)(B(t)�B(tk))

����F(s)

�
= IE

2
64�(tk) (IE[B(t)jF(tk)]� B(tk))| {z }

=0

����F(s)

3
75

Theorem 7.46 (It̂o Isometry)

IEI2(t) = IE

Z t

0

�2(u) du:

Proof: To simplify notation, assumet = tk , so

I(t) =
kX

j=0

�(tj)[B(tj+1)� B(tj)| {z }
Dj

]

EachDj has expectation 0, and differentDj are independent.

I2(t) =

0
@ kX
j=0

�(tj)Dj

1
A
2

=
kX

j=0

�2(tj)D
2

j + 2
X
i<j

�(ti)�(tj)DiDj :

Since the cross terms have expectation zero,

IEI2(t) =
kX

j=0

IE[�2(tj)D
2

j ]

=
kX

j=0

IE

�
�2(tj)IE

�
(B(tj+1)� B(tj))

2

����F(tj)

��

=
kX

j=0

IE�2(tj)(tj+1 � tj)

= IE

kX
j=0

tj+1Z
tj

�2(u) du

= IE

Z t

0

�2(u) du
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Figure 14.4:Approximating a general process by an elementary process�4, over[0; T ].

14.8 Itô integral of a general integrand

Fix T > 0. Let � be a process (not necessarily an elementary process) such that

� �(t) isF(t)-measurable,8t 2 [0; T ],

� IE
R T
0
�2(t) dt <1:

Theorem 8.47 There is a sequence of elementary processesf�ng1n=1 such that

lim
n!1 IE

Z T

0

j�n(t)� �(t)j2 dt = 0:

Proof: Fig. 14.4 shows the main idea.

In the last section we have defined

In(T ) =

Z T

0

�n(t) dB(t)

for everyn. We now define

Z T

0

�(t) dB(t) = lim
n!1

Z T

0

�n(t) dB(t):
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The only difficulty with this approach is that we need to make sure the above limit exists. Suppose
n andm are large positive integers. Then

var(In(T )� Im(T )) = IE

 Z T

0

[�n(t)� �m(t)] dB(t)

!
2

(Itô Isometry:)= IE

Z T

0

[�n(t)� �m(t)]
2
dt

= IE

Z T

0

[ j�n(t)� �(t)j+ j�(t)� �m(t)j ]2 dt

((a+ b)2 � 2a2 + 2b2 :) � 2IE

Z T

0

j�n(t)� �(t)j2 dt+ 2IE

Z T

0

j�m(t)� �(t)j2 dt;

which is small. This guarantees that the sequencefIn(T )g1n=1 has a limit.

14.9 Properties of the (general) It̂o integral

I(t) =

Z t

0

�(u) dB(u):

Here� is any adapted, square-integrable process.

Adaptedness.For eacht, I(t) isF(t)-measurable.

Linearity. If

I(t) =

tZ
0

�(u) dB(u); J(t) =

tZ
0


(u) dB(u)

then

I(t)� J(t) =

Z t

0

(�(u)� 
(u)) dB(u)

and

cI(t) =

Z t

0

c�(u)dB(u):

Martingale. I(t) is a martingale.

Continuity. I(t) is a continuous function of the upper limit of integrationt.

It ô Isometry. IEI2(t) = IE
R t
0
�2(u) du.

Example 14.1 () Consider the Itˆo integral Z T

0

B(u) dB(u):

We approximate the integrand as shown in Fig. 14.5
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T/4 2T/4 3T/4 T

Figure 14.5:Approximating the integrandB(u) with �4, over[0; T ].

�n(u) =

8>>>><
>>>>:

B(0) = 0 if 0 � u < T=n;

B(T=n) if T=n � u < 2T=n;

: : :

B
�
(n�1)T

T

�
if (n�1)T

n
� u < T:

By definition,

Z T

0

B(u) dB(u) = lim
n!1

n�1X
k=0

B

�
kT

n

��
B

�
(k + 1)T

n

�
� B

�
kT

n

��
:

To simplify notation, we denote

Bk
4
= B

�
kT

n

�
;

so Z T

0

B(u) dB(u) = lim
n!1

n�1X
k=0

Bk(Bk+1 � Bk):

We compute

1

2

n�1X
k=0

(Bk+1 � Bk)
2
=

1

2

n�1X
k=0

B2

k+1 �
n�1X
k=0

BkBk+1 +
1

2

n�1X
k=0

B2

k

=
1

2
B2

n +
1

2

n�1X
j=0

B2

j �
n�1X
k=0

BkBk+1 +
1

2

n�1X
k=0

B2

k

=
1

2
B2

n +

n�1X
k=0

B2

k �
n�1X
k=0

BkBk+1

=
1

2
B2

n �
n�1X
k=0

Bk(Bk+1 � Bk):
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Therefore,
n�1X
k=0

Bk(Bk+1 �Bk) =
1

2
B2

n � 1

2

n�1X
k=0

(Bk+1 �Bk)
2;

or equivalently

n�1X
k=0

B

�
kT

n

��
B

�
(k + 1)T

n

�
�B

�
kT

n

��
=

1

2
B2

(T )� 1

2

n�1X
k=0

�
B

�
(k + 1)T

n

��
k

T

��2
:

Let n!1 and use the definition of quadratic variation to get

Z T

0

B(u) dB(u) = 1

2
B2

(T ) � 1

2
T:

Remark 14.4 (Reason for the1
2
T term) If f is differentiable withf(0) = 0, then

Z T

0

f(u) df(u) =

Z T

0

f(u)f 0(u) du

= 1

2
f2(u)

����
T

0

= 1

2
f2(T ):

In contrast, for Brownian motion, we have

Z T

0

B(u)dB(u) = 1

2
B2(T )� 1

2
T:

The extra term1

2
T comes from the nonzero quadratic variation of Brownian motion. It has to be

there, because

IE

Z T

0

B(u) dB(u) = 0 (Itô integral is a martingale)

but
IE 1

2
B2(T ) = 1

2
T:

14.10 Quadratic variation of an Itô integral

Theorem 10.48 (Quadratic variation of Itô integral) Let

I(t) =

Z t

0

�(u) dB(u):

Then

hIi(t) =
Z t

0

�2(u) du:
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This holds even if� is not an elementary process. The quadratic variation formula says that at each
time u, the instantaneous absolute volatilityof I is �2(u). This is the absolute volatility of the
Brownian motion scaled by the size of the position (i.e.�(t)) in the Brownian motion. Informally,
we can write the quadratic variation formula in differential form as follows:

dI(t) dI(t) = �2(t) dt:

Compare this with
dB(t) dB(t) = dt:

Proof: (For an elementary process�). Let� = ft0; t1; : : : ; tng be the partition for�, i.e.,�(t) =
�(tk) for tk � t � tk+1. To simplify notation, assumet = tn. We have

hIi(t) =
n�1X
k=0

[hIi(tk+1)� hIi(tk)] :

Let us computehIi(tk+1)� hIi(tk). Let� = fs0; s1; : : : ; smg be a partition

tk = s0 � s1 � : : :� sm = tk+1:

Then

I(sj+1)� I(sj) =

sj+1Z
sj

�(tk) dB(u)

= �(tk) [B(sj+1)� B(sj)] ;

so

hIi(tk+1)� hIi(tk) =
m�1X
j=0

[I(sj+1)� I(sj)]
2

= �2(tk)
m�1X
j=0

[B(sj+1)�B(sj)]
2

jj�jj!0�����! �2(tk)(tk+1 � tk):

It follows that

hIi(t) =
n�1X
k=0

�2(tk)(tk+1 � tk)

=
n�1X
k=0

tk+1Z
tk

�2(u) du

jj�jj!0������!
Z t

0

�2(u) du:
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It ô’s Formula

15.1 Itô’s formula for one Brownian motion

We want a rule to “differentiate” expressions of the formf(B(t)), wheref(x) is a differentiable
function. IfB(t) were also differentiable, then the ordinarychain rulewould give

d

dt
f(B(t)) = f 0(B(t))B0(t);

which could be written in differential notation as

df(B(t)) = f 0(B(t))B0(t) dt

= f 0(B(t))dB(t)

However,B(t) is not differentiable, and in particular has nonzero quadratic variation, so the correct
formula has an extra term, namely,

df(B(t)) = f 0(B(t)) dB(t) + 1

2
f 00(B(t)) dt|{z}

dB(t) dB(t)

:

This isItô’s formula in differential form.Integrating this, we obtainItô’s formula in integral form:

f(B(t))� f(B(0))| {z }
f(0)

=

Z t

0

f 0(B(u)) dB(u) + 1

2

Z t

0

f 00(B(u)) du:

Remark 15.1 (Differential vs. Integral Forms) The mathematically meaningful form of Itˆo’s for-
mula is Itô’s formula in integral form:

f(B(t))� f(B(0)) =

Z t

0

f 0(B(u)) dB(u) + 1

2

Z t

0

f 00(B(u)) du:

167
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This is because we have solid definitions for both integrals appearing on the right-hand side. The
first, Z t

0

f 0(B(u)) dB(u)

is anItô integral, defined in the previous chapter. The second,

Z t

0

f 00(B(u)) du;

is aRiemann integral, the type used in freshman calculus.

For paper and pencil computations, the more convenient form of Itˆo’s rule isItô’s formula in differ-
ential form:

df(B(t)) = f 0(B(t)) dB(t) + 1

2
f 00(B(t)) dt:

There is an intuitive meaning but no solid definition for the termsdf(B(t)); dB(t) anddt appearing
in this formula. This formula becomes mathematically respectable only after we integrate it.

15.2 Derivation of Itô’s formula

Considerf(x) = 1

2
x2, so that

f 0(x) = x; f 00(x) = 1:

Let xk; xk+1 be numbers. Taylor’s formula implies

f(xk+1)� f(xk) = (xk+1 � xk)f
0(xk) + 1

2
(xk+1 � xk)

2f 00(xk):

In this case, Taylor’s formula to second order isexactbecausef is aquadratic function.

In the general case, the above equation is only approximate, and the error is of the order of(xk+1�
xk)

3. The total error will have limit zero in the last step of the following argument.

Fix T > 0 and let� = ft0; t1; : : : ; tng be a partition of[0; T ]. Using Taylor’s formula, we write:

f(B(T ))� f(B(0))

= 1

2
B2(T )� 1

2
B2(0)

=
n�1X
k=0

[f(B(tk+1))� f(B(tk))]

=
n�1X
k=0

[B(tk+1)�B(tk)] f
0(B(tk)) +

1

2

n�1X
k=0

[B(tk+1)�B(tk)]
2 f 00(B(tk))

=
n�1X
k=0

B(tk) [B(tk+1)� B(tk)] +
1

2

n�1X
k=0

[B(tk+1)�B(tk)]
2 :



CHAPTER 15. Itô’s Formula 169

We letjj�jj!0 to obtain

f(B(T ))� f(B(0)) =

Z T

0

B(u) dB(u) + 1

2
hBi(T )| {z }

T

=

Z T

0

f 0(B(u)) dB(u) + 1

2

Z T

0

f 00(B(u))| {z }
1

du:

This is Itô’s formula in integral form for the special case

f(x) = 1

2
x2:

15.3 Geometric Brownian motion

Definition 15.1 (Geometric Brownian Motion) Geometric Brownian motion is

S(t) = S(0) exp
n
�B(t) +

�
�� 1

2
�2
�
t
o
;

where� and� > 0 are constant.

Define

f(t; x) = S(0) exp
n
�x+

�
�� 1

2
�2
�
t
o
;

so

S(t) = f(t; B(t)):

Then

ft =
�
�� 1

2
�2
�
f; fx = �f; fxx = �2f:

According to Itô’s formula,

dS(t) = df(t; B(t))

= ftdt+ fxdB + 1

2
fxx dBdB| {z }

dt

= (�� 1

2
�2)f dt+ �f dB + 1

2
�2f dt

= �S(t)dt+ �S(t) dB(t)

Thus,Geometric Brownian motion in differential formis

dS(t) = �S(t)dt+ �S(t) dB(t);

andGeometric Brownian motion in integral formis

S(t) = S(0) +

Z t

0

�S(u) du+

Z t

0

�S(u) dB(u):
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15.4 Quadratic variation of geometric Brownian motion

In the integral form of Geometric Brownian motion,

S(t) = S(0)+

Z t

0

�S(u) du+

Z t

0

�S(u) dB(u);

the Riemann integral

F (t) =

Z t

0

�S(u) du

is differentiable withF 0(t) = �S(t). This term has zero quadratic variation. The Itˆo integral

G(t) =

Z t

0

�S(u) dB(u)

is not differentiable. It has quadratic variation

hGi(t) =
Z t

0

�2S2(u) du:

Thus the quadratic variation ofS is given by the quadratic variation ofG. In differential notation,
we write

dS(t) dS(t) = (�S(t)dt+ �S(t)dB(t))2 = �2S2(t) dt

15.5 Volatility of Geometric Brownian motion

Fix 0 � T1 � T2. Let � = ft0; : : : ; tng be a partition of[T1; T2]. Thesquared absolute sample
volatility of S on [T1; T2] is

1

T2 � T1

n�1X
k=0

[S(tk+1)� S(tk)]
2 ' 1

T2 � T1

T2Z
T1

�2S2(u) du

' �2S2(T1)

As T2 # T1, the above approximation becomes exact. In other words, theinstantaneous relative
volatility of S is �2. This is usually called simply thevolatility of S.

15.6 First derivation of the Black-Scholes formula

Wealth of an investor. An investor begins with nonrandom initial wealthX0 and at each timet,
holds�(t) shares of stock. Stock is modelled by a geometric Brownian motion:

dS(t) = �S(t)dt+ �S(t)dB(t):
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�(t) can be random, but must be adapted. The investor finances his investing by borrowing or
lending at interest rater.

LetX(t) denote the wealth of the investor at timet. Then

dX(t) = �(t)dS(t) + r [X(t)��(t)S(t)]dt

= �(t) [�S(t)dt+ �S(t)dB(t)] + r [X(t)��(t)S(t)]dt

= rX(t)dt + �(t)S(t) (�� r)| {z }
Risk premium

dt + �(t)S(t)�dB(t):

Value of an option.Consider an European option which paysg(S(T ))at timeT . Letv(t; x) denote
the value of this option at timet if the stock price isS(t) = x. In other words, the value of the
option at each timet 2 [0; T ] is

v(t; S(t)):

The differential of this value is

dv(t; S(t)) = vtdt+ vxdS + 1

2
vxxdS dS

= vtdt+ vx [�S dt + �S dB] + 1

2
vxx�

2S2 dt

=
h
vt + �Svx +

1

2
�2S2vxx

i
dt + �SvxdB

A hedging portfolio starts with some initial wealthX0 and invests so that the wealthX(t) at each
time tracksv(t; S(t)). We saw above that

dX(t) = [rX +�(�� r)S] dt+ �S�dB:

To ensure thatX(t) = v(t; S(t)) for all t, we equate coefficients in their differentials. Equating the
dB coefficients, we obtain the�-hedging rule:

�(t) = vx(t; S(t)):

Equating thedt coefficients, we obtain:

vt + �Svx +
1

2
�2S2vxx = rX + �(�� r)S:

But we have set� = vx, and we are seeking to causeX to agree withv. Making these substitutions,
we obtain

vt + �Svx +
1

2
�2S2vxx = rv + vx(�� r)S;

(wherev = v(t; S(t)) andS = S(t)) which simplifies to

vt + rSvx +
1

2
�2S2vxx = rv:

In conclusion, we should letv be the solution to theBlack-Scholes partial differential equation

vt(t; x) + rxvx(t; x) +
1

2
�2x2vxx(t; x) = rv(t; x)

satisfying the terminal condition
v(T; x) = g(x):

If an investor starts withX0 = v(0; S(0))and uses the hedge�(t) = vx(t; S(t)), then he will have
X(t) = v(t; S(t)) for all t, and in particular,X(T ) = g(S(T )).
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15.7 Mean and variance of the Cox-Ingersoll-Ross process

TheCox-Ingersoll-Rossmodel for interest rates is

dr(t) = a(b� cr(t))dt+ �
q
r(t) dB(t);

wherea; b; c; � andr(0) are positive constants. In integral form, this equation is

r(t) = r(0) + a

Z t

0

(b� cr(u)) du+ �

Z t

0

q
r(u) dB(u):

We apply Itô’s formula to computedr2(t). This isdf(r(t)), wheref(x) = x2. We obtain

dr2(t) = df(r(t))

= f 0(r(t)) dr(t) + 1

2
f 00(r(t)) dr(t) dr(t)

= 2r(t)

�
a(b� cr(t)) dt+ �

q
r(t) dB(t)

�
+

�
a(b� cr(t)) dt+ �

q
r(t) dB(t)

�
2

= 2abr(t) dt� 2acr2(t) dt+ 2�r
3
2 (t) dB(t) + �2r(t) dt

= (2ab+ �2)r(t) dt� 2acr2(t) dt+ 2�r
3
2 (t) dB(t)

The mean ofr(t). The integral form of the CIR equation is

r(t) = r(0) + a

Z t

0

(b� cr(u)) du+ �

Z t

0

q
r(u) dB(u):

Taking expectations and remembering that the expectation of an Itˆo integral is zero, we obtain

IEr(t) = r(0) + a

Z t

0

(b� cIEr(u)) du:

Differentiation yields
d

dt
IEr(t) = a(b� cIEr(t)) = ab� acIEr(t);

which implies that

d

dt

h
eactIEr(t)

i
= eact

�
acIEr(t) +

d

dt
IEr(t)

�
= eactab:

Integration yields

eactIEr(t)� r(0) = ab

Z t

0

eacu du =
b

c
(eact � 1):

We solve forIEr(t):

IEr(t) =
b

c
+ e�act

�
r(0)� b

c

�
:

If r(0) = b
c
, thenIEr(t) = b

c
for everyt. If r(0) 6= b

c
, thenr(t) exhibitsmean reversion:

lim
t!1

IEr(t) =
b

c
:



CHAPTER 15. Itô’s Formula 173

Variance of r(t). The integral form of the equation derived earlier fordr2(t) is

r2(t) = r2(0) + (2ab+ �2)

Z t

0

r(u) du� 2ac

Z t

0

r2(u) du+ 2�

Z t

0

r
3
2 (u) dB(u):

Taking expectations, we obtain

IEr2(t) = r2(0) + (2ab+ �2)

Z t

0

IEr(u) du� 2ac

Z t

0

IEr2(u) du:

Differentiation yields

d

dt
IEr2(t) = (2ab+ �2)IEr(t)� 2acIEr2(t);

which implies that

d

dt
e2actIEr2(t) = e2act

�
2acIEr2(t) +

d

dt
IEr2(t)

�

= e2act(2ab+ �2)IEr(t):

Using the formula already derived forIEr(t) and integrating the last equation, after considerable
algebra we obtain

IEr2(t) =
b�2

2ac2
+
b2

c2
+

�
r(0)� b

c

� 
�2

ac
+

2b

c

!
e�act

+

�
r(0)� b

c

�2 �2
ac
e�2act +

�2

ac

�
b

2c
� r(0)

�
e�2act:

var r(t) = IEr2(t)� (IEr(t))2

=
b�2

2ac2
+

�
r(0)� b

c

�
�2

ac
e�act +

�2

ac

�
b

2c
� r(0)

�
e�2act:

15.8 Multidimensional Brownian Motion

Definition 15.2 (d-dimensional Brownian Motion) A d-dimensional Brownian Motionis a pro-
cess

B(t) = (B1(t); : : : ; Bd(t))

with the following properties:

� EachBk(t) is a one-dimensional Brownian motion;

� If i 6= j, then the processesBi(t) andBj(t) are independent.

Associated with ad-dimensional Brownian motion, we have a filtrationfF(t)g such that

� For eacht, the random vectorB(t) isF(t)-measurable;

� For eacht � t1 � : : : � tn, the vector increments

B(t1)� B(t); : : : ; B(tn)� B(tn�1)

are independent ofF(t).
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15.9 Cross-variations of Brownian motions

Because each componentBi is a one-dimensional Brownian motion, we have the informal equation

dBi(t) dBi(t) = dt:

However, we have:

Theorem 9.49 If i 6= j,
dBi(t) dBj(t) = 0

Proof: Let � = ft0; : : : ; tng be a partition of[0; T ]. For i 6= j, define thesample cross variation
of Bi andBj on [0; T ] to be

C� =
n�1X
k=0

[Bi(tk+1)�Bi(tk)] [Bj(tk+1)�Bj(tk)] :

The increments appearing on the right-hand side of the above equation are all independent of one
another and all have mean zero. Therefore,

IEC� = 0:

We computevar(C�). First note that

C2

� =
n�1X
k=0

�
Bi(tk+1)� Bi(tk)

�
2
�
Bj(tk+1)� Bj(tk)

�
2

+ 2
n�1X
`<k

[Bi(t`+1)�Bi(t`)] [Bj(t`+1)� Bj(t`)] : [Bi(tk+1)�Bi(tk)] [Bj(tk+1)�Bj(tk)]

All the increments appearing in the sum of cross terms are independent of one another and have
mean zero. Therefore,

var(C�) = IEC2

�

= IE

n�1X
k=0

[Bi(tk+1)� Bi(tk)]
2 [Bj(tk+1)�Bj(tk)]

2 :

But [Bi(tk+1)� Bi(tk)]
2 and[Bj(tk+1)�Bj(tk)]

2 are independent of one another, and each has
expectation(tk+1 � tk). It follows that

var(C�) =
n�1X
k=0

(tk+1 � tk)
2 � jj�jj

n�1X
k=0

(tk+1 � tk) = jj�jj:T:

As jj�jj!0, we havevar(C�)!0, soC� converges to the constantIEC� = 0.



CHAPTER 15. Itô’s Formula 175

15.10 Multi-dimensional Itô formula

To keep the notation as simple as possible, we write the Itˆo formula fortwo processes driven by a
two-dimensional Brownian motion. The formula generalizes toany numberof processes driven by
a Brownian motion ofany number(not necessarily the same number) of dimensions.

LetX andY be processes of the form

X(t) = X(0)+

Z t

0

�(u) du+

Z t

0

�11(u) dB1(u) +

Z t

0

�12(u) dB2(u);

Y (t) = Y (0) +

Z t

0

�(u) du+

Z t

0

�21(u) dB1(u) +

Z t

0

�22(u) dB2(u):

Such processes, consisting of a nonrandom initial condition, plus a Riemann integral, plus one or
more Itô integrals, are calledsemimartingales. The integrands�(u); �(u); and�ij(u) can be any
adapted processes. The adaptedness of the integrands guarantees thatX andY are also adapted. In
differential notation, we write

dX = � dt+ �11 dB1 + �12 dB2;

dY = � dt+ �21 dB1 + �22 dB2:

Given these two semimartingalesX andY , the quadratic and cross variations are:

dX dX = (� dt+ �11 dB1 + �12 dB2)
2;

= �211 dB1 dB1| {z }
dt

+2�11�12 dB1 dB2| {z }
0

+�212 dB2 dB2| {z }
dt

= (�211 + �212)
2 dt;

dY dY = (� dt+ �21 dB1 + �22 dB2)
2

= (�221 + �222)
2 dt;

dX dY = (� dt+ �11 dB1 + �12 dB2)(� dt + �21 dB1 + �22 dB2)

= (�11�21 + �12�22) dt

Let f(t; x; y) be a function of three variables, and letX(t) andY (t) be semimartingales. Then we
have the corresponding Itˆo formula:

df(t; x; y) = ft dt + fx dX + fy dY + 1

2
[fxx dX dX + 2fxy dX dY + fyy dY dY ] :

In integral form, withX andY as decribed earlier and with all the variables filled in, this equation
is

f(t; X(t); Y (t))� f(0; X(0); Y (0))

=

Z t

0

[ft + �fx + �fy +
1

2
(�211 + �212)fxx + (�11�21 + �12�22)fxy +

1

2
(�221 + �222)fyy ] du

+

Z t

0

[�11fx + �21fy ] dB1 +

Z t

0

[�12fx + �22fy ] dB2;

wheref = f(u;X(u); Y (u), for i; j 2 f1; 2g, �ij = �ij(u), andBi = Bi(u).
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Chapter 16

Markov processes and the Kolmogorov
equations

16.1 Stochastic Differential Equations

Consider thestochastic differential equation:

dX(t) = a(t; X(t)) dt+ �(t; X(t)) dB(t): (SDE)

Herea(t; x) and�(t; x) are given functions, usually assumed to be continuous in(t; x) and Lips-
chitz continuous inx,i.e., there is a constantL such that

ja(t; x)� a(t; y)j � Ljx� yj; j�(t; x)� �(t; y)j � Ljx� yj
for all t; x; y.

Let (t0; x) be given. Asolutionto (SDE) with theinitial condition (t0; x) is a processfX(t)gt�t0
satisfying

X(t0) = x;

X(t) = X(t0) +

tZ
t0

a(s;X(s)) ds+

tZ
t0

�(s;X(s)) dB(s); t � t0

The solution processfX(t)gt�t0 will be adapted to the filtrationfF(t)gt�0 generated by the Brow-
nian motion. If you know the path of the Brownian motion up to timet, then you can evaluate
X(t).

Example 16.1 (Drifted Brownian motion) Let a be a constant and� = 1, so

dX(t) = a dt+ dB(t):

If (t0; x) is given and we start with the initial condition

X(t0) = x;

177
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then

X(t) = x+ a(t� t0) + (B(t) �B(t0)); t � t0:

To compute the differential w.r.t.t, treatt0 andB(t0) as constants:

dX(t) = a dt+ dB(t):

Example 16.2 (Geometric Brownian motion)Let r and� be constants. Consider

dX(t) = rX(t) dt+ �X(t) dB(t):

Given the initial condition

X(t0) = x;

the solution is

X(t) = x exp
�
�(B(t) �B(t0)) + (r � 1

2
�2)(t� t0)

	
:

Again, to compute the differential w.r.t.t, treatt0 andB(t0) as constants:

dX(t) = (r � 1

2
�2)X(t) dt+ �X(t) dB(t) + 1

2
�2X(t) dt

= rX(t) dt+ �X(t) dB(t):

16.2 Markov Property

Let 0 � t0 < t1 be given and leth(y) be a function. Denote by

IEt0;xh(X(t1))

the expectation ofh(X(t1)), given thatX(t0) = x. Now let� 2 IR be given, and start with initial
condition

X(0) = �:

We have theMarkov property

IE0;�

�
h(X(t1))

����F(t0)

�
= IEt0;X(t0)h(X(t1)):

In other words, if you observe the path of the driving Brownian motion from time 0 to timet0, and
based on this information, you want to estimateh(X(t1)), the only relevant information is the value
of X(t0). You imagine starting the(SDE) at timet0 at valueX(t0), and compute the expected
value ofh(X(t1)).



CHAPTER 16. Markov processes and the Kolmogorov equations 179

16.3 Transition density

Denote by
p(t0; t1; x; y)

the density (in they variable) ofX(t1), conditioned onX(t0) = x. In other words,

IEt0;xh(X(t1)) =

Z
IR
h(y)p(t0; t1; x; y) dy:

The Markov property says that for0 � t0 � t1 and for every�,

IE0;�

�
h(X(t1))

����F(t0)

�
=

Z
IR
h(y)p(t0; t1; X(t0); y) dy:

Example 16.3 (Drifted Brownian motion) Consider the SDE

dX(t) = a dt+ dB(t):

Conditioned onX(t0) = x, the random variableX(t1) is normal with meanx + a(t1 � t0) and variance
(t1 � t0), i.e.,

p(t0; t1; x; y) =
1p

2�(t1 � t0)
exp

�
� (y � (x+ a(t1 � t0)))

2

2(t1 � t0)

�
:

Note thatp depends ont0 andt1 only through their differencet1 � t0. This is always the case whena(t; x)
and�(t; x) don’t depend ont.

Example 16.4 (Geometric Brownian motion) Recall that the solution to the SDE

dX(t) = rX(t) dt+ �X(t) dB(t);

with initial conditionX(t0) = x, is Geometric Brownian motion:

X(t1) = x exp
�
�(B(t1)� B(t0)) + (r � 1

2
�2)(t1 � t0)

	
:

The random variableB(t1) �B(t0) has density

IP fB(t1) �B(t0) 2 dbg = 1p
2�(t1 � t0)

exp

�
� b2

2(t1 � t0)

�
db;

and we are making the change of variable

y = x exp
�
�b+ (r � 1

2
�2)(t1 � t0)

	
or equivalently,

b =
1

�

h
log

y

x
� (r � 1

2
�2)(t1 � t0)

i
:

The derivative is
dy

db
= �y; or equivalently, db =

dy

�y
:
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Therefore,

p(t0; t1;x; y) dy = IP fX(t1) 2 dyg

=
1

�y
p
2�(t1 � t0)

exp

�
� 1

2(t1 � t0)�2

h
log

y

x
� (r � 1

2
�2)(t1 � t0)

i2�
dy:

Using the transition density and a fair amount of calculus, one can compute the expected payoff from a
European call:

IEt;x
(X(T ) �K)

+
=

Z
1

0

(y �K)
+p(t; T ;x; y) dy

= er(T�t)xN

�
1

�
p
T � t

h
log

x

K
+ r(T � t) + 1

2
�2(T � t)

i�

�KN

�
1

�
p
T � t

h
log

x

K
+ r(T � t)� 1

2
�2(T � t)

i�

where

N (�) =
1p
2�

Z �

�1

e�
1

2
x2 dx =

1p
2�

Z
1

��

e�
1

2
x2 dx:

Therefore,

IE0;�

�
e�r(T�t)(X(T ) �K)

+

����F(t)
�
= e�r(T�t)IEt;X(t)

(X(T ) �K)
+

= X(t)N

�
1

�
p
T � t

�
log

X(t)

K
+ r(T � t) + 1

2
�2(T � t)

��

� e�r(T�t)K N

�
1

�
p
T � t

�
log

X(t)

K
+ r(T � t) � 1

2
�2(T � t)

��

16.4 The Kolmogorov Backward Equation

Consider
dX(t) = a(t; X(t)) dt+ �(t; X(t)) dB(t);

and letp(t0; t1; x; y) be the transition density. Then the Kolmogorov Backward Equation is:

� @

@t0
p(t0; t1; x; y) = a(t0; x)

@

@x
p(t0; t1; x; y) +

1

2
�2(t0; x)

@2

@x2
p(t0; t1; x; y):

(KBE)

The variablest0 andx in (KBE) are called thebackward variables.

In the case thata and� are functions ofx alone,p(t0; t1; x; y) depends ont0 andt1 only through
their difference� = t1 � t0. We then writep(� ; x; y) rather thanp(t0; t1; x; y), and(KBE)

becomes

@

@�
p(� ; x; y) = a(x)

@

@x
p(� ; x; y) + 1

2
�2(x)

@2

@x2
p(� ; x; y): (KBE’)
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Example 16.5 (Drifted Brownian motion)

dX(t) = a dt+ dB(t)

p(� ; x; y) =
1p
2��

exp

�
� (y � (x+ a� ))2

2�

�
:

@

@�
p = p� =

�
@

@�

1p
2��

�
exp

�
� (y � x� a� )2

2�

�

�
�
@

@�

(y � x� a� )2

2�

�
1p
2��

exp

�
� (y � x� a� )2

2�

�

=

�
� 1

2�
+
a(y � x� a� )

�
+

(y � x� a� )

2�2

�
p:

@

@x
p = px =

y � x� a�

�
p:

@2

@x2
p = pxx =

�
@

@x

y � x� a�

�

�
p+

y � x� a�

�
px

= �1

�
p+

(y � x� a� )2

�2
p:

Therefore,

apx +
1

2
pxx =

�
a(y � x� a� )

�
� 1

2�
+

(y � x� a� )2

2�2

�
p

= p� :

This is the Kolmogorov backward equation.

Example 16.6 (Geometric Brownian motion)

dX(t) = rX(t) dt+ �X(t) dB(t):

p(� ; x; y) =
1

�y
p
2��

exp

�
� 1

2��2

h
log

y

x
� (r � 1

2
�2)�

i2�
:

It is true but very tedious to verify thatp satisfies the KBE

p� = rxpx +
1

2
�2x2pxx:

16.5 Connection between stochastic calculus and KBE

Consider

dX(t) = a(X(t)) dt+ �(X(t)) dB(t): (5.1)

Let h(y) be a function, and define

v(t; x) = IEt;xh(X(T ));
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where0 � t � T . Then

v(t; x) =

Z
h(y) p(T � t; x; y) dy;

vt(t; x) = �
Z
h(y) p� (T � t; x; y) dy;

vx(t; x) =

Z
h(y) px(T � t; x; y) dy;

vxx(t; x) =

Z
h(y) pxx(T � t; x; y) dy:

Therefore, the Kolmogorov backward equation implies

vt(t; x) + a(x)vx(t; x) +
1

2
�2(x)vxx(t; x) =Z

h(y)
h
�p� (T � t; x; y) + a(x)px(T � t; x; y) + 1

2
�2(x)pxx(T � t; x; y)

i
dy = 0

Let (0; �) be an initial condition for the SDE (5.1). We simplify notation by writingIE rather than
IE0;�.

Theorem 5.50 Starting atX(0) = �, the processv(t; X(t)) satisfies the martingale property:

IE

�
v(t; X(t))

����F(s)

�
= v(s;X(s)); 0 � s � t � T:

Proof: According to the Markov property,

IE

�
h(X(T ))

����F(t)

�
= IEt;X(t)h(X(T )) = v(t; X(t));

so

IE [v(t; X(t))jF(s)] = IE

�
IE

�
h(X(T ))

����F(t)

� ����F(s)

�

= IE

�
h(X(T ))

����F(s)

�

= IEs;X(s)h(X(T )) (Markov property)

= v(s;X(s)):

Itô’s formula implies

dv(t; X(t)) = vtdt+ vxdX + 1

2
vxxdX dX

= vtdt+ avxdt+ �vxdB + 1

2
�2vxxdt:
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In integral form, we have

v(t; X(t)) = v(0; X(0))

+

Z t

0

h
vt(u;X(u))+ a(X(u))vx(u;X(u)) + 1

2
�2(X(u))vxx(u;X(u))

i
du

+

Z t

0

�(X(u))vx(u;X(u)) dB(u):

We know thatv(t; X(t)) is a martingale, so the integral
R t
0

h
vt + avx +

1

2
�2vxx

i
du must be zero

for all t. This implies that the integrand is zero; hence

vt + avx +
1

2
�2vxx = 0:

Thus by two different arguments, one based on the Kolmogorov backward equation, and the other
based on Itˆo’s formula, we have come to the same conclusion.

Theorem 5.51 (Feynman-Kac)Define

v(t; x) = IEt;xh(X(T )); 0 � t � T;

where
dX(t) = a(X(t)) dt+ �(X(t)) dB(t):

Then

vt(t; x) + a(x)vx(t; x) +
1

2
�2(x)vxx(t; x) = 0 (FK)

and
v(T; x) = h(x):

The Black-Scholes equation is a special case of this theorem, as we show in the next section.

Remark 16.1 (Derivation of KBE) We plunked down the Kolmogorov backward equation with-
out any justification. In fact, one can use Itˆo’s formula to prove the Feynman-Kac Theorem, and use
the Feynman-Kac Theorem to derive the Kolmogorov backward equation.

16.6 Black-Scholes

Consider the SDE
dS(t) = rS(t) dt+ �S(t) dB(t):

With initial condition
S(t) = x;

the solution is

S(u) = x exp
n
�(B(u)�B(t)) + (r � 1

2
�2)(u� t)

o
; u � t:
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Define

v(t; x) = IEt;xh(S(T ))

= IEh
�
x exp

n
�(B(T )� B(t)) + (r � 1

2
�2)(T � t)

o�
;

whereh is a function to be specified later.

Recall theIndependence Lemma: If G is a�-field,X is G-measurable, andY is independent ofG,
then

IE

�
h(X; Y )

����G
�
= 
(X);

where


(x) = IEh(x; Y ):

With geometric Brownian motion, for0 � t � T , we have

S(t) = S(0) exp
n
�B(t) + (r � 1

2
�2)t

o
;

S(T ) = S(0) exp
n
�B(T ) + (r� 1

2
�2)T

o
= S(t)|{z}
F(t)-measurable

exp
n
�(B(T )� B(t)) + (r� 1

2
�2)(T � t)

o
| {z }

independent ofF(t)

We thus have

S(T ) = XY;

where

X = S(t)

Y = exp
n
�(B(T )�B(t)) + (r � 1

2
�2)(T � t)

o
:

Now

IEh(xY ) = v(t; x):

The independence lemma implies

IE

�
h(S(T ))

����F(t)

�
= IE [h(XY )jF(t)]

= v(t; X)

= v(t; S(t)):
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We have shown that

v(t; S(t)) = IE

�
h(S(T ))

����F(t)

�
; 0 � t � T:

Note that the random variableh(S(T )) whose conditional expectation is being computed does not
depend ont. Because of this, the tower property implies thatv(t; S(t)); 0� t � T , is a martingale:
For0 � s � t � T ,

IE

�
v(t; S(t))

����F(s)

�
= IE

�
IE

�
h(S(T ))

����F(t)

� ����F(s)

�

= IE

�
h(S(T ))

����F(s)

�

= v(s; S(s)):

This is a special case of Theorem 5.51.

Becausev(t; S(t)) is a martingale, the sum of thedt terms indv(t; S(t)) must be 0. By Itˆo’s
formula,

dv(t; S(t)) =
h
vt(t; S(t)) dt+ rS(t)vx(t; S(t)) +

1

2
�2S2(t)vxx(t; S(t))

i
dt

+ �S(t)vx(t; S(t)) dB(t):

This leads us to the equation

vt(t; x) + rxvx(t; x) +
1

2
�2x2vxx(t; x) = 0; 0 � t < T; x � 0:

This is a special case of Theorem 5.51 (Feynman-Kac).

Along with the above partial differential equation, we have theterminal condition

v(T; x) = h(x); x � 0:

Furthermore, ifS(t) = 0 for somet 2 [0; T ], then alsoS(T ) = 0. This gives us theboundary
condition

v(t; 0) = h(0); 0 � t � T:

Finally, we shall eventually see that the value at timet of a contingent claim payingh(S(T )) is

u(t; x) = e�r(T�t)IEt;xh(S(T ))

= e�r(T�t)v(t; x)

at timet if S(t) = x. Therefore,

v(t; x) = er(T�t)u(t; x);

vt(t; x) = �rer(T�t)u(t; x) + er(T�t)ut(t; x);

vx(t; x) = er(T�t)ux(t; x);

vxx(t; x) = er(T�t)uxx(t; x):
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Plugging these formulas into the partial differential equation forv and cancelling theer(T�t) ap-
pearing in every term, we obtain theBlack-Scholes partial differential equation:

�ru(t; x) + ut(t; x) + rxux(t; x) +
1

2
�2x2uxx(t; x) = 0; 0 � t < T; x � 0:

(BS)

Compare this with the earlier derivation of the Black-Scholes PDE in Section 15.6.

In terms of the transition density

p(t; T ; x; y) =
1

�y
p
2�(T � t)

exp

(
� 1

2(T � t)�2

�
log

y

x
� (r � 1

2
�2)(T � t)

�
2
)

for geometric Brownian motion (See Example 16.4), we have the “stochastic representation”

u(t; x) = e�r(T�t)IEt;xh(S(T )) (SR)

= e�r(T�t)
Z 1

0

h(y)p(t; T ; x; y) dy:

In the case of a call,
h(y) = (y �K)+

and

u(t; x) = x N

�
1

�
p
T � t

�
log

x

K
+ r(T � t) + 1

2
�2(T � t)

��

� e�r(T�t)K N

�
1

�
p
T � t

�
log

x

K
+ r(T � t)� 1

2
�2(T � t)

��

Even if h(y) is some other function (e.g.,h(y) = (K � y)+, a put),u(t; x) is still given by and
satisfies the Black-Scholes PDE (BS) derived above.

16.7 Black-Scholes with price-dependent volatility

dS(t) = rS(t) dt+ �(S(t)) dB(t);

v(t; x) = e�r(T�t)IEt;x(S(T )�K)+:

The Feynman-Kac Theorem now implies that

�rv(t; x) + vt(t; x) + rxvx(t; x) +
1

2
�2(x)vxx(t; x) = 0; 0 � t < T; x > 0:

v also satisfies theterminal condition

v(T; x) = (x�K)+; x � 0;
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and theboundary condition
v(t; 0) = 0; 0 � t � T:

An example of such a process is the following from J.C. Cox,Notes on options pricing I: Constant
elasticity of variance diffusions,Working Paper, Stanford University, 1975:

dS(t) = rS(t) dt+ �S�(t) dB(t);

where0 � � < 1. The “volatility” �S��1(t) decreases with increasing stock price. The corre-
sponding Black-Scholes equation is

�rv + vt + rxvx +
1

2
�2x2�vxx = 0; 0 � t < T x > 0;

v(t; 0) = 0; 0 � t � T

v(T; x) = (x�K)+; x � 0:



188



Chapter 17

Girsanov’s theorem and the risk-neutral
measure

(Please see Oksendal, 4th ed., pp 145–151.)

Theorem 0.52 (Girsanov, One-dimensional)Let B(t); 0 � t � T , be a Brownian motion on
a probability space(
;F ;P). Let F(t); 0 � t � T , be the accompanying filtration, and let
�(t); 0 � t � T , be a process adapted to this filtration. For0 � t � T , define

eB(t) =

Z t

0

�(u) du+ B(t);

Z(t) = exp

�
�
Z t

0

�(u) dB(u)� 1

2

Z t

0

�2(u) du

�
;

and define a new probability measure by

fIP (A) =

Z
A
Z(T ) dIP; 8A 2 F :

UnderfIP , the processeB(t); 0 � t � T , is a Brownian motion.

Caveat: This theorem requires a technical condition on the size of�. If

IE exp

(
1

2

Z T

0

�2(u) du

)
<1;

everything is OK.

We make the following remarks:

Z(t) is a matingale. In fact,

dZ(t) = ��(t)Z(t) dB(t) + 1

2
�2(t)Z(t) dB(t) dB(t) � 1

2
�2(t)Z(t) dt

= ��(t)Z(t) dB(t):
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fIP is a probability measure. SinceZ(0) = 1, we haveIEZ(t) = 1 for everyt � 0. In particular

fIP (
) =

Z



Z(T ) dIP = IEZ(T ) = 1;

sofIP is a probability measure.

fIE in terms of IE. LetfIE denote expectation underfIP . If X is a random variable, then

fIEZ = IE [Z(T )X ] :

To see this, consider first the caseX = 1A, whereA 2 F . We have

fIEX = fIP (A) =

Z
A
Z(T ) dIP =

Z



Z(T )1A dIP = IE [Z(T )X ] :

Now use Williams’ “standard machine”.

fIP and IP . The intuition behind the formula

fIP (A) =

Z
A
Z(T ) dIP 8A 2 F

is that we want to have fIP (!) = Z(T; !)IP (!);

but sinceIP (!) = 0 andfIP (!) = 0, this doesn’t really tell us anything useful aboutfIP . Thus,
we consider subsets of
, rather than individual elements of
.

Distribution of eB(T ). If � is constant, then

Z(T ) = exp
n
��B(T ) � 1

2
�2T

o
eB(T ) = �T +B(T ):

UnderIP , B(T ) is normal with mean 0 and varianceT , so eB(T ) is normal with mean�T and
varianceT :

IP ( eB(T ) 2 d~b) =
1p
2�T

exp

(
�(~b� �T )2

2T

)
d~b:

Removal of Drift from eB(T ). The change of measure fromIP tofIP removes the drift fromeB(T ).
To see this, we compute

fIE eB(T ) = IE [Z(T )(�T + B(T ))]

= IE
h
exp

n
��B(T ) � 1

2
�2T

o
(�T +B(T ))

i

=
1p
2�T

Z 1

�1
(�T + b) expf��b� 1

2
�2Tg exp

(
� b2

2T

)
db

=
1p
2�T

Z 1

�1
(�T + b) exp

(
�(b+ �T )2

2T

)
db

(y = �T + b) =
1p
2�T

Z 1

�1
y exp

(
�y

2

2

)
dy (Substitutey = �T + b)

= 0:
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We can also see thatfIE eB(T ) = 0 by arguing directly from the density formula

IP
n eB(t) 2 d~b

o
=

1p
2�T

exp

(
�(~b� �T )2

2T

)
d~b:

Because

Z(T ) = expf��B(T ) � 1

2
�2Tg

= expf��( eB(T )� �T )� 1

2
�2Tg

= expf�� eB(T ) + 1

2
�2Tg;

we have

fIP n eB(T ) 2 d~b
o
= IP

n eB(T ) 2 d~b
o

exp
n
��~b + 1

2
�2T

o

=
1p
2�T

exp

(
�(~b� �T )2

2T
� �~b+ 1

2
�2T

)
d~b:

=
1p
2�T

exp

(
�

~b2

2T

)
d~b:

UnderfIP , eB(T ) is normal withmean zeroand varianceT . UnderIP , eB(T ) is normal with
mean�T and varianceT .

Means change, variances don’t.When we use the Girsanov Theorem to change the probability
measure, means change but variances do not. Martingales may be destroyed or created.
Volatilities, quadratic variations and cross variations are unaffected. Check:

d eB d eB = (�(t) dt+ dB(t))2 = dB:dB = dt:

17.1 Conditional expectations underfIP
Lemma 1.53 Let0 � t � T . If X isF(t)-measurable, then

fIEX = IE[X:Z(t)]:

Proof:

fIEX = IE[X:Z(T )] = IE [ IE[X:Z(T )jF(t)] ]
= IE [X IE[Z(T )jF(t)] ]
= IE[X:Z(t)]

becauseZ(t); 0 � t � T , is a martingale underIP .
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Lemma 1.54 (Baye’s Rule)If X isF(t)-measurable and0 � s � t � T , then

fIE[X jF(s)] = 1

Z(s)
IE[XZ(t)jF(s)]: (1.1)

Proof: It is clear that 1

Z(s)
IE[XZ(t)jF(s)] is F(s)-measurable. We check the partial averaging

property. ForA 2 F(s), we haveZ
A

1

Z(s)
IE[XZ(t)jF(s)] dfIP = fIE �1A 1

Z(s)
IE[XZ(t)jF(s)]

�

= IE [1AIE[XZ(t)jF(s)]] (Lemma 1.53)

= IE [IE[1AXZ(t)jF(s)]] (Taking in what is known)

= IE[1AXZ(t)]

= fIE[1AX ] (Lemma 1.53 again)

=

Z
A
X dfIP :

Although we have proved Lemmas 1.53 and 1.54, we have not proved Girsanov’s Theorem. We
will not prove it completely, but here is the beginning of the proof.

Lemma 1.55 Using the notation of Girsanov’s Theorem, we have the martingale property

fIE[ eB(t)jF(s)] = eB(s); 0 � s � t � T:

Proof: We first check thateB(t)Z(t) is a martingale underIP . Recall

d eB(t) = �(t) dt+ dB(t);

dZ(t) = ��(t)Z(t) dB(t):

Therefore,

d( eBZ) = eB dZ + Z d eB + d eB dZ

= � eB�Z dB + Z� dt+ Z dB � �Z dt

= (� eB�Z + Z) dB:

Next we use Bayes’ Rule. For0 � s � t � T ,

fIE[ eB(t)jF(s)] = 1

Z(s)
IE[ eB(t)Z(t)jF(s)]

=
1

Z(s)
eB(s)Z(s)

= eB(s):
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Definition 17.1 (Equivalent measures)Two measures on the same probability space which have
the same measure-zero sets are said to beequivalent.

The probability measuresIP andfIP of the Girsanov Theorem are equivalent. Recall thatfIP is
defined by

fIP (A) =

Z
Z(T ) dIP; A 2 F :

If IP (A) = 0, then
R
A Z(T ) dIP = 0: BecauseZ(T ) > 0 for every!, we can invert the definition

of fIP to obtain

IP (A) =

Z
A

1

Z(T )
dfIP ; A 2 F :

If fIP (A) = 0, then
R
A

1

Z(T )
dIP = 0:

17.2 Risk-neutral measure

As usual we are given theBrownian motion: B(t); 0 � t � T , with filtrationF(t); 0 � t � T ,
defined on a probability space(
;F ;P). We can then define the following.

Stock price:

dS(t) = �(t)S(t) dt+ �(t)S(t) dB(t):

The processes�(t) and�(t) are adapted to the filtration. The stock price model is completely
general, subject only to the condition that the paths of the process are continuous.

Interest rate: r(t); 0 � t � T . The processr(t) is adapted.

Wealth of an agent, starting withX(0) = x. We can write the wealth process differential in
several ways:

dX(t) = �(t) dS(t)| {z }
Capital gains from Stock

+ r(t)[X(t)��(t)S(t)] dt| {z }
Interest earnings

= r(t)X(t) dt+ �(t)[dS(t)� rS(t) dt]

= r(t)X(t) dt+ �(t) (�(t)� r(t))| {z }
Risk premium

S(t) dt+�(t)�(t)S(t) dB(t)

= r(t)X(t) dt+ �(t)�(t)S(t)

2
66664

�(t) � r(t)

�(t)| {z }
Market price of risk=�(t)

dt+ dB(t)

3
77775
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Discounted processes:

d

�
e
�
R t
0
r(u) du

S(t)

�
= e

�
R t
0
r(u) du

[�r(t)S(t) dt+ dS(t)]

d

�
e
�
R t
0
r(u) du

X(t)

�
= e

�
R t
0
r(u) du

[�r(t)X(t) dt+ dX(t)]

= �(t)d

�
e
�
R t
0
r(u) du

S(t)

�
:

Notation:

�(t) = e

R t
0
r(u) du

;
1

�(t)
= e

�
R t
0
r(u) du

;

d�(t) = r(t)�(t) dt; d

�
1

�(t)

�
= � r(t)

�(t)
dt:

The discounted formulas are

d

�
S(t)

�(t)

�
=

1

�(t)
[�r(t)S(t) dt + dS(t)]

=
1

�(t)
[(�(t)� r(t))S(t) dt+ �(t)S(t) dB(t)]

=
1

�(t)
�(t)S(t) [�(t) dt+ dB(t)] ;

d

�
X(t)

�(t)

�
= �(t) d

�
S(t)

�(t)

�

=
�(t)

�(t)
�(t)S(t) [�(t) dt+ dB(t)]:

Changing the measure.Define

eB(t) =

Z t

0

�(u) du+B(t):

Then

d

�
S(t)

�(t)

�
=

1

�(t)
�(t)S(t) d eB(t);

d

�
X(t)

�(t)

�
=

�(t)

�(t)
�(t)S(t) d eB(t):

UnderfIP , S(t)
�(t)

andX(t)
�(t)

are martingales.

Definition 17.2 (Risk-neutral measure)A risk-neutral measure(sometimes called amartingale
measure) is any probability measure, equivalent to the market measureIP , which makes all dis-
counted asset prices martingales.
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For the market model considered here,

fIP (A) =

Z
A
Z(T ) dIP; A 2 F ;

where

Z(t) = exp

�
�
Z t

0

�(u) dB(u)� 1

2

Z t

0

�2(u) du

�
;

is the unique risk-neutral measure. Note that because�(t) =
�(t)�r(t)
�(t) ; we must assume that�(t) 6=

0.

Risk-neutral valuation. Consider a contingent claim paying anF(T )-measurable random variable
V at timeT .

Example 17.1

V = (S(T ) �K)
+; European call

V = (K � S(T ))+ ; European put

V =

 
1

T

Z T

0

S(u) du�K

!+

; Asian call

V = max
0�t�T

S(t); Look back

If there is a hedging portfolio, i.e., a process�(t); 0 � t � T , whose corresponding wealth process
satisfiesX(T ) = V , then

X(0) = fIE � V

�(T )

�
:

This is becauseX(t)
�(t)

is a martingale underfIP , so

X(0) =
X(0)

�(0)
= fIE �X(T )

�(T )

�
= fIE � V

�(T )

�
:
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Chapter 18

Martingale Representation Theorem

18.1 Martingale Representation Theorem

See Oksendal, 4th ed., Theorem 4.11, p.50.

Theorem 1.56 LetB(t); 0 � t � T; be a Brownian motion on(
;F;P). LetF(t); 0 � t � T , be
the filtrationgenerated by this Brownian motion.LetX(t); 0 � t � T , be a martingale (underIP )
relative to this filtration. Then there is an adapted process�(t); 0 � t � T , such that

X(t) = X(0) +

Z t

0

�(u) dB(u); 0 � t � T:

In particular, the paths ofX are continuous.

Remark 18.1 We already know that ifX(t) is a process satisfying

dX(t) = �(t) dB(t);

thenX(t) is a martingale. Now we see that ifX(t) is a martingale adapted to the filtration generated
by the Brownian motionB(t), i.e, the Brownian motion is the only source of randomness inX , then

dX(t) = �(t) dB(t)

for some�(t).

18.2 A hedging application

Homework Problem 4.5. In the context of Girsanov’s Theorem, suppse thatF(t); 0 � t � T; is
the filtration generated by the Brownian motionB (underIP ). Suppose thatY is afIP -martingale.
Then there is an adapted process
(t); 0 � t � T , such that

Y (t) = Y (0) +

Z t

0


(u) d eB(u); 0 � t � T:

197



198

dS(t) = �(t)S(t) dt+ �(t)S(t) dB(t);

�(t) = exp

�Z t

0

r(u) du

�
;

�(t) =
�(t)� r(t)

�(t)
;

eB(t) =

Z t

0

�(u) du+ B(t);

Z(t) = exp

�
�
Z t

0

�(u) dB(u)� 1

2

Z t

0

�2(u) du

�
;

fIP (A) =

Z
A
Z(T ) dIP; 8A 2 F :

Then

d

�
S(t)

�(t)

�
=
S(t)

�(t)
�(t) d eB(t):

Let�(t); 0 � t � T; be a portfolio process. The corresponding wealth processX(t) satisfies

d

�
X(t)

�(t)

�
= �(t)�(t)

S(t)

�(t)
d eB(t);

i.e.,

X(t)

�(t)
= X(0) +

Z t

0

�(u)�(u)
S(u)

�(u)
d eB(u); 0 � t � T:

Let V be anF(T )-measurable random variable, representing the payoff of a contingent claim at
timeT . We want to chooseX(0) and�(t); 0 � t � T , so that

X(T ) = V:

Define thefIP -martingale

Y (t) = fIE � V

�(T )

����F(t)

�
; 0 � t � T:

According to Homework Problem 4.5, there is an adapted process
(t); 0� t � T , such that

Y (t) = Y (0) +

Z t

0


(u) d eB(u); 0 � t � T:

SetX(0) = Y (0) = fIE h V
�(T )

i
and choose�(u) so that

�(u)�(u)
S(u)

�(u)
= 
(u):
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With this choice of�(u); 0 � u � T , we have

X(t)

�(t)
= Y (t) = fIE � V

�(T )

����F(t)

�
; 0 � t � T:

In particular,

X(T )

�(T )
= fIE � V

�(T )

����F(T )

�
=

V

�(T )
;

so

X(T ) = V:

The Martingale Representation Theorem guarantees the existence of a hedging portfolio, although
it does not tell us how to compute it. It also justifies the risk-neutral pricing formula

X(t) = �(t)fIE � V

�(T )

����F(t)

�

=
�(t)

Z(t)
IE

�
Z(T )

�(T )
V

����F(t)

�

=
1

�(t)
IE

�
�(T )V

����F(t)

�
; 0 � t � T;

where

�(t) =
Z(t)

�(t)

= exp

�
�
Z t

0

�(u) dB(u)�
Z t

0

(r(u) + 1

2
�2(u)) du

�

18.3 d-dimensional Girsanov Theorem

Theorem 3.57 (d-dimensional Girsanov) � B(t) = (B1(t); : : : ; Bd(t)); 0 � t � T , a d-
dimensional Brownian motion on(
;F;P);

� F(t); 0 � t � T; the accompanying filtration, perhaps larger than the one generated byB;

� �(t) = (�1(t); : : : ; �d(t)); 0 � t � T , d-dimensional adapted process.

For 0 � t � T; define

eBj(t) =

Z t

0

�j(u) du+ Bj(t); j = 1; : : : ; d;

Z(t) = exp

�
�
Z t

0

�(u): dB(u)� 1

2

Z t

0

jj�(u)jj2 du
�
;

fIP (A) =

Z
A
Z(T ) dIP:
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Then, underfIP , the process

eB(t) = ( eB1(t); : : : ; eBd(t)); 0 � t � T;

is ad-dimensional Brownian motion.

18.4 d-dimensional Martingale Representation Theorem

Theorem 4.58 � B(t) = (B1(t); : : : ; Bd(t)); 0 � t � T; a d-dimensional Brownian motion
on(
;F;P);

� F(t); 0 � t � T; the filtrationgenerated by the Brownian motionB.

If X(t); 0 � t � T , is a martingale (underIP ) relative toF(t); 0 � t � T , then there is a
d-dimensional adpated process�(t) = (�1(t); : : : ; �d(t)), such that

X(t) = X(0)+

Z t

0

�(u): dB(u); 0 � t � T:

Corollary 4.59 If we have ad-dimensionaladapted process�(t) = (�1(t); : : : ; �d(t)); then we can
defineeB;Z andfIP as in Girsanov’s Theorem. IfY (t); 0 � t � T , is a martingale underfIP relative
toF(t); 0 � t � T , then there is ad-dimensional adpated process
(t) = (
1(t); : : : ; 
d(t)) such
that

Y (t) = Y (0) +

Z t

0


(u): d eB(u); 0 � t � T:

18.5 Multi-dimensional market model

Let B(t) = (B1(t); : : : ; Bd(t)); 0 � t � T , be ad-dimensional Brownian motion on some
(
;F;P), and letF(t); 0 � t � T , be thefiltration generated byB. Then we can define the
following:

Stocks

dSi(t) = �i(t)Si(t) dt+ Si(t)
dX

j=1

�ij(t) dBj(t); i = 1; : : : ; m

Accumulation factor

�(t) = exp

�Z t

0

r(u) du

�
:

Here,�i(t); �ij(t) andr(t) are adpated processes.
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Discounted stock prices

d

�
Si(t)

�(t)

�
= (�i(t)� r(t))| {z }

Risk Premium

Si(t)

�(t)
dt+

Si(t)

�(t)

dX
j=1

�ij(t) dBj(t)

?
=
Si(t)

�(t)

dX
j=1

�ij(t) [�j(t) + dBj(t)]| {z }
deBj(t)

(5.1)

For 5.1 to be satisfied, we need to choose�1(t); : : : ; �d(t), so that

dX
j=1

�ij(t)�j(t) = �i(t)� r(t); i = 1; : : : ; m: (MPR)

Market price of risk. The market price of risk is an adapted process�(t) = (�1(t); : : : ; �d(t))

satisfying the system of equations (MPR) above. There are three cases to consider:

Case I: (Unique Solution). For Lebesgue-almost everyt and IP -almost every!, (MPR) has a
unique solution�(t). Using�(t) in thed-dimensional Girsanov Theorem, we define aunique
risk-neutral probability measurefIP . UnderfIP , every discounted stock price is a martingale.
Consequently, the discounted wealth process corresponding to any portfolio process is afIP -
martingale, and this implies that the market admits no arbitrage. Finally, the Martingale
Representation Theorem can be used to show that every contingent claim can be hedged; the
market is said to becomplete.

Case II: (No solution.) If (MPR) has no solution, then there isno risk-neutral probability measure
and the market admitsarbitrage.

Case III: (Multiple solutions). If (MPR) has multiple solutions, then there aremultiple risk-neutral
probability measures. The market admitsno arbitrage, but there are contingent claims which
cannot be hedged; the market is said to beincomplete.

Theorem 5.60 (Fundamental Theorem of Asset Pricing) Part I.(Harrison and Pliska, Martin-
gales and Stochastic integrals in the theory of continuous trading,Stochastic Proc. and Applications
11 (1981), pp 215-260.):
If a market has a risk-neutral probability measure, then it admits no arbitrage.

Part II. (Harrisonand Pliska, A stochastic calculus model of continuous trading: complete markets,
Stochastic Proc. and Applications15 (1983), pp 313-316):
The risk-neutral measure is unique if and only if every contingent claim can be hedged.
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Chapter 19

A two-dimensional market model

LetB(t) = (B1(t); B2(t)); 0 � t � T; be a two-dimensional Brownian motion on(
;F;P). Let
F(t); 0 � t � T; be the filtration generated byB.

In what follows, all processes can depend ont and!, but are adapted toF(t); 0 � t � T . To
simplify notation, we omit the arguments whenever there is no ambiguity.

Stocks:

dS1 = S1 [�1 dt+ �1 dB1] ;

dS2 = S2

�
�2 dt + ��2 dB1 +

q
1� �2 �2 dB2

�
:

We assume�1 > 0; �2 > 0; �1 � � � 1: Note that

dS1 dS2 = S2

1�
2

1 dB1 dB1 = �21S
2

1 dt;

dS2 dS2 = S2

2
�2�2

2
dB1 dB1 + S2

2
(1� �2)�2

2
dB2 dB2

= �22S
2

2 dt;

dS1 dS2 = S1�1S2��2 dB1 dB1 = ��1�2S1S2 dt:

In other words,

� dS1
S1

has instantaneous variance�2
1
,

� dS2
S2

has instantaneous variance�22,

� dS1
S1

and dS2
S2

have instantaneous covariance��1�2.

Accumulation factor:

�(t) = exp

�Z t

0

r du

�
:

The market price of risk equations are

�1�1 = �1 � r

��2�1 +
q
1� �2�2�2 = �2 � r

(MPR)

203
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The solution to these equations is

�1 =
�1 � r

�1
;

�2 =
�1(�2 � r)� ��2(�1 � r)

�1�2
p
1� �2

;

provided�1 < � < 1.

Suppose�1 < � < 1. Then (MPR) has a unique solution(�1; �2); we define

Z(t) = exp

�
�
Z t

0

�1 dB1 �
Z t

0

�2 dB2 � 1

2

Z t

0

(�21 + �22) du

�
;

fIP (A) =

Z
A
Z(T ) dIP; 8A 2 F :

fIP is theuniquerisk-neutral measure. Define

eB1(t) =

Z t

0

�1 du+B1(t);

eB2(t) =

Z t

0

�2 du+B2(t):

Then

dS1 = S1

h
r dt + �1 d eB1

i
;

dS2 = S2

�
r dt+ ��2 d eB1 +

q
1� �2�2d eB2

�
:

We have changed the mean rates of return of the stock prices, but not the variances and covariances.

19.1 Hedging when�1 < � < 1

dX = �1 dS1 + �2 dS2 + r(X ��1S1 ��2S2) dt

d

�
X

�

�
=

1

�
(dX � rX dt)

=
1

�
�1(dS1 � rS1 dt) +

1

�
�2(dS2 � rS2 dt)

=
1

�
�1S1�1 d eB1 +

1

�
�2S2

�
��2 d eB1 +

q
1� �2�2 d eB2

�
:

Let V beF(T )-measurable. Define thefIP -martingale

Y (t) = fIE � V

�(T )

����F(t)

�
; 0 � t � T:
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The Martingale Representation Corollary implies

Y (t) = Y (0) +

Z t

0


1 d eB1 +

Z t

0


2 d eB2:

We have

d

�
X

�

�
=

�
1

�
�1S1�1 +

1

�
�2S2��2

�
d eB1

+
1

�
�2S2

q
1� �2�2 d eB2;

dY = 
1 d eB1 + 
2 d eB2:

We solve the equations

1

�
�1S1�1 +

1

�
�2S2��2 = 
1

1

�
�2S2

q
1� �2�2 = 
2

for the hedging portfolio(�1;�2). With this choice of(�1;�2) and setting

X(0) = Y (0) = fIE V

�(T )
;

we haveX(t) = Y (t); 0 � t � T; and in particular,

X(T ) = V:

EveryF(T )-measurable random variable can be hedged; the market iscomplete.

19.2 Hedging when� = 1

The case� = �1 is analogous. Assume that� = 1. Then

dS1 = S1[�1 dt+ �1 dB1]

dS2 = S2[�2 dt+ �2 dB1]

The stocks are perfectly correlated.

The market price of risk equations are

�1�1 = �1 � r

�2�1 = �2 � r
(MPR)

The process�2 is free. There are two cases:
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Case I: �1�r
�1

6= �2�r
�2

: There is no solution to (MPR), and consequently, there is no risk-neutral
measure. This market admits arbitrage. Indeed

d

�
X

�

�
=

1

�
�1(dS1 � rS1 dt) +

1

�
�2(dS2 � rS2 dt)

=
1

�
�1S1[(�1 � r) dt+ �1 dB1] +

1

�
�2S2[(�2 � r) dt+ �2 dB1]

Suppose�1�r�1
> �2�r

�2
: Set

�1 =
1

�1S1
; �2 = � 1

�2S2
:

Then

d

�
X

�

�
=

1

�

�
�1 � r

�1
dt+ dB1

�
� 1

�

�
�2 � r

�2
dt+ dB1

�

=
1

�

�
�1 � r

�1
� �2 � r

�2

�
| {z }

Positive

dt

Case II: �1�r
�1

= �2�r
�2

: The market price of risk equations

�1�1 = �1 � r

�2�1 = �2 � r

have the solution

�1 =
�1 � r

�1
=
�2 � r

�2
;

�2 is free; there are infinitely many risk-neutral measures. LetfIP be one of them.

Hedging:

d

�
X

�

�
=

1

�
�1S1[(�1 � r) dt+ �1 dB1] +

1

�
�2S2[(�2 � r) dt+ �2 dB1]

=
1

�
�1S1�1[�1 dt+ dB1] +

1

�
�2S2�2[�1 dt+ dB1]

=

�
1

�
�1S1�1 +

1

�
�2S2�2

�
d eB1:

Notice thateB2 does not appear.

LetV be anF(T )-measurable random variable. IfV depends onB2, then it can probably not
be hedged. For example, if

V = h(S1(T ); S2(T ));

and�1 or �2 depend onB2, then there is trouble.
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More precisely, we define thefIP -martingale

Y (t) = fIE � V

�(T )

����F(t)

�
; 0 � t � T:

We can write

Y (t) = Y (0) +

Z t

0


1 d eB1 +

Z t

0


2 d eB2;

so

dY = 
1 d eB1 + 
2 d eB2:

To getd
�
X
�

�
to matchdY , we must have


2 = 0:
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Chapter 20

Pricing Exotic Options

20.1 Reflection principle for Brownian motion

Without drift.

Define

M(T ) = max
0�t�T

B(t):

Then we have:

IPfM(T ) > m;B(T ) < bg
= IPfB(T ) > 2m� bg

=
1p
2�T

Z 1

2m�b
exp

(
� x2

2T

)
dx; m > 0; b < m

So the joint density is

IPfM(T ) 2 dm;B(T ) 2 dbg = � @2

@m @b

 
1p
2�T

Z 1

2m�b
exp

(
� x2

2T

)
dx

!
dm db

= � @

@m

 
1p
2�T

exp

(
�(2m� b)2

2T

)!
dm db;

=
2(2m� b)

T
p
2�T

exp

(
�(2m� b)2

2T

)
dm db; m > 0; b < m:

With drift. Let

eB(t) = �t +B(t);

209
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shadow path

m

Brownian motion

2m-b

b

Figure 20.1:Reflection Principle for Brownian motion without drift

m=b

b

m

(B(T),  M(T))  lies in  here

Figure 20.2:Possible values ofB(T );M(T ).
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whereB(t); 0 � t � T , is a Brownian motion (without drift) on(
;F ;P). Define

Z(T ) = expf��B(T )� 1

2
�2Tg

= expf��(B(T ) + �T ) + 1

2
�2Tg

= expf�� eB(t) + 1

2
�2Tg;

fIP (A) =

Z
A
Z(T ) dIP; 8A 2 F :

SetfM(T ) = max0�t�T eB(T ):

UnderfIP ; eB is a Brownian motion (without drift), so

fIP ffM(T ) 2 d ~m; eB(T ) 2 d~bg = 2(2 ~m� ~b)

T
p
2�T

exp

(
�(2 ~m� ~b)2

2T

)
d ~m d~b; ~m > 0; ~b < ~m:

Let h( ~m;~b) be a function of two variables. Then

IEh(fM(T ); eB(T )) = fIE h(fM(T ); eB(T ))

Z(T )

= fIE hh(fM(T ); eB(T )) expf� eB(T )� 1

2
�2Tg

i

=

~m=1Z
~m=0

~b= ~mZ
~b=�1

h( ~m;~b) expf�~b� 1

2
�2Tg fIP ffM(T ) 2 d ~m; eB(T ) 2 d~bg:

But also,

IEh(fM(T ); eB(T )) =

~m=1Z
~m=0

~b= ~mZ
~b=�1

h( ~m;~b) IPffM (T ) 2 d ~m; eB(T ) 2 d~bg:

Sinceh is arbitrary, we conclude that

(MPR)

IPffM(T ) 2 d ~m; eB(T ) 2 d~bg
= expf�~b� 1

2
�2Tg fIP ffM(T ) 2 d ~m; eB(T ) 2 d~bg

=
2(2 ~m� ~b)

T
p
2�T

exp

(
�(2 ~m� ~b)2

2T

)
: expf�~b� 1

2
�2Tgd ~m d~b; ~m > 0; ~b < ~m:
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20.2 Up and out European call.

Let 0 < K < L be given. The payoff at timeT is

(S(T )�K)+1fS�(T )<Lg;

where
S�(T ) = max

0�t�T
S(t):

To simplify notation, assume thatIP is already the risk-neutral measure, so the value at time zero of
the option is

v(0; S(0)) = e�rT IE
h
(S(T )�K)+1fS�(T )<Lg

i
:

BecauseIP is the risk-neutral measure,

dS(t) = rS(t) dt+ �S(t) dB(t)

S(t) = S0 expf�B(t) + (r� 1

2
�2)tg

= S0 exp

8>>><
>>>:
�

2
6664B(t) +

�
r

�
� �

2

�
| {z }

�

t

3
7775
9>>>=
>>>;

= S0 expf� eB(t)g;

where

� =

�
r

�
� �

2

�
;

eB(t) = �t +B(t):

Consequently,

S�(t) = S0 expf�fM(t)g;

where,

fM(t) = max
0�u�t

eB(u):

We compute,

v(0; S(0)) = e�rT IE
h
(S(T )�K)+1fS�(T )<Lg

i
= e�rT IE

��
S(0) expf� eB(T )g �K

�
+

1fS(0)expf� eM(T )g< Lg

�

= e�rT IE

"�
S(0) expf� eB(T )g �K

�
1
�eB(T )>

1

�
log

K

S(0)| {z }
~b

; eM(T )<
1

�
log

L

S(0)| {z }
~m

�#
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(B(T),  M(T))  lies in  here

M(T)

B(T)

x

y

b

m

~

~

~

~

x=y

Figure 20.3:Possible values ofeB(T ); fM(T ).

We consider only the case

S(0) � K < L; so 0 � ~b < ~m:

The other case,K < S(0) � L leads to~b < 0 � ~m and the analysis is similar.

We compute
R
~m
~b

R
~m
x : : :dy dx:

v(0; S(0)) = e�rT
Z

~m

~b

Z
~m

x
(S(0) expf�xg �K)

2(2y � x)

T
p
2�T

exp

(
�(2y � x)2

2T
+ �x� 1

2
�2T

)
dy dx

= �e�rT
Z

~m

~b
(S(0) expf�xg �K)

1p
2�T

exp

(
�(2y � x)2

2T
+ �x � 1

2
�2T

) ����
y= ~m

y=x

dx

= e�rT
Z

~m

~b
(S(0) expf�xg �K)

1p
2�T

"
exp

(
� x2

2T
+ �x � 1

2
�2T

)

� exp

(
�(2 ~m� x)2

2T
+ �x � 1

2
�2T

)#
dx

=
1p
2�T

e�rTS(0)
Z

~m

~b
exp

(
�x� x2

2T
+ �x � 1

2
�2T

)
dx

� 1p
2�T

e�rTK
Z

~m

~b
exp

(
� x2

2T
+ �x � 1

2
�2T

)
dx

� 1p
2�T

e�rTS(0)
Z

~m

~b
exp

(
�x� (2 ~m� x)2

2T
+ �x � 1

2
�2T

)
dx

+
1p
2�T

e�rTK
Z

~m

~b
exp

(
�(2 ~m� x)2

2T
+ �x � 1

2
�2T

)
dx:

The standard method for all these integrals is to complete the square in the exponent and then
recognize a cumulative normal distribution. We carry out the details for the first integral and just
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give the result for the other three. The exponent in the first integrand is

�x� x2

2T
+ �x � 1

2
�2T

= � 1

2T
(x� �T � �T )2 + 1

2
�2T + ��T

= � 1

2T

�
x� rT

�
� �T

2

�2
+ rT:

In the first integral we make the change of variable

y = (x� rT=�� �T=2)=
p
T; dy = dx=

p
T;

to obtain

e�rTS(0)p
2�T

Z
~m

~b
exp

(
�x� x2

2T
+ �x � 1

2
�2T

)
dx

=
1p
2�T

S(0)

Z
~m

~b
exp

(
� 1

2T

�
x� rT

�
� �T

2

�2)
dx

=
1p
2�T

S(0):

~mp
T
� r

p
T
� ��

p
T

2Z
~bp
T
� r

p
T
� ��

p
T

2

expf�y
2

2
g dy

= S(0)

"
N

 
~mp
T
� r

p
T

�
� �

p
T

2

!
�N

 
~bp
T
� r

p
T

�
� �

p
T

2

!#
:

Putting all four integrals together, we have

v(0; S(0)) = S(0)

"
N

 
~mp
T
� r

p
T

�
� �

p
T

2

!
�N

 
~bp
T
� r

p
T

�
� �

p
T

2

!#

� e�rTK

"
N

 
~mp
T
� r

p
T

�
+
�
p
T

2

!
�N

 
~bp
T
� r

p
T

�
+
�
p
T

2

!#

� S(0)

"
N

 
~mp
T

+
r
p
T

�
+
�
p
T

2

!
�N

 
(2 ~m� ~b)p

T
+
r
p
T

�
+
�
p
T

2

!#

+ exp

�
�rT + 2 ~m

�
r

�
� �

2

�� �
N

 
~mp
T

+
r
p
T

�
� �

p
T

2

!
�

N

 
(2 ~m� ~b)p

T
+
r
p
T

�
� �

p
T

2

!�
;

where
~b =

1

�
log

K

S(0)
; ~m =

1

�
log

L

S(0)
:
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T

L
v(t,L) = 0

v(T,x) = (x - K)

v(t,0) = 0

+

Figure 20.4:Initial and boundary conditions.

If we letL!1 we obtain the classical Black-Scholes formula

v(0; S(0)) = S(0)

"
1�N

 
~bp
T
� r

p
T

�
� �

p
T

2

!#

� e�rTK

"
1�N

 
~bp
T
� r

p
T

�
+
�
p
T

2

!#

= S(0)N

 
1

�
p
T
log

S(0)

K
+
r
p
T

�
+
�
p
T

2

!

� e�rTKN

 
1

�
p
T
log

S(0)

K
+
r
p
T

�
� �

p
T

2

!
:

If we replaceT by T � t and replaceS(0) by x in the formula forv(0; S(0)), we obtain a formula
for v(t; x), the value of the option at the timet if S(t) = x. We have actually derived the formula
under the assumptionx � K � L, but a similar albeit longer formula can also be derived for
K < x � L. We consider the function

v(t; x) = IEt;x
h
e�r(T�t)(S(T )�K)+1fS�(T )<Lg

i
; 0 � t � T; 0 � x � L:

This function satisfies theterminal condition

v(T; x) = (x�K)+; 0 � x < L

and theboundary conditions

v(t; 0) = 0; 0 � t � T;

v(t; L) = 0; 0 � t � T:

We show thatv satisfies the Black-Scholes equation

�rv + vt + rxvx +
1

2
�2x2vxx; 0 � t < T; 0 � x � L:
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Let S(0) > 0 be given and define thestopping time

� = minft � 0; S(t) = Lg:

Theorem 2.61 The process

e�r(t^�)v(t ^ �; S(t^ �)); 0 � t � T;

is a martingale.

Proof: First note that
S�(T ) < L() � > T:

Let ! 2 
 be given, and chooset 2 [0; T ]. If �(!) � t, then

IE

�
e�rT (S(T )�K)+1fS�(T )<Lg

����F(t)

�
(!) = 0:

But when�(!) � t, we have

v(t ^ �(!); S(t^ �(!); !)) = v(t ^ �(!); L) = 0;

so we may write

IE

�
e�rT (S(T )�K)+1fS�(T )<Lg

����F(t)

�
(!) = e�r(t^�(!))v (t ^ �(!); S(t^ �(!); !)) :

On the other hand, if�(!) > t, then the Markov property implies

IE

�
e�rT (S(T )�K)+1fS�(T )<Lg

����F(t)

�
(!)

= IEt;S(t;!)
h
e�rT (S(T )�K)+1fS�(T )<Lg

i
= e�rtv(t; S(t; !))

= e�r(t^�(!))v (t ^ �; S(t^ �(!); !)) :

In both cases, we have

e�r(t^�)v(t ^ �; S(t^ �)) = IE

�
e�rT (S(T )�K)+1fS�(T )<Lg

����F(t)

�
:

Suppose0 � u � t � T . Then

IE

�
e�r(t^�)v(t ^ �; S(t^ �))

����F(u)

�

= IE

�
IE

�
e�rT (S(T )�K)+1fS�(T )<Lg

����F(t)

� ����F(u)

�

= IE

�
e�rT (S(T )�K)+1fS�(T )<Lg

����F(u)

�

= e�r(u^�)v (u ^ �; S(u^ �)) :
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For0 � t � T , we compute the differential

d
�
e�rtv(t; S(t))

�
= e�rt(�rv + vt + rSvx +

1

2
�2S2vxx) dt+ e�rt�Svx dB:

Integrate from0 to t ^ � :

e�r(t^�)v (t ^ �; S(t^ �)) = v(0; S(0))

+

Z t^�

0

e�ru(�rv + vt + rSvx +
1

2
�2S2vxx) du

+

Z t^�

0

e�ru�Svx dB:| {z }
A stopped martingale is still a martingale

Becausee�r(t^�)v (t ^ �; S(t^ �)) is also a martingale, the Riemann integral

Z t^�

0

e�ru(�rv + vt + rSvx +
1

2
�2S2vxx) du

is a martingale. Therefore,

�rv(u; S(u))+ vt(u; S(u))+ rS(u)vx(u; S(u))+
1

2
�2S2(u)vxx(u; S(u)) = 0; 0 � u � t^ �:

The PDE
�rv + vt + rxvx +

1

2
�2x2vxx = 0; 0 � t � T; 0 � x � L;

then follows.

The Hedge
d
�
e�rtv(t; S(t))

�
= e�rt�S(t)vx(t; S(t)) dB(t); 0 � t � �:

LetX(t) be the wealth process corresponding to some portfolio�(t). Then

d(e�rtX(t)) = e�rt�(t)�S(t) dB(t):

We should take
X(0) = v(0; S(0))

and
�(t) = vx(t; S(t)); 0 � t � T ^ �:

Then

X(T ^ �) = v(T ^ �; S(T ^ �))

=

(
v(T; S(T )) = (S(T )�K)+ if � > T

v(�; L) = 0 if � � T .
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K L x

v(T, x)

0

0 K L x

v(t, x)

Figure 20.5:Practial issue.

20.3 A practical issue

For t < T but t nearT , v(t; x) has the form shown in the bottom part of Fig. 20.5.

In particular, the hedging portfolio
�(t) = vx(t; S(t))

can become very negative near the knockout boundary. The hedger is in an unstable situation. He
should take a large short position in the stock. If the stock does not cross the barrierL, he covers
this short position with funds from the money market, pays off the option, and is left with zero. If
the stock moves across the barrier, he is now in a region of�(t) = vx(t; S(t)) near zero. He should
cover his short position with the money market. This is more expensive than before, because the
stock price has risen, and consequently he is left with no money. However, the option has “knocked
out”, so no money is needed to pay it off.

Because a large short position is being taken, a small error in hedging can create a significant effect.
Here is a possible resolution.

Rather than using the boundary condition

v(t; L) = 0; 0 � t � T;

solve the PDE with the boundary condition

v(t; L) + �Lvx(t; L) = 0; 0 � t � T;

where� is a “tolerance parameter”, say1%. At the boundary,Lvx(t; L) is the dollar size of the
short position. The new boundary condition guarantees:

1. Lvx(t; L) remains bounded;

2. The value of the portfolio is always sufficient to cover a hedging error of� times the dollar
size of the short position.
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Asian Options

Stock:

dS(t) = rS(t) dt+ �S(t) dB(t):

Payoff:

V = h

 Z T

0

S(t) dt

!

Value of the payoff at time zero:

X(0) = IE

"
e�rTh

 Z T

0

S(t) dt

!#
:

Introduce anauxiliary processY (t) by specifying

dY (t) = S(t) dt:

With the initial conditions

S(t) = x; Y (t) = y;

we have the solutions

S(T ) = x exp
n
�(B(T )�B(t)) + (r� 1

2
�2)(T � t)

o
;

Y (T ) = y +

Z T

t
S(u) du:

Define the undiscounted expected payoff

u(t; x; y) = IEt;x;yh(Y (T )); 0 � t � T; x � 0; y 2 IR:

219
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21.1 Feynman-Kac Theorem

The functionu satisfies the PDE

ut + rxux +
1

2
�2x2uxx + xuy = 0; 0 � t � T; x � 0; y 2 IR;

the terminal condition
u(T; x; y) = h(y); x � 0; y 2 IR;

and the boundary condition

u(t; 0; y) = h(y); 0 � t � T; y 2 IR:

One can solve this equation. Then

v

�
t; S(t);

Z t

0

S(u) du

�

is the option value at timet, where

v(t; x; y) = e�r(T�t)u(t; x; y):

The PDE forv is

�rv + vt + rxvx +
1

2
�2x2vxx + xvy = 0; (1.1)

v(T; x; y) = h(y);

v(t; 0; y) = e�r(T�t)h(y):

One can solve this equation rather than the equation foru.

21.2 Constructing the hedge

Start with the stock priceS(0). The differential of the valueX(t) of a portfolio�(t) is

dX = � dS + r(X ��S) dt

= �S(r dt+ � dB) + rX dt� r�S dt

= ��S dB + rX dt:

We want to have

X(t) = v

�
t; S(t);

Z t

0

S(u) du

�
;

so that

X(T ) = v

 
T; S(0);

Z T

0

S(u) du

!
;

= h

 Z T

0

S(u) du

!
:
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The differential of the value of the option is

dv

�
t; S(t);

Z t

0

S(u) du

�
= vtdt+ vxdS + vyS dt + 1

2
vxx dS dS

= (vt + rSvx + Svy +
1

2
�2S2vxx) dt+ �Svx dB

= rv(t; S(t)) dt+ vx(t; S(t)) � S(t) dB(t): (From Eq. 1.1)

Compare this with

dX(t) = rX(t) dt+�(t) � S(t) dB(t):

Take�(t) = vx(t; S(t)): If X(0) = v(0; S(0); 0), then

X(t) = v

�
t; S(t);

Z t

0

S(u) du

�
; 0 � t � T;

because both these processes satisfy the same stochastic differential equation, starting from the same
initial condition.

21.3 Partial average payoff Asian option

Now suppose the payoff is

V = h

 Z T

�
S(t) dt

!
;

where0 < � < T . We compute

v(�; x; y) = IE�;x;ye�r(T��)h(Y (T ))

just as before. For0 � t � � , we compute next the value of a derivative security which pays off

v(�; S(�); 0)

at time� . This value is
w(t; x) = IEt;xe�r(��t)v(�; S(�); 0):

The functionw satisfies the Black-Scholes PDE

�rw + wt + rxwx +
1

2
�2x2wxx = 0; 0 � t � �; x � 0;

with terminal condition
w(�; x) = v(�; x; 0); x � 0;

and boundary condition
w(t; 0) = e�r(T�t)h(0); 0 � t � T:

The hedge is given by

�(t) =

8<
:wx(t; S(t)); 0 � t � �;

vx

�
t; S(t);

R t
� S(u) du

�
; � < t � T:
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Remark 21.1 While no closed-form for the Asian option price is known, the Laplace transform (in
the variable�

2

4
(T � t)) has been computed. See H. Geman and M. Yor,Bessel processes, Asian

options, and perpetuities,Math. Finance 3 (1993), 349–375.



Chapter 22

Summary of Arbitrage Pricing Theory

A simple European derivative securitymakes a random payment at a time fixed in advance. The
value at timet of such a security is the amount of wealth needed at timet in order to replicate the
security by trading in the market. Thehedging portfoliois a specification of how to do this trading.

22.1 Binomial model, Hedging Portfolio

Let 
 be the set of all possible sequences ofn coin-tosses. We haveno probabilitiesat this point.
Let r � 0; u > r+ 1; d = 1=u be given. (See Fig. 2.1)

Evolution of the value of a portfolio:

Xk+1 = �kSk+1 + (1 + r)(Xk ��kSk):

Given a simple European derivative securityV (!1; !2), we want to start with a nonrandomX0 and
use a portfolio processes

�0; �1(H); �1(T )

so that

X2(!1; !2) = V (!1; !2) 8!1; !2: (four equations)

There are four unknowns:X0;�0;�1(H);�1(T ). Solving the equations, we obtain:

223



224

X1(!1) =
1

1 + r

2
6641 + r � d

u� d
X2(!1; H)| {z }
V (!1;H)

+
u � (1 + r)

u� d
X2(!1; T )| {z }
V (!1;T )

3
775 ;

X0 =
1

1 + r

�
1 + r � d

u� d
X1(H) +

u� (1 + r)

u� d
X1(T )

�
;

�1(!1) =
X2(!1; H)�X2(!1; T )

S2(!1; H)� S2(!1; T )
;

�0 =
X1(H)�X1(T )

S1(H)� S1(T )
:

The probabilities of the stock price paths are irrelevant, because we have a hedge which works on
every path.From a practical point of view, what matters is that the paths in the model include all
the possibilities. We want to find a description of the paths in the model. They all have the property

(logSk+1 � logSk)
2 =

�
log

Sk+1

Sk

�2
= (� log u)2

= (log u)2:

Let � = log u > 0. Then
n�1X
k=0

(logSk+1 � logSk)
2 = �2n:

The paths oflogSk accumulate quadratic variation at rate�2 per unit time.

If we changeu, then we change�, and the pricing and hedging formulas on the previous page will
give different results.

We reiterate that the probabilities are only introduced as an aid to understanding and computation.
Recall:

Xk+1 = �kSk+1 + (1 + r)(Xk ��kSk):

Define
�k = (1 + r)k:

Then
Xk+1

�k+1
= �k

Sk+1

�k+1
+
Xk

�k
��k

Sk

�k
;

i.e.,
Xk+1

�k+1
� Xk

�k
= �k

�
Sk+1

�k+1
� Sk

�k

�
:

In continuous time, we will have the analogous equation

d

�
X(t)

�(t)

�
= �(t) d

�
S(t)

�(t)

�
:
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If we introduce a probability measurefIP under whichSk�k is a martingale, thenXk
�k

will also be a
martingale, regardless of the portfolio used. Indeed,

fIE �Xk+1

�k+1

����Fk

�
= fIE �Xk

�k
+�k

�
Sk+1

�k+1
� Sk

�k

� ����Fk

�

=
Xk

�k
+�k

�fIE �Sk+1
�k+1

����Fk

�
� Sk

�k

�
:| {z }

=0

Suppose we want to haveX2 = V , whereV is someF2-measurable random variable. Then we
must have

1

1 + r
X1 =

X1

�1
= fIE �X2

�2

����F1

�
= fIE � V

�2

����F1

�
;

X0 =
X0

�0
= fIE �X1

�1

�
= fIE � V

�2

�
:

To find the risk-neutral probability measurefIP under whichSk
�k

is a martingale, we denote~p =fIP f!k = Hg, ~q = fIP f!k = Tg, and compute

fIE �Sk+1
�k+1

����Fk

�
= ~pu

Sk

�k+1
+ ~qd

Sk

�k+1

=
1

1 + r
[~pu+ ~qd]

Sk

�k
:

We need to choose~p and~q so that

~pu+ ~qd = 1 + r;

~p+ ~q = 1:

The solution of these equations is

~p =
1 + r� d

u� d
; ~q =

u� (1 + r)

u� d
:

22.2 Setting up the continuous model

Now the stock priceS(t); 0 � t � T , is a continuous function oft. We would like to hedge
along every possible path ofS(t), but that is impossible. Using the binomial model as a guide, we
choose� > 0 and try to hedge along every pathS(t) for which the quadratic variation oflog S(t)
accumulates at rate�2 per unit time. These are the paths with volatility�2.

To generate these paths, we use Brownian motion, rather than coin-tossing. To introduce Brownian
motion, we need a probability measure. However, the only thing about this probability measure
which ultimately matters is the set of paths to which it assigns probability zero.
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Let B(t); 0 � t � T , be a Brownian motion defined on a probability space(
;F ;P). For any
� 2 IR, the paths of

�t+ �B(t)

accumulate quadratic variation at rate�2 per unit time. We want to define

S(t) = S(0) expf�t+ �B(t)g;

so that the paths of
log S(t) = logS(0) + �t+ �B(t)

accumulate quadratic variation at rate�2 per unit time. Surprisingly, the choice of� in this definition
is irrelevant. Roughly, the reason for this is the following: Choose!1 2 
. Then, for�1 2 IR,

�1t + �B(t; !1); 0 � t � T;

is a continuous function oft. If we replace�1 by �2, then�2t + �B(t; !1) is a different function.
However, there is an!2 2 
 such that

�1t + �B(t; !1) = �2t + �B(t; !2); 0 � t � T:

In other words, regardless of whether we use�1 or �2 in the definition ofS(t), we will see the same
paths. The mathematically precise statement is the following:

If a set of stock price paths has a positive probability whenS(t) is defined by

S(t) = S(0) expf�1t + �B(t)g;

then this set of paths has positive probability whenS(t) is defined by

S(t) = S(0) expf�2t + �B(t)g:

Since we are interested in hedging along every path, except possibly for a set of paths
which has probability zero, the choice of� is irrelevant.

The mostconvenientchoice of� is
� = r� 1

2
�2;

so
S(t) = S(0) expfrt+ �B(t) � 1

2
�2tg;

and
e�rtS(t) = S(0) expf�B(t) � 1

2
�2tg

is a martingale underIP . With this choice of�,

dS(t) = rS(t) dt + �S(t) dB(t)
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andIP is the risk-neutral measure. If a different choice of� is made, we have

S(t) = S(0) expf�t+ �B(t)g;
dS(t) = (�+ 1

2
�2)| {z }

�

S(t) dt+ �S(t) dB(t):

= rS(t) dt+ �
h
��r
�
dt + dB(t)

i
:| {z }

deB(t)

eB has the same paths asB. We can change to the risk-neutral measurefIP , under which eB is a
Brownian motion, and then proceed as if� had been chosen to be equal tor � 1

2
�2.

22.3 Risk-neutral pricing and hedging

LetfIP denote the risk-neutral measure. Then

dS(t) = rS(t) dt+ �S(t) d eB(t);

where eB is a Brownian motion underfIP . Set

�(t) = ert:

Then

d

�
S(t)

�(t)

�
= �

S(t)

�(t)
d eB(t);

so S(t)
�(t)

is a martingale underfIP .

Evolution of the value of a portfolio:

dX(t) = �(t)dS(t) + r(X(t)��(t)S(t)) dt; (3.1)

which is equivalent to

d

�
X(t)

�(t)

�
= �(t)d

�
S(t)

�(t)

�
(3.2)

= �(t)�
S(t)

�(t)
d eB(t):

Regardless of the portfolio used,X(t)
�(t)

is a martingale underfIP .

Now supposeV is a givenF(T )-measurable random variable, the payoff of a simple European
derivative security. We want to find the portfolio process�(T ); 0 � t � T , and initial portfolio
valueX(0) so thatX(T ) = V . BecauseX(t)

�(t)
must be a martingale, we must have

X(t)

�(t)
= fIE � V

�(T )

����F(t)

�
; 0 � t � T: (3.3)

This is therisk-neutral pricing formula.We have the following sequence:
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1. V is given,

2. DefineX(t); 0 � t � T , by (3.3) (not by (3.1) or (3.2), because we do not yet have�(t)).

3. Construct�(t) so that (3.2) (or equivalently, (3.1)) is satisfied by theX(t); 0 � t � T ,
defined in step 2.

To carry out step 3, we first use the tower property to show thatX(t)
�(t)

defined by (3.3) is a martingale

underfIP . We next use the corollary to the Martingale Representation Theorem (Homework Problem
4.5) to show that

d

�
X(t)

�(t)

�
= 
(t) d eB(t) (3.4)

for some proecss
. Comparing (3.4), which we know, and (3.2), which we want, we decide to
define

�(t) =
�(t)
(t)

�S(t)
: (3.5)

Then (3.4) implies (3.2), which implies (3.1), which implies thatX(t); 0 � t � T , is the value of
the portfolio process�(t); 0 � t � T .

From (3.3), the definition ofX , we see that the hedging portfolio must begin with value

X(0) = fIE � V

�(T )

�
;

and it will end with value

X(T ) = �(T )fIE � V

�(T )

����F(T )

�
= �(T )

V

�(T )
= V:

Remark 22.1 Although we have takenr and� to be constant, the risk-neutral pricing formula is
still “valid” when r and� are processes adapted to the filtration generated byB. If they depend on
either eB or onS, they are adapted to the filtration generated byB. The “validity” of the risk-neutral
pricing formula means:

1. If you start with

X(0) = fIE � V

�(T )

�
;

then there is a hedging portfolio�(t); 0 � t � T , such thatX(T ) = V ;

2. At each timet, the valueX(t) of the hedging portfolio in 1 satisfies

X(t)

�(t)
= fIE � V

�(T )

����F(t)

�
:

Remark 22.2 In general, when there are multiple assets and/or multiple Brownian motions, the
risk-neutral pricing formula is valid provided there is aunique risk-neutral measure.A probability
measure is said to be risk-neutral provided
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� it has the same probability-zero sets as the original measure;

� it makes all the discounted asset prices be martingales.

To see if the risk-neutral measure is unique, compute the differential of all discounted asset prices
and check if there is more than one way to defineeB so that all these differentials have onlyd eB
terms.

22.4 Implementation of risk-neutral pricing and hedging

To get a computable result from the general risk-neutral pricing formula

X(t)

�(t)
= fIE � V

�(T )

����F(t)

�
;

one uses the Markov property. We need to identify somestate variables,the stock price and possibly
other variables, so that

X(t) = �(t)fIE � V

�(T )

����F(t)

�

is a function of these variables.

Example 22.1 Assumer and� are constant, andV = h(S(T )). We can take the stock price to be the state
variable. Define

v(t; x) = eIEt;x
h
e�r(T�t)h(S(T ))

i
:

Then

X(t) = ert eIE �e�rTh(S(T ))����F(t)
�

= v(t; S(t));

andX(t)

�(t)
= e�rtv(t; S(t)) is a martingale undereIP .

Example 22.2 Assumer and� are constant.

V = h

 Z T

0

S(u) du

!
:

TakeS(t) andY (t) =
R t
0
S(u) du to be the state variables. Define

v(t; x; y) = eIEt;x;y
h
e�r(T�t)h(Y (T ))

i
;

where

Y (T ) = y +

Z T

t

S(u) du:
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Then

X(t) = ert eIE �e�rTh(S(T ))����F(t)
�

= v(t; S(t); Y (t))

and
X(t)

�(t)
= e�rtv(t; S(t); Y (t))

is a martingale undereIP .

Example 22.3 (Homework problem 4.2)

dS(t) = r(t; Y (t)) S(t)dt + �(t; Y (t))S(t) d eB(t);
dY (t) = �(t; Y (t)) dt+ 
(t; Y (t)) d eB(t);

V = h(S(T )):

TakeS(t) andY (t) to be the state variables. Define

v(t; x; y) = eIEt;x;y

2
6666664
exp

(
�
Z T

t

r(u; Y (u)) du

)
| {z }

�(t)

�(T )

h(S(T ))

3
7777775
:

Then

X(t) = �(t) eIE �h(S(T ))
�(T )

����F(t)
�

= eIE
"
exp

(
�
Z T

t

r(u; Y (u)) du

)
h(S(T ))

����F(t)
#

= v(t; S(t); Y (t));

and

X(t)

�(t)
= exp

�
�
Z t

0

r(u; Y (u)) du

�
v(t; S(t); Y (t))

is a martingale undereIP .

In every case, we get an expression involvingv to be a martingale. We take the differential and
set thedt term to zero. This gives us a partial differential equation forv, and this equation must
hold wherever the state processes can be. Thed eB term in the differential of the equation is the
differential of a martingale, and since the martingale is

X(t)

�(t)
= X(0) +

Z t

0

�(u)�
S(u)

�(u)
d eB(u)

we can solve for�(t). This is the argument which uses (3.4) to obtain (3.5).
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Example 22.4 (Continuation of Example 22.3)

X(t)

�(t)
= exp

�
�
Z t

0

r(u; Y (u)) du

�
| {z }

1=�(t)

v(t; S(t); Y (t))

is a martingale undereIP . We have

d

�
X(t)

�(t)

�
=

1

�(t)

�
�r(t; Y (t))v(t; S(t); Y (t)) dt

+ vtdt+ vxdS + vydY

+
1

2
vxxdS dS + vxydS dY +

1

2
vyydY dY

�

=
1

�(t)

�
(�rv + vt + rSvx + �vy +

1

2
�2S2vxx + �
Svxy +

1

2

2vyy) dt

+ (�Svx + 
vy) d eB
�

The partial differential equation satisfied byv is

�rv + vt + rxvx + �vy +
1

2
�2x2vxx + �
xvxy +

1

2

2vyy = 0

where it should be noted thatv = v(t; x; y), and all other variables are functions of(t; y). We have

d

�
X(t)

�(t)

�
=

1

�(t)
[�Svx + 
vy ] d eB(t);

where� = �(t; Y (t)), 
 = 
(t; Y (t)), v = v(t; S(t); Y (t)), andS = S(t). We want to choose�(t) so that
(see (3.2))

d

�
X(t)

�(t)

�
= �(t)�(t; Y (t))

S(t)

�(t)
d eB(t):

Therefore, we should take�(t) to be

�(t) = vx(t; S(t); Y (t)) +

(t; Y (t))

�(t; Y (t)) S(t)
vy(t; S(t); Y (t)):
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Chapter 23

Recognizing a Brownian Motion

Theorem 0.62 (Levy) Let B(t); 0 � t � T; be a process on(
;F;P), adapted to a filtration
F(t); 0 � t � T , such that:

1. the paths ofB(t) are continuous,

2. B is a martingale,

3. hBi(t) = t; 0 � t � T , (i.e., informallydB(t) dB(t) = dt).

ThenB is a Brownian motion.

Proof: (Idea) Let0 � s < t � T be given. We need to show thatB(t) � B(s) is normal, with
mean zero and variancet � s, andB(t) � B(s) is independent ofF(s). We shall show that the
conditional moment generating functionof B(t) � B(s) is

IE

�
eu(B(t)�B(s))

����F(s)

�
= e

1

2
u2(t�s)

:

Since the moment generating function characterizes the distribution, this shows thatB(t) � B(s)

is normal with mean 0 and variancet � s, and conditioning onF(s) does not affect this, i.e.,
B(t) �B(s) is independent ofF(s).

We compute (this uses the continuity condition (1) of the theorem)

deuB(t) = ueuB(t)dB(t) + 1

2
u2euB(t)dB(t) dB(t);

so

euB(t) = euB(s) +

Z t

s
ueuB(v) dB(v) + 1

2
u2
Z t

s
euB(v) dv:|{z}

uses cond. 3
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Now
R t
0
ueuB(v)dB(v) is a martingale (by condition 2), and so

IE

�Z t

s
ueuB(v)dB(v)

����F(s)

�

= �
Z s

0

ueuB(v)dB(v) + IE

�Z t

0

ueuB(v)dB(v)

����F(s)

�

= 0:

It follows that

IE

�
euB(t)

����F(s)

�
= euB(s) + 1

2
u2
Z t

s
IE

�
euB(v)

����F(s)

�
dv:

We define

'(v) = IE

�
euB(v)

����F(s)

�
;

so that

'(s) = euB(s)

and

'(t) = euB(s) + 1

2
u2
Z t

s
'(v) dv;

'0(t) = 1

2
u2'(t);

'(t) = ke
1

2
u2t:

Plugging ins, we get

euB(s) = ke
1

2
u2s=)k = euB(s)�1

2
u2s:

Therefore,

IE

�
euB(t)

����F(s)

�
= '(t) = euB(s)+

1

2
u2(t�s);

IE

�
eu(B(t)�B(s))

����F(s)

�
= e

1

2
u2(t�s)

:
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23.1 Identifying volatility and correlation

LetB1 andB2 be independent Brownian motions and

dS1

S1
= r dt+ �11 dB1 + �12 dB2;

dS2

S2
= r dt+ �21 dB1 + �22 dB2;

Define

�1 =
q
�2
11

+ �2
12
;

�2 =
q
�2
21

+ �2
22
;

� =
�11�21 + �12�22

�1�2
:

Define processesW1 andW2 by

dW1 =
�11 dB1 + �12 dB2

�1

dW2 =
�21 dB1 + �22 dB2

�2
:

ThenW1 andW2 have continuous paths, are martingales, and

dW1 dW1 =
1

�2
1

(�11dB1 + �12dB2)
2

=
1

�2
1

(�211dB1 dB1 + �212dB2 dB2)

= dt;

and similarly

dW2 dW2 = dt:

Therefore,W1 andW2 are Brownian motions. The stock prices have the representation

dS1

S1
= r dt+ �1 dW1;

dS2

S2
= r dt+ �2 dW2:

The Brownian motionsW1 andW2 are correlated. Indeed,

dW1 dW2 =
1

�1�2
(�11dB1 + �12dB2)(�21dB1 + �22dB2)

=
1

�1�2
(�11�21 + �12�22) dt

= � dt:
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23.2 Reversing the process

Suppose we are given that

dS1

S1
= r dt + �1dW1;

dS2

S2
= r dt + �2dW2;

whereW1 andW2 are Brownian motions with correlation coefficient�. We want to find

� =

"
�11 �12
�21 �22

#

so that

��0 =

"
�11 �12
�21 �22

# "
�11 �21
�12 �22

#

=

"
�2
11

+ �2
12

�11�21 + �12�22
�11�21 + �12�22 �221 + �222

#

=

"
�2
1

��1�2
��1�2 �22

#

A simple (but not unique) solution is (see Chapter 19)

�11 = �1; �12 = 0;

�21 = ��2; �22 =
q
1� �2 �2:

This corresponds to

�1 dW1 = �1dB1=)dB1 = dW1;

�2 dW2 = ��2 dB1 +
q
1� �2�2 dB2

=) dB2 =
dW2 � � dW1p

1� �2
; (� 6= �1)

If � = �1, then there is noB2 anddW2 = � dB1 = � dW1:

Continuing in the case� 6= �1, we have

dB1 dB1 = dW1 dW1 = dt;

dB2 dB2 =
1

1� �2

�
dW2 dW2 � 2� dW1 dW2 + �2dW2 dW2

�

=
1

1� �2

�
dt� 2�2 dt+ �2 dt

�
= dt;
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so bothB1 andB2 are Brownian motions. Furthermore,

dB1 dB2 =
1p

1� �2
(dW1 dW2 � �dW1 dW1)

=
1p

1� �2
(� dt� � dt) = 0:

We can now apply anExtension of Levy’s Theoremthat says that Brownian motions with zero
cross-variation are independent, to conclude thatB1; B2 are independent Brownians.
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Chapter 24

An outside barrier option

Barrier process:

dY (t)

Y (t)
= � dt+ �1 dB1(t):

Stock process:

dS(t)

S(t)
= � dt+ ��2 dB1(t) +

q
1� �2 �2 dB2(t);

where�1 > 0; �2 > 0; �1 < � < 1, andB1 andB2 are independent Brownian motions on some
(
;F;P). The option pays off:

(S(T )�K)+1fY �(T )<Lg

at timeT , where

0 < S(0) < K; 0 < Y (0) < L;

Y �(T ) = max
0�t�T

Y (t):

Remark 24.1 The option payoff depends on both theY andS processes. In order to hedge it, we
will need the money market and two other assets, which we take to beY andS. The risk-neutral
measure must make the discounted value of every traded asset be a martingale, which in this case
means the discountedY andS processes.

We want to find�1 and�2 and define

d eB1 = �1 dt + dB1; d eB2 = �2 dt+ dB2;
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so that

dY

Y
= r dt+ �1d eB1

= r dt+ �1�1 dt+ �1 dB1;

dS

S
= r dt+ ��2 d eB1 +

q
1� �2 �2d eB2

= r dt+ ��2 �1 dt+
q
1� �2 �2�2 dt

+ ��2 dB1 +
q
1� �2 �2 dB2:

We must have

� = r + �1�1; (0.1)

� = r + ��2�1 +
q
1� �2 �2�2: (0.2)

We solve to get

�1 =
�� r

�1
;

�2 =
� � r � ��2�1p

1� �2 �2
:

We shall see that the formulas for�1 and�2 do not matter. What matters is that (0.1) and (0.2)
uniquely determine�1 and�2. This implies the existence and uniqueness of the risk-neutral measure.
We define

Z(T ) = exp
n
��1B1(T )� �2B2(T )� 1

2
(�21 + �22)T

o
;

fIP (A) =

Z
A
Z(T ) dIP; 8A 2 F :

UnderfIP , eB1 and eB2 are independent Brownian motions (Girsanov’s Theorem).fIP is the unique
risk-neutral measure.

Remark 24.2 Under bothIP andfIP , Y has volatility�1, S has volatility�2 and

dY dS

Y S
= ��1�2 dt;

i.e., the correlation betweendY
Y

and dS
S

is �.

The value of the option at time zero is

v(0; S(0); Y (0)) = fIE he�rT (S(T )�K)+1fY �(T )<Lg
i
:

We need to work out a density which permits us to compute the right-hand side.
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Recall that thebarrier processis

dY

Y
= r dt+ �1 d eB1;

so

Y (t) = Y (0) exp
n
rt+ �1 eB1(t)� 1

2
�21t
o
:

Set

b� = r=�1 � �1=2;bB(t) = b�t+ eB1(t);cM(T ) = max
0�t�T

bB(t):

Then

Y (t) = Y (0) expf�1 bB(t)g;
Y �(T ) = Y (0) expf�1cM(T )g:

The joint density ofbB(T ) andcM(T ), appearing in Chapter 20, is

fIP f bB(T ) 2 db̂; cM(T ) 2 dm̂g

=
2(2m̂� b̂)

T
p
2�T

exp

(
�(2m̂� b̂)2

2T
+ b�b̂� 1

2

b�2T
)
db̂ dm̂;

m̂ > 0; b̂ < m̂:

The stock process.

dS

S
= r dt+ ��2d eB1 +

q
1� �2 �2d eB2;

so

S(T ) = S(0) expfrT + ��2 eB1(T )� 1

2
�2�22T +

q
1� �2 �2 eB2(T )� 1

2
(1� �2)�22Tg

= S(0) expfrT � 1

2
�22T + ��2 eB1(T ) +

q
1� �2 �2 eB2(T )g

From the above paragraph we have

eB1(T ) = �b�T + bB(T );

so

S(T ) = S(0) expfrT + ��2 bB(T )� 1

2
�22T � ��2b�T +

q
1� �2 �2 eB2(T )g
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24.1 Computing the option value

v(0; S(0); Y (0)) = fIE he�rT (S(T )�K)+1fY �(T )<Lg
i

= e�rTfIE� �S(0) exp�(r� 1

2
�2
2
� ��2b�)T + ��2 bB(T ) +

q
1� �2 �2 eB2(T )

�
�K

�+

:1fY (0) exp[�1 bM(T )]<Lg

�

We know the joint density of( bB(T ); cM (T )). The density ofeB2(T ) is

fIP f eB2(T ) 2 d~bg = 1p
2�T

exp

(
�

~b2

2T

)
d~b; ~b 2 IR:

Furthermore, the pair of random variables( bB(T ); cM(T )) is independentof eB2(T ) becauseeB1 andeB2 are independent underfIP . Therefore, the joint density of the random vector( eB2(T ); bB(T ); cM(T ))

is

fIP f eB2(T ) 2 d~b; bB(T ) 2 db̂; cM(T ) 2 dm̂; g = fIPf eB2(T ) 2 d~bg:fIP f bB(T ) 2 db̂; cM(T ) 2 dm̂g

The option value at time zero is

v(0; S(0); Y (0))

= e�rT

1
�1

log
L

Y (0)Z
0

m̂Z
�1

1Z
�1

�
S(0) exp

�
(r� 1

2
�22 � ��2b�)T + ��2b̂+

q
1� �2�2~b

�
�K

�
+

:
1p
2�T

exp

(
�
~b2

2T

)

:
2(2m̂� b̂)

T
p
2�T

exp

(
�(2m̂� b̂)2

2T
+ b�b̂� 1

2

b�2T
)

:d~b db̂ dm̂:

The answer depends onT; S(0) andY (0). It also depends on�1; �2; �; r;K andL. It does not
depend on�; �; �1; nor�2. The parameterb� appearing in the answer isb� = r

�1
� �1

2
:

Remark 24.3 If we had not regardedY as a traded asset, then we would not have tried to set its
mean return equal tor. We would have had only one equation (see Eqs (0.1),(0.2))

� = r+ ��2�1 +
q
1� �2 �2�2 (1.1)

to determine�1 and�2. The nonuniqueness of the solution alerts us that some options cannot be
hedged. Indeed, any option whose payoff depends onY cannot be hedged when we are allowed to
trade only in the stock.
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If we have an option whose payoff depends only onS, thenY is superfluous. Returning to the
original equation forS,

dS

S
= � dt+ ��2 dB1 +

q
1� �2 �2 dB2;

we should set
dW = � dB1 +

q
1� �2dB2;

soW is a Brownian motion underIP (Levy’s theorem), and

dS

S
= � dt+ �2dW:

Now we have only Brownian motion, there will be only one�, namely,

� =
�� r

�2
;

so withdfW = � dt+ dW; we have

dS

S
= r dt+ �2 dfW;

and we are on our way.

24.2 The PDE for the outside barrier option

Returning to the case of the option with payoff

(S(T )�K)+1fY �(T )<Lg;

we obtain a formula for

v(t; x; y) = e�r(T�t)fIEt;x;y
h
(S(T )�K)+1fmaxt�u�T Y (u) < Lg;

i

by replacingT , S(0) andY (0) by T � t, x andy respectively in the formula forv(0; S(0); Y (0)).
Now start at time 0 atS(0) andY (0). Using the Markov property, we can show that the stochastic
process

e�rtv(t; S(t); Y (t))

is a martingale underfIP . We compute

d
h
e�rtv(t; S(t); Y (t))

i
= e�rt

� �
�rv + vt + rSvx + rY vy +

1

2
�22S

2vxx + ��1�2SY vxy +
1

2
�21Y

2vyy

�
dt

+ ��2Svx d eB1 +
q
1� �2 �2Svx d eB2 + �1Y vyd eB1

�
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L

v(t, 0, 0) = 0

x

y

v(t, x, L) = 0,  x  >=  0

Figure 24.1:Boundary conditions for barrier option. Note thatt 2 [0; T ] is fixed.

Setting thedt term equal to 0, we obtain the PDE

� rv + vt + rxvx + ryvy +
1

2
�2
2
x2vxx

+ ��1�2xyvxy +
1

2
�21y

2vyy = 0;

0 � t < T; x � 0; 0 � y � L:

The terminal condition is

v(T; x; y) = (x�K)+; x � 0; 0 � y < L;

and the boundary conditions are

v(t; 0; 0) = 0; 0 � t � T;

v(t; x; L) = 0; 0 � t � T; x � 0:
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x = 0 y = 0

�rv + vt + ryvy +
1

2
�21y

2vyy = 0 �rv + vt + rxvx +
1

2
�22x

2vxx = 0

This is the usual Black-Scholes formula
in y.

This is the usual Black-Scholes formula
in x.

The boundary conditions are The boundary condition is
v(t; 0; L) = 0; v(t; 0; 0) = 0; v(t; 0; 0) = e�r(T�t)(0�K)+ = 0;

the terminal condition is the terminal condition is
v(T; 0; y) = (0�K)+ = 0; y � 0: v(T; x; 0) = (x�K)+; x � 0:

On thex = 0 boundary, the option value
is v(t; 0; y) = 0; 0 � y � L:

On they = 0 boundary, the barrier is ir-
relevant, and the option value is given by
the usual Black-Scholes formula for a Eu-
ropean call.

24.3 The hedge

After setting thedt term to 0, we have the equation

d
h
e�rtv(t; S(t); Y (t))

i
= e�rt

�
��2Svx d eB1 +

q
1� �2 �2Svx d eB2 + �1Y vyd eB1

�
;

wherevx = vx(t; S(t); Y (t)), vy = vy(t; S(t); Y (t)), and eB1; eB2; S; Y are functions oft. Note
that

d
h
e�rtS(t)

i
= e�rt [�rS(t) dt+ dS(t)]

= e�rt
�
��2S(t) d eB1(t) +

q
1� �2 �2S(t) d eB2(t)

�
:

d
h
e�rtY (t)

i
= e�rt [�rY (t) dt+ dY (t)]

= e�rt�1Y (t) d eB1(t):

Therefore,

d
h
e�rtv(t; S(t); Y (t))

i
= vxd[e

�rtS] + vyd[e
�rtY ]:

Let �2(t) denote the number of shares of stock held at timet, and let�1(t) denote the number of
“shares” of the barrier processY . The valueX(t) of the portfolio has the differential

dX = �2dS +�1dY + r[X ��2S ��1Y ] dt:
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This is equivalent to

d[e�rtX(t)] = �2(t)d[e
�rtS(t)] + �1(t)d[e

�rtY (t)]:

To getX(t) = v(t; S(t); Y (t)) for all t, we must have

X(0) = v(0; S(0); Y (0))

and
�2(t) = vx(t; S(t); Y (t));

�1(t) = vy(t; S(t); Y (t)):



Chapter 25

American Options

This and the following chapters form part of the courseStochastic Differential Equations for Fi-
nance II.

25.1 Preview of perpetual American put

dS = rS dt + �S dB

Intrinsic value at timet : (K � S(t))+:

LetL 2 [0; K] be given. Suppose we exercise the first time the stock price isL or lower. We define

�L = minft � 0;S(t) � Lg;
vL(x) = IEe�r�L(K � S(�L))

+

=

(
K � x if x � L,

(K � L)IEe�r�L if x > L:

The plan is to comutevL(x) and then maximize overL to find the optimal exercise price. We need
to know the distribution of�L.

25.2 First passage times for Brownian motion: first method

(Based on the reflection principle)

LetB be a Brownian motion underIP , letx > 0 be given, and define

� = minft � 0;B(t) = xg:

� is called thefirst passage time tox. We compute the distribution of� .
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Figure 25.1:Intrinsic value of perpetual American put

Define

M(t) = max
0�u�t

B(u):

From the first section of Chapter 20 we have

IPfM(t) 2 dm;B(t) 2 dbg = 2(2m� b)

t
p
2�t

exp

(
�(2m� b)2

2t

)
dm db; m > 0; b < m:

Therefore,

IPfM(t) � xg =
Z 1

x

Z m

�1
2(2m� b)

t
p
2�t

exp

(
�(2m� b)2

2t

)
db dm

=

Z 1

x

2p
2�t

exp

(
�(2m� b)2

2t

) ����
b=m

b=�1
dm

=

Z 1

x

2p
2�t

exp

(
�m

2

2t

)
dm:

We make the change of variablez = mp
t

in the integral to get

=

Z 1

x=
p
t

2p
2�

exp

(
�z

2

2

)
dz:

Now

� � t()M(t) � x;
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so

IPf� 2 dtg = @

@t
IPf� � tg dt

=
@

@t
IP fM(t) � xg dt

=

"
@

@t

Z 1

x=
p
t

2p
2�

exp

(
�z

2

2

)
dz

#
dt

= � 2p
2�

exp

(
�x

2

2t

)
:
@

@t

�
xp
t

�
dt

=
x

t
p
2�t

exp

(
�x

2

2t

)
dt:

We also have the Laplace transform formula

IEe��� =

Z 1

0

e��tIPf� 2 dtg

= e�x
p
2�; � > 0: (See Homework)

Reference: Karatzas and Shreve, Brownian Motion and Stochastic Calculus, pp 95-96.

25.3 Drift adjustment

Reference: Karatzas/Shreve,Brownian motion and Stochastic Calculus, pp 196–197.

For0 � t <1, define

eB(t) = �t + B(t);

Z(t) = expf��B(t) � 1

2
�2tg;

= expf�� eB(t) + 1

2
�2tg;

Define

~� = minft � 0; eB(t) = xg:
We fix a finite timeT and change the probability measure “only up toT ”. More specifically, with
T fixed, define fIP (A) =

Z
A
Z(T ) dP; A 2 F(T ):

UnderfIP , the processeB(t); 0 � t � T , is a (nondrifted) Brownian motion, so

fIP f~� 2 dtg = IPf� 2 dtg

=
x

t
p
2�t

exp

(
�x

2

2t

)
dt; 0 < t � T:
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For0 < t � T we have

IPf~� � tg = IE
h
1f~��tg

i
= fIE �1f~��tg 1

Z(T )

�

= fIE h1f~��tg expf� eB(T )� 1

2
�2Tg

i
= fIE �1f~��tgfIE

�
expf� eB(T )� 1

2
�2Tg

����F(~� ^ t)

��

= fIE h1f~��tg expf� eB(~� ^ t)� 1

2
�2(~� ^ t)g

i
= fIE h1f~��tg expf�x � 1

2
�2~�g

i

=

Z t

0

expf�x� 1

2
�2sgfIPf~� 2 dsg

=

Z t

0

x

s
p
2�s

exp

(
�x � 1

2
�2s � x2

2s

)
ds

=

Z t

0

x

s
p
2�s

exp

(
�(x� �s)2

2s

)
ds:

Therefore,

IPf~� 2 dtg = x

t
p
2�t

exp

(
�(x� �t)2

2t

)
dt; 0 < t � T:

SinceT is arbitrary, this must in fact be the correct formula for allt > 0.

25.4 Drift-adjusted Laplace transform

Recall the Laplace transform formula for

� = minft � 0;B(t) = xg

for nondrifted Brownian motion:

IEe��� =

Z 1

0

x

t
p
2�t

exp

(
��t � x2

2t

)
dt = e�x

p
2�; � > 0; x > 0:

For

~� = minft � 0; �t+B(t) = xg;
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the Laplace transform is

IEe��~� =

Z 1

0

x

t
p
2�t

exp

(
��t � (x� �t)2

2t

)
dt

=

Z 1

0

x

t
p
2�t

exp

(
��t � x2

2t
+ x� � 1

2
�2t

)
dt

= ex�
Z 1

0

x

t
p
2�t

exp

(
�(�+ 1

2
�2)t� x2

2t

)
dt

= ex��x
p
2�+�2 ; � > 0; x > 0;

where in the last step we have used the formula forIEe��� with � replaced by�+ 1

2
�2.

If ~�(!) <1, then
lim
�#0 e

��~�(!) = 1;

if ~�(!) =1, thene��~�(!) = 0 for every� > 0, so

lim
�#0

e��~�(!) = 0:

Therefore,
lim
�#0 e

��~�(!) = 1~�<1:

Letting�#0 and using the Monotone Convergence Theorem in the Laplace transform formula

IEe��~� = ex��x
p
2�+�2 ;

we obtain
IPf~� <1g = ex��x

p
�2 = ex��xj�j:

If � � 0, then
IPf~� <1g = 1:

If � < 0, then
IPf~� <1g = e2x� < 1:

(Recall thatx > 0).

25.5 First passage times: Second method

(Based on martingales)

Let � > 0 be given. Then
Y (t) = expf�B(t) � 1

2
�2tg
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is a martingale, soY (t ^ �) is also a martingale. We have

1 = Y (0 ^ �)
= IEY (t ^ �)
= IE expf�B(t ^ �)� 1

2
�2(t ^ �)g:

= lim
t!1 IE expf�B(t ^ �)� 1

2
�2(t ^ �)g:

We want to take the limit inside the expectation. Since

0 � expf�B(t ^ �)� 1

2
�2(t ^ �)g � ex;

this is justified by the Bounded Convergence Theorem. Therefore,

1 = IE lim
t!1 expf�B(t ^ �)� 1

2
�2(t ^ �)g:

There are two possibilities. For those! for which�(!) <1,

lim
t!1

expf�B(t ^ �)� 1

2
�2(t ^ �)g = e�x�

1

2
�2� :

For those! for which�(!) =1,

lim
t!1 expf�B(t ^ �)� 1

2
�2(t ^ �)g � lim

t!1 expf�x� 1

2
�2tg = 0:

Therefore,

1 = IE lim
t!1 expf�B(t ^ �)� 1

2
�2(t ^ �)g

= IE

�
e�x�

1

2
�2�

1�<1
�

= IEe�x�
1

2
�2� ;

where we understande�x�
1

2
�2� to be zero if� =1.

Let � = 1

2
�2, so� =

p
2�. We have again derived the Laplace transform formula

e�x
p
2� = IEe��� ; � > 0; x > 0;

for the first passage time for nondrifted Brownian motion.

25.6 Perpetual American put

dS = rS dt+ �S dB

S(0) = x

S(t) = x expf(r� 1

2
�2)t+ �B(t)g

= x exp

8>>><
>>>:
�

2
6664
�
r

�
� �

2

�
| {z }

�

t+ B(t)

3
7775
9>>>=
>>>;
:
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Intrinsic value of the put at timet: (K � S(t))+.

LetL 2 [0; K] be given. Define forx � L,

�L = minft � 0; S(t) = Lg
= minft � 0; �t +B(t) =

1

�
log

L

x
g

= minft � 0; ��t � B(t) =
1

�
log

x

L
g

Define

vL = (K � L)IEe�r�L

= (K � L) exp

�
� �

�
log

x

L
� 1

�
log

x

L

p
2r + �2

�

= (K � L)

�
x

L

�� �
�� 1

�
p
2r+�2

:

We compute the exponent

� �

�
� 1

�

p
2r+ �2 = � r

�2
+ 1

2
� 1

�

s
2r +

�
r

�
� �=2

�
2

= � r

�2
+ 1

2
� 1

�

s
2r +

r2

�2
� r + �2=4

= � r

�2
+ 1

2
� 1

�

s
r2

�2
+ r + �2=4

= � r

�2
+ 1

2
� 1

�

s�
r

�
+ �=2

�2

= � r

�2
+ 1

2
� 1

�

�
r

�
+ �=2

�

= �2r

�2
:

Therefore,

vL(x) =

8<
:(K � x); 0 � x � L;

(K � L)
�
x
L

��2r=�2

; x � L:

The curves(K � L)
�
x
L

��2r=�2

; are all of the formCx�2r=�
2

.

We want to choose the largest possible constant. The constant is

C = (K � L)L2r=�2

;
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Figure 25.2:Value of perpetual American put
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Figure 25.3:Curves.
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and

@C

@L
= �L 2r

�2 +
2r

�2
(K � L)L

2r

�2�1

= L
2r

�2

�
�1 + 2r

�2
(K � L)

1

L

�

= L
2r

�2

�
�
�
1 +

2r

�2

�
+

2r

�2
K

L

�
:

We solve

�
�
1 +

2r

�2

�
+

2r

�2
K

L
= 0

to get

L =
2rK

�2 + 2r
:

Since0 < 2r < �2 + 2r; we have
0 < L < K:

Solution to the perpetual American put pricing problem (see Fig. 25.4):

v(x) =

8<
:(K � x); 0 � x � L�;

(K � L�)
�
x
L�

��2r=�2

; x � L�;

where

L� =
2rK

�2 + 2r
:

Note that

v0(x) =

(
�1; 0 � x < L�;
� 2r
�2 (K � L)�(L�)2r=�

2
x�2r=�

2�1; x > L�:

We have

lim
x#L�

v0(x) = �2 r

�2
(K � L�)

1

L�

= �2 r

�2

�
K � 2rK

�2 + 2r

�
�2 + 2r

2rK

= �2 r

�2

 
�2 + 2r� 2r

�2 + 2r

!
�2 + 2r

2r

= �1
= lim

x"L� v
0(x):
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Figure 25.4:Solution to perpetual American put.

25.7 Value of the perpetual American put

Set


 =
2r

�2
; L� =

2rK

�2 + 2r
=





 + 1
K:

If 0 � x < L�, thenv(x) = K � x. If L� � x <1, then

v(x) = (K � L�)(L�)
| {z }
C

x�
 (7.1)

= IEx
h
e�r� (K � L�)+1f�<1g

i
; (7.2)

where

S(0) = x (7.3)

� = minft � 0; S(t) = L�g: (7.4)

If 0 � x < L�, then

�rv(x) + rxv0(x) + 1

2
�2x2v00(x) = �r(K � x) + rx(�1) = �rK:

If L� � x <1, then

�rv(x) + rxv0(x) + 1

2
�2x2v00(x)

= C[�rx�
 � rx
x�
�1 � 1

2
�2x2
(�
 � 1)x�
�2]

= Cx�
 [�r � r
 � 1

2
�2
(�
 � 1)]

= C(�
 � 1)x�

�
r � 1

2
�2
�
2r

�2

��

= 0:

In other words,v solves thelinear complementarity problem:(See Fig. 25.5).
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Figure 25.5:Linear complementarity

For allx 2 IR, x 6= L�,

rv � rxv0 � 1

2
�2x2v00 � 0; (a)

v � (K � x)+; (b)

One of the inequalities (a) or (b) is an equality. (c)

The half-line[0;1) is divided into two regions:

C = fx; v(x) > (K � x)+g;
S = fx; rv � rxv0 � 1

2
�2x2v00 > 0g;

andL� is the boundary between them. If the stock price is inC, the owner of the put should not
exercise (should “continue”). If the stock price is inS or atL�, the owner of the put should exercise
(should “stop”).

25.8 Hedging the put

Let S(0) be given. Sell the put at time zero forv(S(0)). Invest the money, holding�(t) shares of
stock and consuming at rateC(t) at timet. The valueX(t) of this portfolio is governed by

dX(t) = �(t) dS(t) + r(X(t)��(t)S(t)) dt � C(t) dt;

or equivalently,

d(e�rtX(t)) = �e�rtC(t) dt+ e�rt�(t)�S(t) dB(t):
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The discounted value of the put satisfies

d
�
e�rtv(S(t))

�
= e�rt

h
�rv(S(t)) + rS(t)v0(S(t)) + 1

2
�2S2(t)v00(S(t))

i
dt

+ e�rt�S(t)v0(S(t)) dB(t)

= �rKe�rt1fS(t)<L�gdt+ e�rt�S(t)v0(S(t)) dB(t):

We should set

C(t) = rK1fS(t)<L�g;

�(t) = v0(S(t)):

Remark 25.1 If S(t) < L�, then

v(S(t)) = K � S(t); �(t) = v0(S(t)) = �1:
To hedge the put whenS(t) < L�, short one share of stock and holdK in the money market. As
long as the owner does not exercise, you can consume the interest from the money market position,
i.e.,

C(t) = rK1fS(t)<L�g:

Properties ofe�rtv(S(t)):

1. e�rtv(S(t)) is a supermartingale (see its differential above).

2. e�rtv(S(t)) � e�rt(K � S(t))+, 0 � t <1;

3. e�rtv(S(t)) is the smallest process with properties 1 and 2.

Explanation of property 3. Let Y be a supermartingale satisfying

Y (t) � e�rt(K � S(t))+; 0 � t <1: (8.1)

Then property 3 says that

Y (t) � e�rtv(S(t)); 0 � t <1: (8.2)

We use (8.1) to prove (8.2) fort = 0, i.e.,

Y (0) � v(S(0)): (8.3)

If t is not zero, we can taket to be the initial time andS(t) to be the initial stock price, and then
adapt the argument below to prove property (8.2).

Proof of (8.3), assumingY is a supermartingale satisfying (8.1):

Case I:S(0) � L�: We have

Y (0) �|{z}
(8:1)

(K � S(0))+ = v(S(0)):
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Case II: S(0) > L�: ForT > 0, we have

Y (0) � IEY (� ^ T ) (Stopped supermartingale is a supermartingale)

� IE
h
Y (� ^ T )1f�<1g

i
: (SinceY � 0)

Now letT!1 to get

Y (0) � lim
T!1

IE
h
Y (� ^ T )1f�<1g

i
� IE

h
Y (�)1f�<1g

i
(Fatou’s Lemma)

� IE

2
64e�r� (K � S(�)| {z }

L�

)+1f�<1g

3
75 (by 8.1)

= v(S(0)): (See eq. 7.2)

25.9 Perpetual American contingent claim

Intinsic value:h(S(t)).

Value of the American contingent claim:

v(x) = sup
�
IEx

�
e�r�h(S(�))

�
;

where the supremum is over all stopping times.

Optimal exercise rule: Any stopping time� which attains the supremum.

Characterization of v:

1. e�rtv(S(t)) is a supermartingale;

2. e�rtv(S(t)) � e�rth(S(t)); 0 < t <1;

3. e�rtv(S(t)) is the smallest process with properties 1 and 2.

25.10 Perpetual American call

v(x) = sup
�
IEx

�
e�r� (S(�)�K)+

�

Theorem 10.63

v(x) = x 8x � 0:
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Proof: For everyt,

v(x) � IEx
h
e�rt(S(t)�K)+

i
� IEx

h
e�rt(S(t)�K)

i
= IEx

h
e�rtS(t)

i
� e�rtK

= x� e�rtK:

Let t!1 to getv(x) � x.

Now start withS(0) = x and define

Y (t) = e�rtS(t):

Then:

1. Y is a supermartingale (in fact,Y is a martingale);

2. Y (t) � e�rt(S(t)�K)+; 0 � t <1.

Therefore,Y (0) � v(S(0)), i.e.,
x � v(x):

Remark 25.2 No matter what� we choose,

IEx
�
e�r� (S(�)�K)+

�
< IEx

�
e�r�S(�)

� � x = v(x):

There is no optimal exercise time.

25.11 Put with expiration

Expiration time:T > 0.

Intrinsic value:(K � S(t))+.

Value of the put:

v(t; x) = (value of the put at timet if S(t) = x)

= sup
t���T| {z }

� :stopping time

IExe�r(��t)(K � S(�))+:

See Fig. 25.6. It can be shown thatv; vt; vx are continuous across the boundary, whilevxx has a
jump.

Let S(0) be given. Then
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6

-

x

t

L�

T

K

v > K � x

�rv + vt + rxvx +
1

2
�2x2vxx = 0

v(T; x) = 0; x � K

v = K � x

vt = 0; vx = �1; vxx = 0

�rv + vt + rxvx +
1

2
�2x2vxx = �rK

v(T; x) = K � x; 0 � x � K

Figure 25.6:Value of put with expiration

1. e�rtv(t; S(t)); 0 � t � T; is a supermartingale;

2. e�rtv(t; S(t))� e�rt(K � S(t))+; 0 � t � T ;

3. e�rtv(t; S(t)) is the smallest process with properties 1 and 2.

25.12 American contingent claim with expiration

Expiration time:T > 0.

Intrinsic value:h(S(t)).

Value of the contingent claim:

v(t; x) = sup
t���T

IExe�r(��t)h(S(�)):

Then

rv � vt � rxvx � 1

2
�2x2vxx � 0; (a)

v � h(x); (b)

At every point(t; x) 2 [0; T ]� [0;1), either (a) or (b) is an equality. (c)

Characterization of v: Let S(0) be given. Then
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1. e�rtv(t; S(t)); 0 � t � T; is a supermartingale;

2. e�rtv(t; S(t))� e�rth(S(t));

3. e�rtv(t; S(t)) is the smallest process with properties 1 and 2.

The optimal exercise time is

� = minft � 0; v(t; S(t)) = h(S(t))g

If �(!) =1, then there is no optimal exercise time along the particular path!.
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Options on dividend-paying stocks

26.1 American option with convex payoff function

Theorem 1.64 Consider the stock price process

dS(t) = r(t)S(t) dt+ �(t)S(t) dB(t);

wherer and � are processes andr(t) � 0; 0 � t � T; a.s. This stock pays no dividends.
Let h(x) be a convex function ofx � 0, and assumeh(0) = 0. (E.g.,h(x) = (x � K)+). An
American contingent claim payingh(S(t)) if exercised at timet does not need to be exercised
before expiration, i.e., waiting until expiration to decide whether to exercise entails no loss of value.

Proof: For0 � � � 1 andx � 0, we have

h(�x) = h((1� �)0 + �x)

� (1� �)h(0) + �h(x)

= �h(x):

Let T be the time of expiration of the contingent claim. For0 � t � T ,

0 � �(t)

�(T )
= exp

(
�
Z T

t
r(u) du

)
� 1

andS(T ) � 0, so

h

�
�(t)

�(T )
S(T )

�
� �(t)

�(T )
h(S(T )): (*)

Consider a European contingent claim payingh(S(T )) at timeT . The value of this claim at time
t 2 [0; T ] is

X(t) = �(t) IE

�
1

�(T )
h(S(T ))

����F(t)

�
:

263
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Figure 26.1:Convex payoff function

Therefore,

X(t)

�(t)
=

1

�(t)
IE

�
�(t)

�(T )
h(S(T ))

����F(t)

�

� 1

�(t)
IE

�
h

�
�(t)

�(T )
S(T )

�����F(t)

�
(by (*))

� 1

�(t)
h

�
�(t) IE

�
S(T )

�(T )

����F(t)

��
(Jensen’s inequality)

=
1

�(t)
h

�
�(t)

S(t)

�(t)

�
(
S

�
is a martingale)

=
1

�(t)
h(S(t)):

This shows that the valueX(t) of the European contingent claim dominates the intrinsic value
h(S(t)) of the American claim. In fact, except in degenerate cases, the inequality

X(t) � h(S(t)); 0 � t � T;

is strict, i.e., the American claim should not be exercised prior to expiration.

26.2 Dividend paying stock

Let r and� be constant, let� be a “dividend coefficient” satisfying

0 < � < 1:
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Let T > 0 be an expiration time, and lett1 2 (0; T ) be the time of dividend payment. The stock
price is given by

S(t) =

(
S(0) expf(r� 1

2
�2)t+ �B(t)g; 0 � t � t1;

(1� �)S(t1) expf(r� 1

2
�2)(t� t1) + �(B(t)� B(t1))g; t1 < t � T:

Consider an American call on this stock. At timest 2 (t1; T ), it is not optimal to exercise, so the
value of the call is given by the usual Black-Scholes formula

v(t; x) = xN(d+(T � t; x)) � Ke�r(T�t)N(d�(T � t; x)); t1 < t � T;

where

d�(T � t; x) =
1

�
p
T � t

�
log

x

K
+ (T � t)(r � �2=2)

�
:

At time t1, immediatelyafter payment of the dividend, the value of the call is

v(t1; (1� �)S(t1)):

At time t1, immediatelybeforepayment of the dividend, the value of the call is

w(t1; S(t1));

where
w(t1; x) = max

�
(x�K)+; v(t1; (1� �)x

	
:

Theorem 2.65 For 0 � t � t1, the value of the American call isw(t; S(t)), where

w(t; x) = IEt;x
h
e�r(t1�t)w(t1; S(t1))

i
:

This function satisfies the usual Black-Scholes equation

�rw + wt + rxwx +
1

2
�2x2wxx = 0; 0 � t � t1; x � 0;

(wherew = w(t; x)) with terminal condition

w(t1; x) = max
�
(x�K)+; v(t1; (1� �)x)

	
; x � 0;

and boundary condition
w(t; 0) = 0; 0 � t � T:

The hedging portfolio is

�(t) =

(
wx(t; S(t)); 0 � t � t1;

vx(t; S(t)); t1 < t � T:

Proof: We only need to show that an American contingent claim with payoffw(t1; S(t1)) at time
t1 need not be exercised before timet1. According to Theorem 1.64, it suffices to prove

1. w(t1; 0) = 0,
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2. w(t1; x) is convex inx.

Sincev(t1; 0) = 0, we have immediately that

w(t1; 0) = max
�
(0�K)+; v(t1; (1� �)0)

	
= 0:

To prove thatw(t1; x) is convex inx, we need to show thatv(t1; (1��)x) is convex isx. Obviously,
(x � K)+ is convex inx, and the maximum of two convex functions is convex. The proof of the
convexity ofv(t1; (1� �)x) in x is left as a homework problem.

26.3 Hedging at timet1

Let x = S(t1).

Case I:v(t1; (1� �)x) � (x�K)+.
The option need not be exercised at timet1 (should not be exercised if the inequality is strict). We
have

w(t1; x) = v(t1; (1� �)x);

�(t1) = wx(t1; x) = (1� �)vx(t1; (1� �)x) = (1� �)�(t1+);

where
�(t1+) = lim

t#t1
�(t)

is the number of shares of stock held by the hedge immediately after payment of the dividend. The
post-dividend position can be achieved by reinvesting in stock the dividends received on the stock
held in the hedge. Indeed,

�(t1+) =
1

1� �
�(t1) = �(t1) +

�

1� �
�(t1)

= �(t1) +
��(t1)S(t1)

(1� �)S(t1)

= # of shares held when dividend is paid+
dividends received

price per share when dividend is reinvested

Case II: v(t1; (1� �)x) < (x�K)+.
The owner of the option should exercise before the dividend payment at timet1 and receive(x�K).
The hedge has been constructed so the seller of the option hasx �K before the dividend payment
at timet1. If the option is not exercised, its value drops fromx�K to v(t1; (1��)x), and the seller
of the option can pocket the difference and continue the hedge.
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Bonds, forward contracts and futures

Let fW (t);F(t); 0 � t � Tg be a Brownian motion (Wiener process) on some(
;F;P). Con-
sider an asset, which we call a stock, whose price satisfies

dS(t) = r(t)S(t) dt+ �(t)S(t) dW (t):

Here,r and� are adapted processes, and we have already switched to the risk-neutral measure,
which we callIP . Assume that every martingale underIP can be represented as an integral with
respect toW .

Define the accumulation factor

�(t) = exp

�Z t

0

r(u) du

�
:

A zero-coupon bond, maturing at timeT , pays 1 at timeT and nothing before timeT . According
to the risk-neutral pricing formula, its value at timet 2 [0; T ] is

B(t; T ) = �(t) IE

�
1

�(T )

����F(t)

�

= IE

�
�(t)

�(T )

����F(t)

�

= IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#
:

GivenB(t; T ) dollars at timet, one can construct a portfolio of investment in the stock and money
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market so that the portfolio value at timeT is 1 almost surely. Indeed, for some process
,

B(t; T ) = �(t) IE

�
1

�(T )

����F(t)

�
| {z }

martingale

= �(t)

�
IE

�
1

�(T )

�
+

Z t

0


(u) dW (u)

�

= �(t)

�
B(0; T ) +

Z t

0


(u) dW (u)

�
;

dB(t; T ) = r(t)�(t)

�
B(0; T ) +

Z t

0


(u) dW (u)

�
dt + �(t)
(t) dW (t)

= r(t)B(t; T ) dt + �(t)
(t) dW (t):

The value of a portfolio satisfies

dX(t) = �(t) dS(t) + r(t)[X(t)��(t)S(t)]dt

= r(t)X(t) dt+ �(t)�(t)S(t) dW (t):

(*)

We set

�(t) =
�(t)
(t)

�(t)S(t)
:

If, at any timet, X(t) = B(t; T ) and we use the portfolio�(u); t � u � T , then we will have

X(T ) = B(T; T ) = 1:

If r(t) is nonrandom for allt, then

B(t; T ) = exp

(
�
Z T

t
r(u) du

)
;

dB(t; T ) = r(t)B(t; T ) dt;

i.e.,
 = 0. Then� given above is zero. If, at timet, you are givenB(t; T ) dollars and you always
invest only in the money market, then at timeT you will have

B(t; T ) exp

(Z T

t
r(u) du

)
= 1:

If r(t) is random for allt, then
 is not zero. One generally has three different instruments: the
stock, the money market, and the zero coupon bond. Any two of them are sufficient for hedging,
and the two which are most convenient can depend on the instrument being hedged.
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27.1 Forward contracts

We continue with the set-up for zero-coupon bonds. TheT -forward priceof the stock at time
t 2 [0; T ] is theF(t)-measurable price, agreed upon at timet, for purchase of a share of stock at
timeT , chosen so the forward contract has value zero at timet. In other words,

IE

�
1

�(T )
(S(T )� F (t))

����F(t)

�
= 0; 0 � t � T:

We solve forF (t):

0 = IE

�
1

�(T )
(S(T )� F (t))

����F(t)

�

= IE

�
S(T )

�(T )

����F(t)

�
� F (t)

�(t)
IE

�
�(t)

�(T )

����F(t)

�

=
S(t)

�(t)
� F (t)

�(t)
B(t; T ):

This implies that

F (t) =
S(t)

B(t; T )
:

Remark 27.1 (Value vs. Forward price) TheT -forward priceF (t) is not the value at timet of
the forward contract. The value of the contract at timet is zero.F (t) is the price agreed upon at
time t which will be paid for the stock at timeT .

27.2 Hedging a forward contract

Enter a forward contract at time 0, i.e., agree to payF (0) = S(0)
B(0;T )

for a share of stock at timeT .
At time zero, this contract has value 0. At later times, however, it does not. In fact, its value at time
t 2 [0; T ] is

V (t) = �(t) IE

�
1

�(T )
(S(T )� F (0))

����F(t)

�

= �(t) IE

�
S(T )

�(T )

����F(t)

�
� F (0) IE

�
�(t)

�(T )

����F(t)

�

= �(t)
S(t)

�(t)
� F (0)B(t; T )

= S(t)� F (0)B(t; T ):

This suggests the following hedge of a short position in the forward contract. At time 0, shortF (0)

T -maturity zero-coupon bonds. This generates income

F (0)B(0; T ) =
S(0)

B(0; T )
B(0; T ) = S(0):
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Buy one share of stock. This portfolio requires no initial investment. Maintain this position until
timeT , when the portfolio is worth

S(T )� F (0)B(T; T ) = S(T )� F (0):

Deliver the share of stock and receive paymentF (0).

A short position in the forward could also be hedged using the stock and money market, but the
implementation of this hedge would require a term-structure model.

27.3 Future contracts

Future contracts are designed to remove the risk of default inherent in forward contracts. Through
the device ofmarking to market, the value of the future contract is maintained at zero at all times.
Thus, either party can close out his/her position at any time.

Let us first consider the situation with discrete trading dates

0 = t0 < t1 < : : : < tn = T:

On each[tj ; tj+1), r is constant, so

�(tk+1) = exp

�Z tk+1

0

r(u) du

�

= exp

8<
:

kX
j=0

r(tj)(tj+1 � tj)

9=
;

isF(tk)-measurable.

Enter a future contract at timetk, taking the long position, when the future price is�(tk). At time
tk+1, when the future price is�(tk+1), you receive a payment�(tk+1) � �(tk). (If the price has
fallen, you make the payment�(�(tk+1) � �(tk)). ) The mechanism for receiving and making
these payments is themargin accountheld by the broker.

By timeT = tn, you have received the sequence of payments

�(tk+1)� �(tk); �(tk+2)� �(tk+1); : : : ; �(tn)� �(tn�1)

at timestk+1; tk+2; : : : ; tn. The value at timet = t0 of this sequence is

�(t) IE

2
4n�1X
j=k

1

�(tj+1)
(�(tj+1)� �(tj))

����F(t)

3
5 :

Because it costs nothing to enter the future contract at timet, this expression must be zero almost
surely.
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The continuous-time version of this condition is

�(t) IE

"Z T

t

1

�(u)
d�(u)

����F(t)

#
= 0; 0 � t � T:

Note that�(tj+1) appearing in the discrete-time version isF(tj)-measurable, as it should be when
approximating a stochastic integral.

Definition 27.1 TheT -future priceof the stock is anyF(t)-adapted stochastic process

f�(t); 0 � t � Tg ;
satisfying

�(T ) = S(T ) a.s., and (a)

IE

"Z T

t

1

�(u)
d�(u)

����F(t)

#
= 0; 0 � t � T: (b)

Theorem 3.66 The unique process satisfying (a) and (b) is

�(t) = IE

�
S(T )

����F(t)

�
; 0 � t � T:

Proof: We first show that (b) holds if and only if� is a martingale. If� is a martingale, thenR t
0

1

�(u)
d�(u) is also a martingale, so

IE

"Z T

t

1

�(u)
d�(u)

����F(t)

#
= IE

�Z t

0

1

�(u)
d�(u)

����F(t)

�
�
Z t

0

1

�(u)
d�(u)

= 0:

On the other hand, if (b) holds, then the martingale

M(t) = IE

"Z T

0

1

�(u)
d�(u)

����F(t)

#

satisfies

M(t) =

Z t

0

1

�(u)
d�(u) + IE

"Z T

t

1

�(u)
d�(u)

����F(t)

#

=

Z t

0

1

�(u)
d�(u); 0 � t � T:

this implies

dM(t) =
1

�(t)
d�(t);

d�(t) = �(t) dM(t);
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and so� is a martingale (its differential has nodt term).

Now define

�(t) = IE

�
S(T )

����F(t)

�
; 0 � t � T:

Clearly (a) is satisfied. By the tower property,� is a martingale, so (b) is also satisfied. Indeed, this
� is the only martingale satisfying (a).

27.4 Cash flow from a future contract

With a forward contract, entered at time 0, the buyer agrees to payF (0) for an asset valued atS(T ).
The only payment is at timeT .

With a future contract, entered at time 0, the buyer receives a cash flow (which may at times be
negative) between times 0 andT . If he still holds the contract at timeT , then he paysS(T ) at time
T for an asset valued atS(T ). The cash flow received between times 0 andT sums to

Z T

0

d�(u) = �(T )� �(0) = S(T )� �(0):

Thus, if the future contract holder takes delivery at timeT , he has paid a total of

(�(0)� S(T )) + S(T ) = �(0)

for an asset valued atS(T ).

27.5 Forward-future spread

Future price:�(t) = IE

�
S(T )

����F(t)

�
.

Forward price:

F (t) =
S(t)

B(t; T )
=

S(t)

�(t)IE

�
1

�(T )

����F(t)

� :

Forward-future spread:

�(0)� F (0) = IE[S(T )]� S(0)

IE
h

1

�(T )

i

=
1

IE
�

1

�(T )

� �IE � 1

�(T )

�
IE (S(T ))� IE

�
S(T )

�(T )

��
:

If 1

�(T )
andS(T ) are uncorrelated,

�(0) = F (0):
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If 1

�(T )
andS(T ) are positively correlated, then

�(0) � F (0):

This is the case that a rise in stock price tends to occur with a fall in the interest rate. The owner
of the future tends to receive income when the stock price rises, but invests it at a declining interest
rate. If the stock price falls, the owner usually must make payments on the future contract. He
withdraws from the money market to do this just as the interest rate rises. In short, the long position
in the future is hurt by positive correlation between1

�(T )
andS(T ). The buyer of the future is

compensated by a reduction of the future price below the forward price.

27.6 Backwardation and contango

Suppose
dS(t) = �S(t) dt+ �S(t) dW (t):

Define� = ��r
� ; fW (t) = �t +W (t),

Z(T ) = expf��W (T )� 1

2
�2Tg

fIP (A) = Z
A
Z(T ) dIP; 8A 2 F(T ):

ThenfW is a Brownian motion underfIP , and

dS(t) = rS(t) dt+ �S(t) dfW (t):

We have

�(t) = ert

S(t) = S(0) expf(�� 1

2
�2)t + �W (t)g

= S(0) expf(r� 1

2
�2)t+ �fW (t)g

Because 1

�(T )
= e�rT is nonrandom,S(T ) and 1

�(T )
are uncorrelated underfIP . Therefore,

�(t) = fIE[S(T )

����F(t)]

= F (t)

=
S(t)

B(t; T )
= er(T�t)S(t):

The expected future spot price of the stock underIP is

IES(T ) = S(0)e�TIE
h
exp

n
�1

2
�2T + �W (T )

oi
= e�TS(0):



274

The future price at time0 is
�(0) = erTS(0):

If � > r, then�(0) < IES(T ): This situation is callednormal backwardation(see Hull). If� < r,
then�(0) > IES(T ). This is calledcontango.
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Term-structure models

Throughout this discussion,fW (t); 0 � t � T �g is a Brownian motion on some probability space
(
;F;P), andfF (t); 0 � t � T �g is the filtration generated byW .

Suppose we are given an adaptedinterest rate processfr(t); 0 � t � T �g. We define the accumu-
lation factor

�(t) = exp

�Z t

0

r(u) du

�
; 0 � t � T �:

In a term-structure model, we take the zero-coupon bonds (“zeroes”) of various maturities to be the
primitive assets. We assume these bonds are default-free and pay $1 at maturity. For0 � t � T �
T �, let

B(t; T ) = price at timet of the zero-coupon bond paying $1 at timeT .

Theorem 0.67 (Fundamental Theorem of Asset Pricing)A term structure model is free of arbi-
trage if and only if there is a probability measurefIP on
 (a risk-neutral measure) with the same
probability-zero sets asIP (i.e.,equivalentto IP ), such that for eachT 2 (0; T �], the process

B(t; T )

�(t)
; 0 � t � T;

is a martingale underfIP .

Remark 28.1 We shall always have

dB(t; T ) = �(t; T )B(t; T ) dt+ �(t; T )B(t; T ) dW (t); 0 � t � T;

for some functions�(t; T ) and�(t; T ). Therefore

d

�
B(t; T )

�(t)

�
= B(t; T ) d

�
1

�(t)

�
+

1

�(t)
dB(t; T )

= [�(t; T )� r(t)]
B(t; T )

�(t)
dt+ �(t; T )

B(t; T )

�(t)
dW (t);

275
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soIP is a risk-neutral measure if and only if�(t; T ), the mean rate of return ofB(t; T ) underIP , is
the interest rater(t). If the mean rate of return ofB(t; T ) underIP is notr(t) at each timet and for
each maturityT , we should change to a measurefIP under which the mean rate of return isr(t). If
such a measure does not exist, then the model admits an arbitrage by trading in zero-coupon bonds.

28.1 Computing arbitrage-free bond prices: first method

Begin with a stochastic differential equation (SDE)

dX(t) = a(t; X(t)) dt + b(t; X(t)) dW (t):

The solutionX(t) is the factor. If we want to haven-factors, we letW be ann-dimensional
Brownian motion and letX be ann-dimensional process. We let the interest rater(t) be a function
of X(t). In the usual one-factor models, we taker(t) to beX(t) (e.g., Cox-Ingersoll-Ross, Hull-
White).

Now that we have an interest rate processfr(t); 0 � t � T �g, we define the zero-coupon bond
prices to be

B(t; T ) = �(t) IE

�
1

�(T )

����F(t)

�

= IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#
; 0 � t � T � T �:

We showed in Chapter 27 that

dB(t; T ) = r(t)B(t; T ) dt+ �(t)
(t) dW (t)

for some process
. SinceB(t; T ) has mean rate of returnr(t) underIP , IP is a risk-neutral measure
and there is no arbitrage.

28.2 Some interest-rate dependent assets

Coupon-paying bond: PaymentsP1; P2; : : : ; Pn at timesT1; T2; : : : ; Tn. Price at timet is

X
fk:t<Tkg

PkB(t; Tk):

Call option on a zero-coupon bond: Bond matures at timeT . Option expires at timeT1 < T .
Price at timet is

�(t) IE

�
1

�(T1)
(B(T1; T )�K)+

����F(t)

�
; 0 � t � T1:
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28.3 Terminology

Definition 28.1 (Term-structure model) Any mathematical model which determines, at least the-
oretically, the stochastic processes

B(t; T ); 0 � t � T;

for all T 2 (0; T �].

Definition 28.2 (Yield to maturity) For 0 � t � T � T �, the yield to maturityY (t; T ) is the
F(t)-measurable random-variable satisfying

B(t; T ) exp f(T � t)Y (t; T )g = 1;

or equivalently,

Y (t; T ) = � 1

T � t
logB(t; T ):

Determining
B(t; T ); 0 � t � T � T �;

is equivalent to determining
Y (t; T ); 0 � t � T � T �:

28.4 Forward rate agreement

Let 0 � t � T < T + � � T � be given. Suppose you want to borrow $1 at timeT with repayment
(plus interest) at timeT + �, at an interest rate agreed upon at timet. To synthesize aforward-rate
agreementto do this, at timet buy aT -maturity zero and shortB(t;T )

B(t;T+�)
(T + �)-maturity zeroes.

The value of this portfolio at timet is

B(t; T )� B(t; T )

B(t; T + �)
B(t; T + �) = 0:

At time T , you receive $1 from theT -maturity zero. At timeT + �, you pay $ B(t;T )
B(t;T+�)

. The
effective interest rate on the dollar you receive at timeT isR(t; T; T + �) given by

B(t; T )

B(t; T + �)
= expf� R(t; T; T + �)g;

or equivalently,

R(t; T; T + �) = � logB(t; T + �)� logB(t; T )

�
:

Theforward rateis

f(t; T ) = lim
�#0

R(t; T; T + �) = � @

@T
logB(t; T ): (4.1)
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This is the instantaneous interest rate, agreed upon at timet, for money borrowed at timeT .

Integrating the above equation, we obtain

Z T

t
f(t; u) du = �

Z T

t

@

@u
logB(t; u) du

= � logB(t; u)

����u=T
u=t

= � logB(t; T );

so

B(t; T ) = exp

(
�
Z T

t
f(t; u) du

)
:

You can agree at timet to receive interest ratef(t; u) at each timeu 2 [t; T ]. If you invest $B(t; T )

at timet and receive interest ratef(t; u) at each timeu betweent andT , this will grow to

B(t; T ) exp

(Z T

t
f(t; u) du

)
= 1

at timeT .

28.5 Recovering the interestr(t) from the forward rate

B(t; T ) = IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#
;

@

@T
B(t; T ) = IE

"
�r(T ) exp

(
�
Z T

t
r(u) du

) ����F(t)

#
;

@

@T
B(t; T )

����
T=t

= IE

�
�r(t)

����F(t)

�
= �r(t):

On the other hand,

B(t; T ) = exp

(
�
Z T

t
f(t; u) du

)
;

@

@T
B(t; T ) = �f(t; T ) exp

(
�
Z T

t
f(t; u) du

)
;

@

@T
B(t; T )

����
T=t

= �f(t; t):

Conclusion:r(t) = f(t; t).
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28.6 Computing arbitrage-free bond prices: Heath-Jarrow-Morton
method

For eachT 2 (0; T �], let the forward rate be given by

f(t; T ) = f(0; T ) +

Z t

0

�(u; T ) du+

Z t

0

�(u; T ) dW (u); 0 � t � T:

Heref�(u; T ); 0 � u � Tg andf�(u; T ); 0 � u � Tg are adapted processes.

In other words,
df(t; T ) = �(t; T ) dt+ �(t; T ) dW (t):

Recall that

B(t; T ) = exp

(
�
Z T

t
f(t; u) du

)
:

Now

d

(
�
Z T

t
f(t; u) du

)
= f(t; t) dt�

Z T

t
df(t; u) du

= r(t) dt�
Z T

t
[�(t; u) dt+ �(t; u) dW (t)] du

= r(t) dt�
"Z T

t
�(t; u) du

#
| {z }

��(t;T )

dt �
"Z T

t
�(t; u) du

#
| {z }

��(t;T )

dW (t)

= r(t) dt� ��(t; T ) dt� ��(t; T ) dW (t):

Let
g(x) = ex; g0(x) = ex; g00(x) = ex:

Then

B(t; T ) = g

 
�
Z T

t
f(t; u) du

!
;

and

dB(t; T ) = dg

 
�
Z T

t
f(t; u) du

!

= g0
 
�
Z T

t
f(t; u) du

!
(r dt� �� dt� �� dW )

+ 1

2
g00
 
�
Z T

t
f(t; u) du

!
(��)2 dt

= B(t; T )
h
r(t)� ��(t; T ) + 1

2
(��(t; T ))2

i
dt

� ��(t; T )B(t; T ) dW (t):
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28.7 Checking for absence of arbitrage

IP is a risk-neutral measure if and only if

��(t; T ) = 1

2
(��(t; T ))2 ; 0 � t � T � T �;

i.e.,

Z T

t
�(t; u) du = 1

2

 Z T

t
�(t; u) du

!
2

; 0 � t � T � T �: (7.1)

Differentiating this w.r.t.T , we obtain

�(t; T ) = �(t; T )

Z T

t
�(t; u) du; 0 � t � T � T �: (7.2)

Not only does (7.1) imply (7.2), (7.2) also implies (7.1). This will be a homework problem.

Suppose (7.1) does not hold. ThenIP is not a risk-neutral measure, but there might still be a risk-
neutral measure. Letf�(t); 0 � t � T �g be an adapted process, and define

fW (t) =

Z t

0

�(u) du + W (t);

Z(t) = exp

�
�
Z t

0

�(u) dW (u) � 1

2

Z t

0

�2(u) du

�
;

fIP (A) =

Z
A
Z(T �) dIP 8A 2 F(T �):

Then

dB(t; T ) = B(t; T )
h
r(t)� ��(t; T ) + 1

2
(��(t; T ))2

i
dt

� ��(t; T )B(t; T ) dW (t)

= B(t; T )
h
r(t)� ��(t; T ) + 1

2
(��(t; T ))2+ ��(t; T )�(t)

i
dt

� ��(t; T )B(t; T ) dfW (t); 0 � t � T:

In order forB(t; T ) to have mean rate of returnr(t) underfIP , we must have

��(t; T ) = 1

2
(��(t; T ))2+ ��(t; T )�(t); 0 � t � T � T �: (7.3)

Differentiation w.r.t.T yields the equivalent condition

�(t; T ) = �(t; T )��(t; T ) + �(t; T )�(t); 0 � t � T � T �: (7.4)

Theorem 7.68 (Heath-Jarrow-Morton) For eachT 2 (0; T �], let �(u; T ); 0 � u � T; and
�(u; T ); 0 � u � T , be adapted processes, and assume�(u; T ) > 0 for all u and T . Let
f(0; T ); 0 � t � T �, be a deterministic function, and define

f(t; T ) = f(0; T ) +

Z t

0

�(u; T ) du+

Z t

0

�(u; T ) dW (u):
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Thenf(t; T ); 0 � t � T � T � is a family of forward rate processes for a term-structure model
without arbitrage if and only if there is an adapted process�(t); 0 � t � T �, satisfying (7.3), or
equivalently, satisfying (7.4).

Remark 28.2 UnderIP , the zero-coupon bond with maturityT has mean rate of return

r(t)� ��(t; T ) + 1

2
(��(t; T ))2

and volatility��(t; T ). The excess mean rate of return, above the interest rate, is

���(t; T ) + 1

2
(��(t; T ))2;

and when normalized by the volatility, this becomes themarket price of risk

���(t; T ) + 1

2
(��(t; T ))2

��(t; T )
:

The no-arbitrage condition is that this market price of risk at timet does not depend on the maturity
T of the bond. We can then set

�(t) = �
"
���(t; T ) + 1

2
(��(t; T ))2

��(t; T )

#
;

and (7.3) is satisfied.

(The remainder of this chapter was taught Mar 21)

Suppose the market price of risk does not depend on the maturityT , so we can solve (7.3) for�.
Plugging this into the stochastic differential equation forB(t; T ), we obtain for every maturityT :

dB(t; T ) = r(t)B(t; T ) dt� ��(t; T )B(t; T ) dfW (t):

Because (7.4) is equivalent to (7.3), we may plug (7.4) into the stochastic differential equation for
f(t; T ) to obtain, for every maturityT :

df(t; T ) = [�(t; T )��(t; T ) + �(t; T )�(t)] dt+ �(t; T ) dW (t)

= �(t; T )��(t; T ) dt + �(t; T ) dfW (t):

28.8 Implementation of the Heath-Jarrow-Morton model

Choose

��(t; T ); 0 � t � T � T �;

�(t); 0 � t � T �:
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These may be stochastic processes, but are usually taken to be deterministic functions. Define

�(t; T ) = �(t; T )��(t; T ) + �(t; T )�(t);

fW (t) =

Z t

0

�(u) du+W (t);

Z(t) = exp

�
�
Z t

0

�(u) dW (u)� 1

2

Z t

0

�2(u) du

�
;

fIP (A) =

Z
A
Z(T �) dIP 8A 2 F(T �):

Let f(0; T ); 0 � T � T �; be determined by the market; recall from equation (4.1):

f(0; T ) = � @

@T
logB(0; T ); 0 � T � T �:

Thenf(t; T ) for 0 � t � T is determined by the equation

df(t; T ) = �(t; T )��(t; T ) dt+ �(t; T ) dfW (t); (8.1)

this determines the interest rate process

r(t) = f(t; t); 0 � t � T �; (8.2)

and then the zero-coupon bond prices are determined by the initial conditionsB(0; T ); 0 � T �
T �, gotten from the market, combined with the stochastic differential equation

dB(t; T ) = r(t)B(t; T ) dt� ��(t; T )B(t; T ) dfW (t): (8.3)

Because all pricing of interest rate dependent assets will be done under the risk-neutral measurefIP ,
under whichfW is a Brownian motion, we have written (8.1) and (8.3) in terms offW rather than
W . Written this way, it is apparent that neither�(t) nor�(t; T ) will enter subsequent computations.
The only process which matters is�(t; T ); 0 � t � T � T �, and the process

��(t; T ) =
Z T

t
�(t; u) du; 0 � t � T � T �; (8.4)

obtained from�(t; T ).

From (8.3) we see that��(t; T ) is the volatility at timet of the zero coupon bond maturing at time
T . Equation (8.4) implies

��(T; T ) = 0; 0 � T � T �: (8.5)

This is becauseB(T; T ) = 1 and so ast approachesT (from below), the volatility in B(t; T ) must
vanish.

In conclusion, to implement the HJM model, it suffices to have the initial market dataB(0; T ); 0 �
T � T �; and the volatilities

��(t; T ); 0 � t � T � T �:
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We require that��(t; T ) be differentiable inT and satisfy (8.5). We can then define

�(t; T ) =
@

@T
��(t; T );

and (8.4) will be satisfied because

��(t; T ) = ��(t; T )� ��(t; t) =
Z T

t

@

@u
��(t; u) du:

We then letfW be a Brownian motion under a probability measurefIP , and we letB(t; T ); 0 � t �
T � T �, be given by (8.3), wherer(t) is given by (8.2) andf(t; T ) by (8.1). In (8.1) we use the
initial conditions

f(0; T ) = � @

@T
logB(0; T ); 0 � T � T �:

Remark 28.3 It is customary in the literature to writeW rather thanfW andIP rather thanfIP ,
so thatIP is the symbol used for the risk-neutral measure and no reference is ever made to the
market measure. The only parameter which must be estimated from the market is the bond volatility
��(t; T ), and volatility is unaffected by the change of measure.
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Chapter 29

Gaussian processes

Definition 29.1 (Gaussian Process)A Gaussian processX(t), t � 0, is a stochastic process with
the property that for every set of times0 � t1 � t2 � : : : � tn, the set of random variables

X(t1); X(t2); : : : ; X(tn)

is jointly normally distributed.

Remark 29.1 If X is a Gaussian process, then its distribution is determined by itsmean function

m(t) = IEX(t)

and itscovariance function

�(s; t) = IE[(X(s)�m(s)) � (X(t)�m(t))]:

Indeed, the joint density ofX(t1); : : : ; X(tn) is

IPfX(t1) 2 dx1; : : : ; X(tn) 2 dxng
=

1

(2�)n=2
p
det �

exp
n
�1

2
(x�m(t)) � ��1 � (x�m(t))T

o
dx1 : : : dxn;

where� is the covariance matrix

� =

2
6664
�(t1; t1) �(t1; t2) : : : �(t1; tn)

�(t2; t1) �(t2; t2) : : : �(t2; tn)

: : : : : : : : : : : :

�(tn; t1) �(tn; t2) : : : �(tn; tn)

3
7775

x is the row vector[x1; x2; : : : ; xn], t is the row vector[t1; t2; : : : ; tn], andm(t) = [m(t1); m(t2); : : : ; m(tn)].

The moment generating function is

IE exp

(
nX

k=1

ukX(tk)

)
= exp

n
u �m(t)T + 1

2
u �� � uT

o
;

whereu = [u1; u2; : : : ; un].
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29.1 An example: Brownian Motion

Brownian motionW is a Gaussian process withm(t) = 0 and�(s; t) = s^ t. Indeed, if0 � s � t,
then

�(s; t) = IE [W (s)W (t)] = IE
h
W (s) (W (t)�W (s)) +W 2(s)

i
= IEW (s):IE (W (t) �W (s)) + IEW 2(s)

= IEW 2(s)

= s ^ t:

To prove that a process is Gaussian, one must show thatX(t1); : : : ; X(tn) has either a density or a
moment generating function of the appropriate form. We shall use the m.g.f., and shall cheat a bit
by considering only two times, which we usually calls andt. We will want to show that

IE exp fu1X(s) + u2X(t)g = exp

(
u1m1 + u2m2 +

1

2
[u1 u2]

"
�11 �12
�21 �22

# "
u1
u2

#)
:

Theorem 1.69 (Integral w.r.t. a Brownian) Let W (t) be a Brownian motion and�(t) a nonran-
dom function. Then

X(t) =

Z t

0

�(u) dW (u)

is a Gaussian process withm(t) = 0 and

�(s; t) =

Z s^t

0

�2(u) du:

Proof: (Sketch.) We have
dX = � dW:

Therefore,

deuX(s) = ueuX(s)�(s) dW (s) + 1

2
u2euX(s)�2(s) ds;

euX(s) = euX(0) + u

Z s

0

euX(v)�(v) dW (v)| {z }
Martingale

+1

2
u2
Z s

0

euX(v)�2(v) dv;

IEeuX(s) = 1 + 1

2
u2
Z s

0

�2(v)IEeuX(v) dv;

d

ds
IEeuX(s) = 1

2
u2�2(s)IEeuX(s);

IEeuX(s) = euX(0) exp

�
1

2
u2
Z s

0

�2(v) dv

�
(1.1)

= exp

�
1

2
u2
Z s

0

�2(v) dv

�
:

This shows thatX(s) is normal with mean 0 and variance
R s
0
�2(v) dv.
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Now let0 � s < t be given. Just as before,

deuX(t) = ueuX(t)�(t) dW (t) + 1

2
u2euX(t)�2(t) dt:

Integrate froms to t to get

euX(t) = euX(s) + u

Z t

s
�(v)euX(v) dW (v) + 1

2
u2
Z t

s
�2(v)euX(v) dv:

TakeIE[: : : jF(s)] conditional expectations and use the martingale property

IE

�Z t

s
�(v)euX(v) dW (v)

����F(s)

�
= IE

�Z t

0

�(v)euX(v) dW (v)

����F(s)

�
�
Z s

0

�(v)euX(v) dW (v)

= 0

to get

IE

�
euX(t)

����F(s)

�
= euX(s) + 1

2
u2
Z t

s
�2(v)IE

�
euX(v)

����F(s)

�
dv

d

dt
IE

�
euX(t)

����F(s)

�
= 1

2
u2�2(t)IE

�
euX(t)

����F(s)

�
; t � s:

The solution to this ordinary differential equation with initial times is

IE

�
euX(t)

����F(s)

�
= euX(s) exp

�
1

2
u2
Z t

s
�2(v) dv

�
; t � s: (1.2)

We now compute the m.g.f. for(X(s); X(t)), where0 � s � t:

IE

�
eu1X(s)+u2X(t)

����F(s)

�
= eu1X(s)IE

�
eu2X(t)

����F(s)

�
(1.2)
= e(u1+u2)X(s) exp

�
1

2
u22

Z t

s
�2(v) dv

�
;

IE
h
eu1X(s)+u2X(t)

i
= IE

�
IE

�
eu1X(s)+u2X(t)

����F(s)

��

= IE
n
e(u1+u2)X(s)

o
: exp

�
1

2
u22

Z t

s
�2(v) dv

�
(1.1)
= exp

�
1

2
(u1 + u2)

2

Z s

0

�2(v) dv + 1

2
u22

Z t

s
�2(v) dv

�

= exp

�
1

2
(u21 + 2u1u2)

Z s

0

�2(v) dv + 1

2
u22

Z t

0

�2(v) dv

�

= exp

(
1

2
[u1 u2]

"R s
0
�2

R s
0
�2R s

0
�2

R t
0
�2

# "
u1
u2

#)
:

This shows that(X(s); X(t)) is jointly normal withIEX(s) = IEX(t) = 0,

IEX2(s) =

Z s

0

�2(v) dv; IEX2(t) =

Z t

0

�2(v) dv;

IE[X(s)X(t)] =

Z s

0

�2(v) dv:
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Remark 29.2 The hard part of the above argument, and the reason we use moment generating
functions, is to prove the normality. The computation of means and variances does not require the
use of moment generating functions. Indeed,

X(t) =

Z t

0

�(u) dW (u)

is a martingale andX(0) = 0, so

m(t) = IEX(t) = 0 8t � 0:

For fixeds � 0,

IEX2(s) =

Z s

0

�2(v) dv

by the Itô isometry. For0 � s � t,

IE[X(s)(X(t)�X(s))] = IE

�
IE

�
X(s)(X(t)�X(s))

����F(s)

��

= IE

2
6664X(s)

�
IE

�
X(t)

����F(s)

�
�X(s)

�
| {z }

0

3
7775

= 0:

Therefore,

IE[X(s)X(t)] = IE[X(s)(X(t)�X(s)) +X2(s)]

= IEX2(s) =

Z s

0

�2(v) dv:

If � were a stochastic proess, the Itˆo isometry says

IEX2(s) =

Z s

0

IE�2(v) dv

and the same argument used above shows that for0 � s � t,

IE[X(s)X(t)] = IEX2(s) =

Z s

0

IE�2(v) dv:

However, when� is stochastic,X is not necessarily a Gaussian process, so its distribution is not
determined from its mean and covariance functions.

Remark 29.3 When� is nonrandom,

X(t) =

Z t

0

�(u) dW (u)

is also Markov. We proved this before, but note again that the Markov property follows immediately
from (1.2). The equation (1.2) says that conditioned onF(s), the distribution ofX(t) depends only
onX(s); in fact,X(t) is normal with meanX(s) and variance

R t
s �

2(v) dv.
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Figure 29.1:Range of values ofy; z; v for the integrals in the proof of Theorem 1.70.

Theorem 1.70 Let W (t) be a Brownian motion, and let�(t) andh(t) be nonrandom functions.
Define

X(t) =

Z t

0

�(u) dW (u); Y (t) =

Z t

0

h(u)X(u) du:

ThenY is a Gaussian process with mean functionmY (t) = 0 and covariance function

�Y (s; t) =

Z s^t

0

�2(v)

�Z s

v
h(y) dy

��Z t

v
h(y) dy

�
dv: (1.3)

Proof: (Partial) Computation of�Y (s; t): Let 0 � s � t be given. It is shown in a homework
problem that(Y (s); Y (t)) is a jointly normal pair of random variables. Here we observe that

mY (t) = IEY (t) =

Z t

0

h(u) IEX(u) du = 0;

and we verify that (1.3) holds.
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We have

�Y (s; t) = IE [Y (s)Y (t)]

= IE

�Z s

0

h(y)X(y) dy:

Z t

0

h(z)X(z) dz

�

= IE

Z s

0

Z t

0

h(y)h(z)X(y)X(z) dy dz

=

Z s

0

Z t

0

h(y)h(z)IE [X(y)X(z)] dy dz

=

Z s

0

Z t

0

h(y)h(z)

Z y^z

0

�2(v) dv dy dz

=

Z s

0

Z t

z
h(y)h(z)

�Z z

0

�2(v) dv

�
dy dz

+

Z s

0

Z s

y
h(y)h(z)

�Z y

0

�2(v) dv

�
dz dy (See Fig. 29.1(a))

=

Z s

0

h(z)

�Z t

z
h(y) dy

��Z z

0

�2(v) dv

�
dz

+

Z s

0

h(y)

�Z s

y
h(z) dz

��Z y

0

�2(v) dv

�
dy

=

Z s

0

Z z

0

h(z)�2(v)

�Z t

z
h(y) dy

�
dv dz

+

Z s

0

Z y

0

h(y)�2(v)

�Z s

y
h(z) dz

�
dv dy

=

Z s

0

Z s

v
h(z)�2(v)

�Z t

z
h(y) dy

�
dz dv

+

Z s

0

Z s

v
h(y)�2(v)

�Z s

y
h(z) dz

�
dy dv (See Fig. 29.1(b))

=

Z s

0

�2(v)

�Z s

v

Z t

z
h(y)h(z) dy dz

�
dv

+

Z s

0

�2(v)

�Z s

v

Z s

y
h(y)h(z) dz dy

�
dv

=

Z s

0

�2(v)

�Z s

v

Z t

v
h(y)h(z) dy dz

�
dv (See Fig. 29.1(c))

=

Z s

0

�2(v)

�Z s

v
h(y) dy

��Z t

v
h(z) dz

�
dv

=

Z s

0

�2(v)

�Z s

v
h(y) dy

��Z t

v
h(y) dy

�
dv

Remark 29.4 Unlike the processX(t) =
R t
0
�(u) dW (u), the processY (t) =

R t
0
X(u) du is
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neither Markov nor a martingale. For0 � s < t,

IE[Y (t)jF(s)] =
Z s

0

h(u)X(u) du+ IE

�Z t

s
h(u)X(u) du

����F(s)

�

= Y (s) +

Z t

s
h(u)IE[X(u)

����F(s)] du

= Y (s) +

Z t

s
h(u)X(s) du

= Y (s) +X(s)

Z t

s
h(u) du;

where we have used the fact thatX is a martingale. The conditional expectationIE[Y (t)jF(s)] is
not equal toY (s), nor is it a function ofY (s) alone.
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Chapter 30

Hull and White model

Consider
dr(t) = (�(t)� �(t)r(t)) dt + �(t) dW (t);

where�(t), �(t) and�(t) are nonrandom functions oft.

We can solve the stochastic differential equation. Set

K(t) =

Z t

0

�(u) du:

Then

d
�
eK(t)r(t)

�
= eK(t)

�
�(t)r(t) dt+ dr(t)

�

= eK(t) (�(t) dt + �(t) dW (t)) :

Integrating, we get

eK(t)r(t) = r(0)+

Z t

0

eK(u)�(u) du+

Z t

0

eK(u)�(u) dW (u);

so

r(t) = e�K(t)

�
r(0) +

Z t

0

eK(u)�(u) du+

Z t

0

eK(u)�(u) dW (u)

�
:

From Theorem 1.69 in Chapter 29, we see thatr(t) is a Gaussian process with mean function

mr(t) = e�K(t)

�
r(0) +

Z t

0

eK(u)�(u) du

�
(0.1)

and covariance function

�r(s; t) = e�K(s)�K(t)
Z s^t

0

e2K(u)�2(u) du: (0.2)

The processr(t) is also Markov.
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We want to study
R T
0
r(t) dt. To do this, we define

X(t) =

Z t

0

eK(u)�(u) dW (u); Y (T ) =

Z T

0

e�K(t)X(t) dt:

Then

r(t) = e�K(t)

�
r(0) +

Z t

0

eK(u)�(u) du

�
+ e�K(t)X(t);

Z T

0

r(t) dt =

Z T

0

e�K(t)

�
r(0) +

Z t

0

eK(u)�(u) du

�
dt+ Y (T ):

According to Theorem 1.70 in Chapter 29,
R T
0
r(t) dt is normal. Its mean is

IE

Z T

0

r(t) dt =

Z T

0

e�K(t)

�
r(0) +

Z t

0

eK(u)�(u) du

�
dt; (0.3)

and its variance is

var

 Z T

0

r(t) dt

!
= IEY 2(T )

=

Z T

0

e2K(v)�2(v)

 Z T

v
e�K(y) dy

!2

dv:

The price at time 0 of a zero-coupon bond paying $1 at timeT is

B(0; T ) = IE exp

(
�
Z T

0

r(t) dt

)

= exp

(
(�1)IE

Z T

0

r(t) dt+ 1

2
(�1)2 var

 Z T

0

r(t) dt

!)

= exp

�
�r(0)

Z T

0

e�K(t) dt�
Z T

0

Z t

0

e�K(t)+K(u)�(u) du dt

+ 1

2

Z T

0

e2K(v)�2(v)

 Z T

v
e�K(y) dy

!
2

dv

�

= expf�r(0)C(0; T )�A(0; T )g;

where

C(0; T ) =

Z T

0

e�K(t) dt;

A(0; T ) =

Z T

0

Z t

0

e�K(t)+K(u)�(u) du dt� 1

2

Z T

0

e2K(v)�2(v)

 Z T

v
e�K(y) dy

!
2

dv:
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u

t
u =

 t

T

Figure 30.1:Range of values ofu; t for the integral.

30.1 Fiddling with the formulas

Note that (see Fig 30.1)

Z T

0

Z t

0

e�K(t)+K(u)�(u) du dt

=

Z T

0

Z T

u
e�K(t)+K(u)�(u) dt du

(y = t; v = u) =

Z T

0

eK(v)�(v)

 Z T

v
e�K(y) dy

!
dv:

Therefore,

A(0; T ) =

Z T

0

2
4eK(v)�(v)

 Z T

v
e�K(y) dy

!
� 1

2
e2K(v)�2(v)

 Z T

v
e�K(y) dy

!2
3
5 dv;

C(0; T ) =

Z T

0

e�K(y) dy;

B(0; T ) = exp f�r(0)C(0; T )� A(0; T )g :

Consider the price at timet 2 [0; T ] of the zero-coupon bond:

B(t; T ) = IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#
:

Becauser is a Markov process, this should be random only through a dependence onr(t). In fact,

B(t; T ) = exp f�r(t)C(t; T )� A(t; T )g ;
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where

A(t; T ) =

Z T

t

2
4eK(v)�(v)

 Z T

v
e�K(y) dy

!
� 1

2
e2K(v)�2(v)

 Z T

v
e�K(y) dy

!2
3
5 dv;

C(t; T ) = eK(t)

Z T

t
e�K(y) dy:

The reason for these changes is the following. We are now taking the initial time to bet rather than
zero, so it is plausible that

R T
0
: : : dv should be replaced by

R T
t : : : dv: Recall that

K(v) =

Z v

0

�(u) du;

and this should be replaced by

K(v)�K(t) =

Z v

t
�(u) du:

Similarly, K(y) should be replaced byK(y) � K(t). Making these replacements inA(0; T ), we
see that theK(t) terms cancel. InC(0; T ), however, theK(t) term does not cancel.

30.2 Dynamics of the bond price

LetCt(t; T ) andAt(t; T ) denote the partial derivatives with respect tot. From the formula

B(t; T ) = exp f�r(t)C(t; T )�A(t; T )g ;

we have

dB(t; T ) = B(t; T )
h
�C(t; T ) dr(t)� 1

2
C2(t; T ) dr(t) dr(t)� r(t)Ct(t; T ) dt� At(t; T ) dt

i
= B(t; T )

�
� C(t; T ) (�(t) � �(t)r(t))dt

� C(t; T )�(t) dW (t)� 1

2
C2(t; T )�2(t) dt

� r(t)Ct(t; T ) dt�At(t; T ) dt

�
:

Because we have used the risk-neutral pricing formula

B(t; T ) = IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#

to obtain the bond price, its differential must be of the form

dB(t; T ) = r(t)B(t; T ) dt+ (: : :) dW (t):
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Therefore, we must have

�C(t; T ) (�(t)� �(t)r(t))� 1

2
C2(t; T )�2(t)� r(t)Ct(t; T )�At(t; T ) = r(t):

We leave the verification of this equation to the homework. After this verification, we have the
formula

dB(t; T ) = r(t)B(t; T ) dt� �(t)C(t; T )B(t; T ) dW (t):

In particular, the volatility of the bond price is�(t)C(t; T ).

30.3 Calibration of the Hull & White model

Recall:

dr(t) = (�(t)� �(t)r(t)) dt+ �(t) dB(t);

K(t) =

Z t

0

�(u) du;

A(t; T ) =

Z T

t

2
4eK(v)�(v)

 Z T

v
e�K(y) dy

!
� 1

2
e2K(v)�2(v)

 Z T

v
e�K(y) dy

!2
3
5 dv;

C(t; T ) = eK(t)

Z T

t
e�K(y) dy;

B(t; T ) = exp f�r(t)C(t; T )�A(t; T )g :

Suppose we obtainB(0; T ) for all T 2 [0; T �] from market data (with some interpolation). Can we
determine the functions�(t), �(t), and�(t) for all t 2 [0; T �]? Not quite. Here is what we can do.

We take the following input data for the calibration:

1. B(0; T ); 0 � T � T �;

2. r(0);

3. �(0);

4. �(t); 0 � t � T � (usually assumed to be constant);

5. �(0)C(0; T ); 0 � T � T �, i.e., the volatility at time zero of bonds of all maturities.

Step 1.From 4 and 5 we solve for

C(0; T ) =

Z T

0

e�K(y) dy:
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We can then compute

@

@T
C(0; T ) = e�K(T )

=) K(T ) = � log
@

@T
C(0; T );

@

@T
K(T ) =

@

@T

Z T

0

�(u) du = �(T ):

We now have�(T ) for all T 2 [0; T �].

Step 2.From the formula

B(0; T ) = expf�r(0)C(0; T )� A(0; T )g;
we can solve forA(0; T ) for all T 2 [0; T �]. Recall that

A(0; T ) =

Z T

0

2
4eK(v)�(v)

 Z T

v
e�K(y) dy

!
� 1

2
e2K(v)�2(v)

 Z T

v
e�K(y) dy

!
2
3
5 dv:

We can use this formula to determine�(T ); 0 � T � T � as follows:

@

@T
A(0; T ) =

Z T

0

"
eK(v)�(v)e�K(T ) � e2K(v)�2(v)e�K(T )

 Z T

v
e�K(y) dy

!#
dv;

eK(T ) @

@T
A(0; T ) =

Z T

0

"
eK(v)�(v)� e2K(v)�2(v)

 Z T

v
e�K(y) dy

!#
dv;

@

@T

�
eK(T ) @

@T
A(0; T )

�
= eK(T )�(T )�

Z T

0

e2K(v)�2(v) e�K(T ) dv;

eK(T ) @

@T

�
eK(T ) @

@T
A(0; T )

�
= e2K(T )�(T )�

Z T

0

e2K(v)�2(v) dv;

@

@T

�
eK(T ) @

@T

�
eK(T ) @

@T
A(0; T )

��
= �0(T )e2K(T ) + 2�(T )�(T )e2K(T )� e2K(T )�2(T ); 0 � T � T �:

This gives us an ordinary differential equation for�, i.e.,

�0(t)e2K(t) + 2�(t)�(t)e2K(t)� e2K(t)�2(t) = known function oft:

From assumption 4 and step 1, we know all the coefficients in this equation. From assumption 3,
we have the initial condition�(0). We can solve the equation numerically to determine the function
�(t); 0 � t � T �.

Remark 30.1 The derivation of the ordinary differential equation for�(t) requires three differ-
entiations. Differentiation is an unstable procedure, i.e., functions which are close can have very
different derivatives. Consider, for example,

f(x) = 0 8x 2 IR;

g(x) =
sin(1000x)

100
8x 2 IR:
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Then

jf(x)� g(x)j � 1

100
8x 2 IR;

but because

g0(x) = 10 cos(1000x);

we have

jf 0(x)� g0(x)j = 10

for many values ofx.

Assumption 5 for the calibration was that we know the volatility at time zero of bonds of all maturi-
ties. These volatilities can be implied by the prices of options on bonds. We consider now how the
model prices options.

30.4 Option on a bond

Consider a European call option on a zero-coupon bond with strike priceK and expiration timeT1.
The bond matures at timeT2 > T1. The price of the option at time 0 is

IE

�
e�
R T1
0

r(u) du (B(T1; T2)�K)+
�

= IEe�
R T1
0

r(u) du(expf�r(T1)C(T1; T2)�A(T1; T2)g �K)+:

=

Z 1

�1

Z 1

�1
e�x

�
expf�yC(T1; T2)� A(T1; T2)g �K

�
+

f(x; y) dx dy;

wheref(x; y) is the joint density of
�R T1

0
r(u) du; r(T1)

�
.

We observed at the beginning of this Chapter (equation (0.3)) that
R T1
0

r(u) du is normal with

�1
4
= IE

"Z T1

0

r(u) du

#
=

Z T1

0

IEr(u) du

=

Z T1

0

�
r(0)e�K(v) + e�K(v)

Z v

0

eK(u)�(u) du

�
dv;

�2
1

4
= var

"Z T1

0

r(u) du

#
=

Z T1

0

e2K(v)�2(v)

 Z T1

v
e�K(y) dy

!
2

dv:

We also observed (equation (0.1)) thatr(T1) is normal with

�2
4
= IEr(T1) = r(0)e�K(T1) + e�K(T1)

Z T1

0

eK(u)�(u) du;

�22
4
= var (r(T1)) = e�2K(T1)

Z T1

0

e2K(u)�2(u) du:
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In fact,
�R T1

0
r(u) du; r(T1)

�
is jointly normal, and the covariance is

��1�2 = IE

"Z T1

0

(r(u)� IEr(u)) du: (r(T1)� IEr(T1))

#

=

Z T1

0

IE[(r(u)� IEr(u)) (r(T1)� IEr(T1))] du

=

Z T1

0

�r(u; T1) du;

where�r(u; T1) is defined in Equation 0.2.

The option on the bond has price at time zero of

Z 1

�1

Z 1

�1
e�x

�
expf�yC(T1; T2)� A(T1; T2)g �K

�
+

� 1

2��1�2
p
1� �2

exp

(
� 1

2(1� �2)

"
x2

�2
1

+
2�xy

�1�2
+
y2

�2
2

#)
dx dy: (4.1)

The price of the option at timet 2 [0; T1] is

IE

�
e
�
R T1
t

r(u) du (B(T1; T2)�K)+
����F(t)

�

= IE

�
e
�
R T1
t

r(u) du(expf�r(T1)C(T1; T2)� A(T1; T2)g �K)+
����F(t)

�
(4.2)

Because of the Markov property, this is random only through a dependence onr(t). To compute

this option price, we need the joint distribution of
�R T1

t r(u) du; r(T1)
�

conditioned onr(t). This
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pair of random variables has a jointly normal conditional distribution, and

�1(t) = IE

"Z T1

t
r(u) du

����F(t)

#

=

Z T1

t

�
r(t)e�K(v)+K(t) + e�K(v)

Z v

t
eK(u)�(u) du

�
dv;

�21(t) = IE

2
4
 Z T1

t
r(u) du� �1(t)

!2 ����F(t)

3
5

=

Z T1

t
e2K(v)�2(v)

 Z T1

v
e�K(y) dy

!2

dv;

�2(t) = IE

�
r(T1)

����r(t)
�

= r(t)e�K(T1)+K(t) + e�K(T1)

Z T1

t
eK(u)�(u) du;

�22(t) = IE

�
(r(T1)� �2(t))

2

����F(t)

�

= e�2K(T1)

Z T1

t
e2K(u)�2(u) du;

�(t)�1(t)�2(t) = IE

" Z T1

t
r(u) du� �1(t)

!
(r(T1)� �2(t))

����F(t)

#

=

Z T1

t
e�K(u)�K(T1)

Z u

t
e2K(v)�2(v) dv du:

The variances and covariances are not random. The means are random through a dependence on
r(t).

Advantages of the Hull & White model:

1. Leads to closed-form pricing formulas.

2. Allows calibration to fit initial yield curve exactly.

Short-comings of the Hull & White model:

1. One-factor, so only allows parallel shifts of the yield curve, i.e.,

B(t; T ) = exp f�r(t)C(t; T )�A(t; T )g ;
so bond prices of all maturities are perfectly correlated.

2. Interest rate is normally distributed, and hence can take negative values. Consequently, the
bond price

B(t; T ) = IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#

can exceed 1.
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Chapter 31

Cox-Ingersoll-Ross model

In the Hull & White model,r(t) is a Gaussian process. Since, for eacht, r(t) is normally distributed,
there is a positive probability thatr(t) < 0. The Cox-Ingersoll-Ross model is the simplest one which
avoids negative interest rates.

We begin with ad-dimensional Brownian motion(W1;W2; : : : ;Wd). Let � > 0 and� > 0 be
constants. Forj = 1; : : : ; d, letXj(0) 2 IR be given so that

X2

1(0) +X2

2(0) + : : :+X2

d(0) � 0;

and letXj be the solution to the stochastic differential equation

dXj(t) = �1

2
�Xj(t) dt+

1

2
� dWj(t):

Xj is called theOrstein-Uhlenbeckprocess. It always has a drift toward the origin. The solution to
this stochastic differential equation is

Xj(t) = e�
1

2
�t

�
Xj(0) +

1

2
�

Z t

0

e
1

2
�u dWj(u)

�
:

This solution is a Gaussian process with mean function

mj(t) = e�
1

2
�tXj(0)

and covariance function

�(s; t) =
1

4
�2e�

1

2
�(s+t)

Z s^t

0

e�u du:

Define
r(t)

4
= X2

1(t) +X2

2(t) + : : :+X2

d(t):

If d = 1, we haver(t) = X2
1
(t) and for eacht, IPfr(t) > 0g = 1, but (see Fig. 31.1)

IP

�
There are infinitely many values oft > 0 for whichr(t) = 0

�
= 1

303
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t

r(t) = X  (t)

x

x

1

2
( X  (t),   X  (t) )1

1
2

2

Figure 31.1:r(t) can be zero.

If d � 2, (see Fig. 31.1)

IPfThere is at least one value oft > 0 for whichr(t) = 0g = 0:

Let f(x1; x2; : : : ; xd) = x2
1
+ x2

2
+ : : :+ x2d. Then

fxi = 2xi; fxixj =

(
2 if i = j;

0 if i 6= j:

Itô’s formula implies

dr(t) =
dX
i=1

fxi dXi +
1

2

dX
i=1

fxixi dXi dXi

=
dX
i=1

2Xi

�
�1

2
�Xi dt+

1

2
� dWi(t)

�
+

dX
i=1

1

4
�2 dWi dWi

= ��r(t) dt+ �

dX
i=1

Xi dWi +
d�2

4
dt

=

 
d�2

4
� �r(t)

!
dt + �

q
r(t)

dX
i=1

Xi(t)p
r(t)

dWi(t):

Define

W (t) =
dX
i=1

Z t

0

Xi(u)p
r(u)

dWi(u):
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ThenW is a martingale,

dW =
dX
i=1

Xip
r
dWi;

dW dW =
dX
i=1

X2
i

r
dt = dt;

soW is a Brownian motion. We have

dr(t) =

 
d�2

4
� �r(t)

!
dt + �

q
r(t) dW (t):

TheCox-Ingersoll-Ross (CIR) processis given by

dr(t) = (�� �r(t)) dt+ �
q
r(t) dW (t);

We define

d =
4�

�2
> 0:

If d happens to be an integer, then we have the representation

r(t) =
dX
i=1

X2

i (t);

but we do not required to be an integer. Ifd < 2 (i.e.,� < 1

2
�2), then

IPfThere are infinitely many values oft > 0 for whichr(t) = 0g = 1:

This is not a good parameter choice.

If d � 2 (i.e.,� � 1

2
�2), then

IPfThere is at least one value oft > 0 for whichr(t) = 0g = 0:

With the CIR process, one can derive formulas under the assumption thatd = 4�
�2 is a positive

integer, and they are still correct even whend is not an integer.

For example, here is the distribution ofr(t) for fixed t > 0. Let r(0) � 0 be given. Take

X1(0) = 0; X2(0) = 0; : : : ; Xd�1(0) = 0; Xd(0) =
q
r(0):

For i = 1; 2; : : : ; d� 1,Xi(t) is normal with mean zero and variance

�(t; t) =
�2

4�
(1� e��t):
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Xd(t) is normal with mean

md(t) = e�
1

2
�t
q
r(0)

and variance�(t; t). Then

r(t) = �(t; t)
d�1X
i=1

 
Xi(t)p
�(t; t)

!2

| {z }
Chi-square withd� 1 =

4���2

�2 degrees of

freedom

+ X2

d(t)| {z }
Normal squared and independent of the other

term

(0.1)

Thusr(t) has anon-central chi-square distribution.

31.1 Equilibrium distribution of r(t)

As t!1, md(t)!0. We have

r(t) = �(t; t)
dX
i=1

 
Xi(t)p
�(t; t)

!2

:

As t!1, we have�(t; t) = �2

4�
, and so the limiting distribution ofr(t) is �2

4�
times a chi-square

with d = 4�
�2 degrees of freedom. The chi-square density with4�

�2 degrees of freedom is

f(y) =
1

22�=�2�
�
2�
�2

�y 2���2

�2 e�y=2:

We make the change of variabler = �2

4�
y. The limiting density forr(t) is

p(r) =
4�

�2
:

1

22�=�
2
�
�
2�
�2

� �4�
�2

r

� 2���2

�2

e
� 2�

�2 r

=

�
2�

�2

� 2�

�2 1

�
�
2�
�2

�r 2���2

�2 e
� 2�

�2 r:

We computed the mean and variance ofr(t) in Section 15.7.

31.2 Kolmogorov forward equation

Consider a Markov process governed by the stochastic differential equation

dX(t) = b(X(t)) dt+ �(X(t)) dW (t):
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-

h

0 y

Figure 31.2:The functionh(y)

Because we are going to apply the following analysis to the caseX(t) = r(t), we assume that
X(t) � 0 for all t.

We start atX(0) = x � 0 at time 0. ThenX(t) is random with densityp(0; t; x; y) (in the y
variable). Since 0 andx will not change during the following, we omit them and writep(t; y) rather
thanp(0; t; x; y). We have

IEh(X(t)) =

Z 1

0

h(y)p(t; y) dy

for any functionh.

The Kolmogorov forward equation (KFE) is a partial differential equation in the “forward” variables
t andy. We derive it below.

Leth(y) be a smooth function ofy � 0 which vanishes neary = 0 and for all large values ofy (see
Fig. 31.2). Itô’s formula implies

dh(X(t)) =
h
h0(X(t))b(X(t))+ 1

2
h00(X(t))�2(X(t))

i
dt+ h0(X(t))�(X(t)) dW (t);

so

h(X(t)) = h(X(0))+

Z t

0

h
h0(X(s))b(X(s))+ 1

2
h00(X(s))�2(X(s))

i
ds+Z t

0

h0(X(s))�(X(s)) dW (s);

IEh(X(t)) = h(X(0))+ IE

Z t

0

h
h0(X(s))b(X(s)) dt+ 1

2
h00(X(s))�2(X(s))

i
ds;
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or equivalently,

Z 1

0

h(y)p(t; y) dy = h(X(0))+

Z t

0

Z 1

0

h0(y)b(y)p(s; y) dy ds+

1

2

Z t

0

Z 1

0

h00(y)�2(y)p(s; y) dy ds:

Differentiate with respect tot to get

Z 1

0

h(y)pt(t; y) dy =

Z 1

0

h0(y)b(y)p(t; y) dy + 1

2

Z 1

0

h00(y)�2(y)p(t; y) dy:

Integration by parts yields

Z 1

0

h0(y)b(y)p(t; y) dy = h(y)b(y)p(t; y)

����
y=1

y=0| {z }
=0

�
Z 1

0

h(y)
@

@y
(b(y)p(t; y)) dy;

Z 1

0

h00(y)�2(y)p(t; y) dy = h0(y)�2(y)p(t; y)
����
y=1

y=0| {z }
=0

�
Z 1

0

h0(y)
@

@y

�
�2(y)p(t; y)

�
dy

= �h(y) @
@y

�
�2(y)p(t; y)

� ����y=1
y=0| {z }

=0

+

Z 1

0

h(y)
@2

@y2

�
�2(y)p(t; y)

�
dy:

Therefore,

Z 1

0

h(y)pt(t; y) dy = �
Z 1

0

h(y)
@

@y
(b(y)p(t; y)) dy + 1

2

Z 1

0

h(y)
@2

@y2

�
�2(y)p(t; y)

�
dy;

or equivalently,

Z 1

0

h(y)

"
pt(t; y) +

@

@y
(b(y)p(t; y))� 1

2

@2

@y2

�
�2(y)p(t; y)

�#
dy = 0:

This last equation holds for every functionh of the form in Figure 31.2. It implies that

pt(t; y) +
@

@y
((b(y)p(t; y))� 1

2

@2

@y2

�
�2(y)p(t; y)

�
= 0: (KFE)

If there were a place where (KFE) did not hold, then we could takeh(y) > 0 at that and nearby
points, but takeh to be zero elsewhere, and we would obtain

Z 1

0

h

"
pt +

@

@y
(bp)� 1

2

@2

@y2
(�2p)

#
dy 6= 0:



CHAPTER 31. Cox-Ingersoll-Ross model 309

If the processX(t) has an equilibrium density, it will be

p(y) = lim
t!1 p(t; y):

In order for this limit to exist, we must have

0 = lim
t!1 pt(t; y):

Letting t!1 in (KFE), we obtain the equilibrium Kolmogorov forward equation

@

@y
(b(y)p(y))� 1

2

@2

@y2

�
�2(y)p(y)

�
= 0:

When an equilibrium density exists, it is the unique solution to this equation satisfying

p(y) � 0 8y � 0;Z 1

0

p(y) dy = 1:

31.3 Cox-Ingersoll-Ross equilibrium density

We computed this to be

p(r) = Cr
2���2

�2 e
� 2�

�2 r;

where

C =

�
2�

�2

� 2�

�2 1

�
�
2�
�2

� :

We compute

p0(r) =
2�� �2

�2
:
p(r)

r
� 2�

�2
p(r)

=
2

�2r

�
�� 1

2
�2 � �r

�
p(r);

p00(r) = � 2

�2r2

�
�� 1

2
�2 � �r

�
p(r) +

2

�2r
(��)p(r) + 2

�2r

�
�� 1

2
�2 � �r

�
p0(r)

=
2

�2r

�
�1

r
(�� 1

2
�2 � �r)� � +

2

�2r
(�� 1

2
�2 � �r)2

�
p(r)

We want to verify the equilibrium Kolmogorov forward equation for the CIR process:

@

@r
((�� �r)p(r))� 1

2

@2

@r2
(�2rp(r)) = 0: (EKFE)
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Now

@

@r
((�� �r)p(r)) = ��p(r) + (�� �r)p0(r);

@2

@r2
(�2rp(r)) =

@

@r
(�2p(r) + �2rp0(r))

= 2�2p0(r) + �2rp00(r):

The LHS of (EKFE) becomes

��p(r) + (�� �r)p0(r)� �2p0(r)� 1

2
�2rp00(r)

= p(r)

�
�� + (�� �r � �2)

2

�2r
(�� 1

2
�2 � �r)

+
1

r
(�� 1

2
�2 � �r) + � � 2

�2r
(�� 1

2
�2 � �r)2

�

= p(r)

�
(�� 1

2
�2 � �r)

2

�2r
(�� 1

2
�2 � �r)

� 1

2
�2

2

�2r
(�� 1

2
�2 � �r)

+
1

r
(�� 1

2
�2 � �r)� 2

�2r
(�� 1

2
�2 � �r)2

�

= 0;

as expected.

31.4 Bond prices in the CIR model

The interest rate processr(t) is given by

dr(t) = (�� �r(t)) dt+ �
q
r(t) dW (t);

wherer(0) is given. The bond price process is

B(t; T ) = IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#
:

Because

exp

�
�
Z t

0

r(u) du

�
B(t; T ) = IE

"
exp

(
�
Z T

0

r(u) du

)����F(t)

#
;

the tower property implies that this is a martingale. The Markov property implies thatB(t; T ) is
random only through a dependence onr(t). Thus, there is a functionB(r; t; T ) of the three dummy
variablesr; t; T such that theprocessB(t; T ) is thefunctionB(r; t; T ) evaluated atr(t); t; T , i.e.,

B(t; T ) = B(r(t); t; T ):
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Becauseexp
n
� R t

0
r(u) du

o
B(r(t); t; T ) is a martingale, its differential has nodt term. We com-

pute

d

�
exp

�
�
Z t

0

r(u) du

�
B(r(t); t; T )

�

= exp

�
�
Z t

0

r(u) du

��
�r(t)B(r(t); t; T ) dt+Br(r(t); t; T ) dr(t) +

1

2
Brr(r(t); t; T ) dr(t) dr(t) + Bt(r(t); t; T ) dt

�
:

The expression in[: : : ] equals

= �rB dt +Br(�� �r) dt+ Br�
p
r dW

+ 1

2
Brr�

2r dt+ Bt dt:

Setting thedt term to zero, we obtain the partial differential equation

� rB(r; t; T ) +Bt(r; t; T )+ (�� �r)Br(r; t; T )+
1

2
�2rBrr(r; t; T ) = 0;

0 � t < T; r � 0: (4.1)

The terminal condition is
B(r; T; T ) = 1; r � 0:

Surprisingly, this equation has a closed form solution. Using the Hull & White model as a guide,
we look for a solution of the form

B(r; t; T ) = e�rC(t;T )�A(t;T );

whereC(T; T ) = 0; A(T; T ) = 0. Then we have

Bt = (�rCt �At)B;

Br = �CB; Brr = C2B;

and the partial differential equation becomes

0 = �rB + (�rCt �At)B � (�� �r)CB + 1

2
�2rC2B

= rB(�1 � Ct + �C + 1

2
�2C2)� B(At + �C)

We first solve the ordinary differential equation

�1� Ct(t; T ) + �C(t; T ) + 1

2
�2C2(t; T ) = 0; C(T; T ) = 0;

and then set

A(t; T ) = �

Z T

t
C(u; T ) du;
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soA(T; T ) = 0 and
At(t; T ) = ��C(t; T ):

It is tedious but straightforward to check that the solutions are given by

C(t; T ) =
sinh(
(T � t))


 cosh(
(T � t)) + 1

2
� sinh(
(T � t))

;

A(t; T ) = �2�

�2
log

2
4 
e

1

2
�(T�t)


 cosh(
(T � t)) + 1

2
� sinh(
(T � t))

3
5 ;

where


 = 1

2

q
�2 + 2�2; sinh u =

eu � e�u

2
; cosh u =

eu + e�u

2
:

Thus in the CIR model, we have

IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#
= B(r(t); t; T );

where
B(r; t; T ) = exp f�rC(t; T )� A(t; T )g ; 0 � t < T; r � 0;

andC(t; T ) andA(t; T ) are given by the formulas above. Because the coefficients in

dr(t) = (�� �r(t)) dt + �
q
r(t) dW (t)

do not depend ont, the functionB(r; t; T ) depends ont andT only through their difference� =

T � t. Similarly,C(t; T ) andA(t; T ) are functions of� = T � t. We writeB(r; �) instead of
B(r; t; T ), and we have

B(r; �) = exp f�rC(�)� A(�)g ; � � 0; r � 0;

where

C(�) =
sinh(
�)


 cosh(
�) + 1

2
� sinh(
�)

;

A(�) = �2�

�2
log

2
4 
e

1

2
��


 cosh(
�) + 1

2
� sinh(
�)

3
5 ;


 = 1

2

q
�2 + 2�2:

We have

B(r(0); T ) = IE exp

(
�
Z T

0

r(u) du

)
:

Now r(u) > 0 for eachu, almost surely, soB(r(0); T ) is strictly decreasing inT . Moreover,

B(r(0); 0) = 1;
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lim
T!1

B(r(0); T ) = IE exp

�
�
Z 1

0

r(u) du

�
= 0:

But also,
B(r(0); T ) = exp f�r(0)C(T )�A(T )g ;

so

r(0)C(0)+ A(0) = 0;

lim
T!1

[r(0)C(T ) +A(T )] =1;

and

r(0)C(T ) + A(T )

is strictly inreasing inT .

31.5 Option on a bond

The value at timet of an option on a bond in the CIR model is

v(t; r(t)) = IE

"
exp

(
�
Z T1

t
r(u) du

)
(B(T1; T2)�K)+

����F(t)

#
;

whereT1 is the expiration time of the option,T2 is the maturity time of the bond, and0 � t � T1 �
T2. As usual,exp

n
� R t

0
r(u) du

o
v(t; r(t)) is a martingale, and this leads to the partial differential

equation
�rv + vt + (�� �r)vr +

1

2
�2rvrr = 0; 0 � t < T1; r � 0:

(wherev = v(t; r).) The terminal condition is

v(T1; r) = (B(r; T1; T2)�K)+ ; r � 0:

Other European derivative securities on the bond are priced using the same partial differential equa-
tion with the terminal condition appropriate for the particular security.

31.6 Deterministic time change of CIR model

Process time scale:In this time scale, the interest rater(t) is given by the constant coefficient CIR
equation

dr(t) = (�� �r(t)) dt+ �
q
r(t) dW (t):

Real time scale:In this time scale, the interest rater̂(t̂) is given by a time-dependent CIR equation

dr̂(t̂) = (�̂(t̂)� �̂(t̂)r̂(t̂)) dt̂+ �̂(t̂)
q
r̂(t̂) dŴ(t̂):
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t : Process time

t = '(t̂)
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Figure 31.3:Time change function.

There is a strictly increasing time change functiont = '(t̂) which relates the two time scales (See
Fig. 31.3).

Let B̂(r̂; t̂; T̂) denote the price at real timêt of a bond with maturitŷT when the interest rate at time
t̂ is r̂. We want to set things up so

B̂(r̂; t̂; T̂) = B(r; t; T ) = e�rC(t;T )�A(t;T );

wheret = '(t̂); T = '(T̂ ), andC(t; T ) andA(t; T ) are as defined previously.

We need to determine the relationship betweenr̂ andr. We have

B(r(0); 0; T ) = IE exp

(
�
Z T

0

r(t) dt

)
;

B(r̂(0); 0; T̂) = IE exp

(
�
Z T̂

0

r̂(t̂) dt̂

)
:

With T = '(T̂), make the change of variablet = '(t̂), dt = '0(t̂) dt̂ in the first integral to get

B(r(0); 0; T ) = IE exp

(
�
Z T̂

0

r('(t̂))'0(t̂) dt̂

)
;

and this will beB(r̂(0); 0; T̂) if we set

r̂(t̂) = r('(t̂)) '0(t̂):
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31.7 Calibration

B̂(r̂(t̂); t̂; T̂) = B

 
r̂(t̂)

'0(t̂)
; '(t̂); '(T̂)

!

= exp

(
�r̂(t̂)C('(t̂); '(T̂))

'0(t̂)
� A('(t̂); '(T̂))

)

= exp
n
�r̂(t̂)Ĉ(t̂; T̂)� Â(t̂; T̂)

o
;

where

Ĉ(t̂; T̂) =
C('(t̂); '(T̂))

'0(t̂)

Â(t̂; T̂) = A('(t̂); '(T̂))

do not depend on̂t andT̂ only throughT̂ � t̂, since, in the real time scale, the model coefficients
are time dependent.

Suppose we knoŵr(0) andB̂(r̂(0); 0; T̂) for all T̂ 2 [0; T̂ �]. We calibrate by writing the equation

B̂(r̂(0); 0; T̂) = exp
n
�r̂(0)Ĉ(0; T̂)� Â(0; T̂)

o
;

or equivalently,

� log B̂(r̂(0); 0; T̂) =
r̂(0)

'0(0)
C('(0); '(T̂)) + A('(0); '(T̂)):

Take�; � and� so the equilibrium distribution ofr(t) seems reasonable. These values determine
the functionsC;A. Take'0(0) = 1 (we justify this in the next section). For eacĥT , solve the
equation for'(T̂ ):

� log B̂(r̂(0); 0; T̂) = r̂(0)C(0; '(T̂)) +A(0; '(T̂)): (*)

The right-hand side of this equation is increasing in the'(T̂) variable, starting at 0 at time0 and
having limit1 at1, i.e.,

r̂(0)C(0; 0)+ A(0; 0) = 0;

lim
T!1

[r̂(0)C(0; T )+A(0; T )] =1:

Since0 � � log B̂(r̂(0); 0; T̂) <1; (*) has a unique solution for eacĥT . For T̂ = 0, this solution
is'(0) = 0. If T̂1 < T̂2, then

� log B̂(r(0); 0; T̂1) < � log B̂(r(0); 0; T̂2);

so'(T̂1) < '(T̂2). Thus' is a strictly increasing time-change-function with the right properties.
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31.8 Tracking down'0(0) in the time change of the CIR model

Result for general term structure models:

� @

@T
logB(0; T )

����
T=0

= r(0):

Justification:

B(0; T ) = IE exp

(
�
Z T

0

r(u) du

)
:

� logB(0; T ) = � log IE exp

(
�
Z T

0

r(u) du

)

� @

@T
logB(0; T ) =

IE

�
r(T )e�

R T
0
r(u) du

�

IEe�
R T
0
r(u) du

� @

@T
logB(0; T )

����
T=0

= r(0):

In the real time scale associated with the calibration of CIR by time change, we write the bond price
as

B̂(r̂(0); 0; T̂);

thereby indicating explicitly the initial interest rate. The above says that

� @

@T̂
log B̂(r̂(0); 0; T̂)

����
T̂=0

= r̂(0):

The calibration of CIR by time change requires that we find a strictly increasing function' with
'(0) = 0 such that

� log B̂(r̂(0); 0; T̂) =
1

'0(0)
r̂(0)C('(T̂)) + A('(T̂)); T̂ � 0; (cal)

whereB̂(r̂(0); 0; T̂), determined by market data, is strictly increasing inT̂ , starts at 1 when̂T = 0,
and goes to zero aŝT!1. Therefore,� log B̂(r̂(0); 0; T̂) is as shown in Fig. 31.4.

Consider the function
r̂(0)C(T ) +A(T );

HereC(T ) andA(T ) are given by

C(T ) =
sinh(
T )


 cosh(
T ) + 1

2
� sinh(
T )

;

A(T ) = �2�

�2
log

2
4 
e

1

2
�T


 cosh(
T ) + 1

2
� sinh(
T )

3
5 ;


 = 1

2

q
�2 + 2�2:
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� log B̂(r̂(0); 0; T̂)

Figure 31.4:Bond price in CIR model
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'(T̂)

� log B̂(r̂(0); 0; T̂)

Figure 31.5:Calibration

The functionr̂(0)C(T ) + A(T ) is zero atT = 0, is strictly increasing inT , and goes to1 as
T!1. This is because the interest rate is positive in the CIR model (see last paragraph of Section
31.4).

To solve (cal), let us first consider the related equation

� log B̂(r̂(0); 0; T̂) = r̂(0)C('(T̂)) +A('(T̂)): (cal’)

Fix T̂ and define'(T̂) to be the uniqueT for which (see Fig. 31.5)

� log B̂(r̂(0); 0; T̂) = r̂(0)C(T ) +A(T )

If T̂ = 0, then'(T̂) = 0. If T̂1 < T̂2, then'(T̂1) < '(T̂2). As T̂!1, '(T̂ )!1. We have thus
defined a time-change function' which has all the right properties, except it satisfies (cal’) rather
than (cal).
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We conclude by showing that'0(0) = 1 so' also satisfies (cal). From (cal’) we compute

r̂(0) = � @

@T̂
log B̂(r̂(0); 0; T̂)

����
T̂=0

= r̂(0)C0('(0))'0(0) + A0('(0))'0(0)

= r̂(0)C0(0)'0(0) + A0(0)'0(0):

We show in a moment thatC 0(0) = 1, A0(0) = 0, so we have

r̂(0) = r̂(0)'0(0):

Note that̂r(0) is the initial interest rate, observed in the market, and is striclty positive. Dividing by
r̂(0), we obtain

'0(0) = 1:

Computation ofC 0(0):

C0(�) =
1�


 cosh(
�) + 1

2
� sinh(
�)

�2
�

 cosh(
�)

�

 cosh(
�) + 1

2
� sinh(
�)

�

� sinh(
�)
�

2 sinh(
�) + 1

2
�
 cosh(
�)

��

C0(0) =
1


2

h

(
+ 0)� 0(0 + 1

2
�
)

i
= 1:

Computation ofA0(0):

A0(�) = �2�

�2

"

 cosh(
�) + 1

2
� sinh(
�)


e��=2

#

� 1�

 cosh(
�) + 1

2
� sinh(
�)

�
2

�
�


2
e��=2

�

 cosh(
�) + 1

2
� sinh(
�)

�

� 
e��=2
�

2 sinh(
�) + 1

2
�
 cosh(
�)

��
;

A0(0) = �2�

�2

�

 + 0




�
1

(
 + 0)2

�
�


2
(
 + 0)� 
(0 + 1

2
�
)

�

= �2�

�2
� 1


2

"
�
2

2
� 1

2
�
2

#

= 0:
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A two-factor model (Duffie & Kan)

Let us define:

X1(t) = Interest rate at timet

X2(t) = Yield at timet on a bond maturing at timet + �0

Let X1(0) > 0, X2(0) > 0 be given, and letX1(t) andX2(t) be given by the coupled stochastic
differential equations

dX1(t) = (a11X1(t) + a12X2(t) + b1) dt+ �1

q
�1X1(t) + �2X2(t) + � dW1(t); (SDE1)

dX2(t) = (a21X1(t) + a22X2(t) + b2) dt+ �2

q
�1X1(t) + �2X2(t) + � (� dW1(t) +

q
1� �2 dW2(t));

(SDE2)

whereW1 andW2 are independent Brownian motions. To simplify notation, we define

Y (t)
4
= �1X1(t) + �2X2(t) + �;

W3(t)
4
= �W1(t) +

q
1� �2W2(t):

ThenW3 is a Brownian motion with

dW1(t) dW3(t) = � dt;

and

dX1 dX1 = �2
1
Y dt; dX2 dX2 = �2

2
Y dt; dX1 dX2 = ��1�2Y dt:

319
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32.1 Non-negativity ofY

dY = �1 dX1 + �2 dX2

= (�1a11X1 + �1a12X2 + �1b1) dt+ (�2a21X1 + �2a22X2 + �2b2) dt

+
p
Y (�1�1 dW1 + �2��2 dW1 + �2

q
1� �2�2 dW2)

= [(�1a11 + �2a21)X1 + (�1a12 + �2a22)X2] dt+ (�1b1 + �2b2) dt

+ (�21�
2

1 + 2�1�2��1�2 + �22�
2

2)
1

2

q
Y (t) dW4(t)

where

W4(t) =
(�1�1 + �2��2)W1(t) + �2

p
1� �2�2W2(t)q

�2
1
�2
1
+ 2�1�2��1�2 + �2

2
�2
2

is a Brownian motion. We shall choose the parameters so that:

Assumption 1: For some
, �1a11 + �2a21 = 
�1; �1a12 + �2a22 = 
�2:

Then

dY = [
�1X1 + 
�2X2 + �
] dt+ (�1b1 + �2b2 � �
) dt

+ (�2
1
�2
1
+ 2�1�2��1�2 + �2

2
�2
2
)
1

2

p
Y dW4

= 
Y dt+ (�1b1 + �2b2 � �
) dt+ (�21�
2

1 + 2�1�2��1�2 + �22�
2

2)
1

2

p
Y dW4:

From our discussion of the CIR process, we recall thatY will stay strictly positive provided that:

Assumption 2: Y (0) = �1X1(0) + �2X2(0) + � > 0;

and

Assumption 3: �1b1 + �2b2 � 
� � 1

2
(�21�

2

1 + 2�1�2��1�2 + �22�
2

2):

Under Assumptions 1,2, and 3,

Y (t) > 0; 0 � t <1; almost surely,

and (SDE1) and (SDE2) make sense. These can be rewritten as

dX1(t) = (a11X1(t) + a12X2(t) + b1) dt+ �1

q
Y (t) dW1(t); (SDE1’)

dX2(t) = (a21X1(t) + a22X2(t) + b2) dt+ �2

q
Y (t) dW3(t): (SDE2’)
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32.2 Zero-coupon bond prices

The value at timet � T of a zero-coupon bond paying $1 at timeT is

B(t; T ) = IE

"
exp

(
�
Z T

t
X1(u) du

) ����F(t)

#
:

Since the pair(X1; X2) of processes is Markov, this is random only through a dependence on
X1(t); X2(t). Since the coefficients in (SDE1) and (SDE2) do not depend on time, the bond price
depends ont andT only through their difference� = T � t. Thus, there is a functionB(x1; x2; �)

of the dummy variablesx1; x2 and� , so that

B(X1(t); X2(t); T � t) = IE

"
exp

(
�
Z T

t
X1(u) du

) ����F(t)

#
:

The usual tower property argument shows that

exp

�
�
Z t

0

X1(u) du

�
B(X1(t); X2(t); T � t)

is a martingale. We compute its stochastic differential and set thedt term equal to zero.

d

�
exp

�
�
Z t

0

X1(u) du

�
B(X1(t); X2(t); T � t)

�

= exp

�
�
Z t

0

X1(u) du

��
�X1B dt +Bx1 dX1 + Bx2 dX2 � B� dt

+ 1

2
Bx1x1 dX1 dX1 + Bx1x2 dX1 dX2 +

1

2
Bx2x2 dX2 dX2

�

= exp

�
�
Z t

0

X1(u) du

���
�X1B + (a11X1 + a12X2 + b1)Bx1 + (a21X1 + a22X2 + b2)Bx2 � B�

+ 1

2
�2
1
Y Bx1x1 + ��1�2Y Bx1x2 +

1

2
�2
2
Y Bx2x2

�
dt

+ �1
p
Y Bx1 dW1 + �2

p
Y Bx2 dW3

�

The partial differential equation forB(x1; x2; �) is

�x1B�B�+(a11x1+a12x2+b1)Bx1+(a21x1+a22x2+b2)Bx2+
1

2
�21(�1x1+�2x2+�)Bx1x1

+ ��1�2(�1x1 + �2x2 + �)Bx1x2 +
1

2
�22(�1x1 + �2x2 + �)Bx2x2 = 0: (PDE)

We seek a solution of the form

B(x1; x2; �) = exp f�x1C1(�)� x2C2(�)�A(�)g ;

valid for all � � 0 and allx1; x2 satisfying

�1x1 + �2x2 + � > 0: (*)
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We must have
B(x1; x2; 0) = 1; 8x1; x2 satisfying (*);

because� = 0 corresponds tot = T . This implies the initial conditions

C1(0) = C2(0) = A(0) = 0: (IC)

We want to findC1(�); C2(�); A(�) for � > 0. We have

B� (x1; x2; �) =
��x1C01(�)� x2C

0
2(�)� A0(�)

�
B(x1; x2; �);

Bx1(x1; x2; �) = �C1(�)B(x1; x2; �);

Bx2(x1; x2; �) = �C2(�)B(x1; x2; �);

Bx1x1(x1; x2; �) = C2

1(�)B(x1; x2; �);

Bx1x2(x1; x2; �) = C1(�)C2(�)B(x1; x2; �);

Bx2x2(x1; x2; �) = C2

2(�)B(x1; x2; �):

(PDE) becomes

0 = B(x1; x2; �)

�
�x1 + x1C

0
1(�) + x2C

0
2(�) +A0(�)� (a11x1 + a12x2 + b1)C1(�)

� (a21x1 + a22x2 + b2)C2(�)

+ 1

2
�21(�1x1 + �2x2 + �)C2

1(�) + ��1�2(�1x1 + �2x2 + �)C1(�)C2(�)

+ 1

2
�22(�1x1 + �2x2 + �)C2

2(�)

�

= x1B(x1; x2; �)

�
� 1 + C01(�)� a11C1(�)� a21C2(�)

+ 1

2
�2
1
�1C

2

1
(�) + ��1�2�1C1(�)C2(�) +

1

2
�2
2
�1C

2

2
(�)

�

+ x2B(x1; x2; �)

�
C02(�)� a12C1(�)� a22C2(�)

+ 1

2
�21�2C

2

1(�) + ��1�2�2C1(�)C2(�) +
1

2
�22�2C

2

2(�)

�

+ B(x1; x2; �)

�
A0(�)� b1C1(�)� b2C2(�)

+ 1

2
�2
1
�C2

1
(�) + ��1�2�C1(�)C2(�) +

1

2
�2
2
�C2

2
(�)

�

We get three equations:

C01(�) = 1 + a11C1(�) + a21C2(�)� 1

2
�21�1C

2

1(�)� ��1�2�1C1(�)C2(�)� 1

2
�22�1C

2

2(�);

(1)

C1(0) = 0;

C0
2
(�) = a12C1(�) + a22C2(�)� 1

2
�2
1
�2C

2

1
(�)� ��1�2�2C1(�)C2(�)� 1

2
�2
2
�2C

2

2
(�); (2)

C2(0) = 0;

A0(�) = b1C1(�) + b2C2(�)� 1

2
�21�C

2

1(�)� ��1�2�C1(�)C2(�)� 1

2
�22�C

2

2(�); (3)

A(0) = 0;
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We first solve (1) and (2) simultaneously numerically, and then integrate (3) to obtain the function
A(�).

32.3 Calibration

Let �0 > 0 be given. The value at timet of a bond maturing at timet+ �0 is

B(X1(t); X2(t); �0) = expf�X1(t)C1(�0)�X2(t)C2(�0)�A(�0)g

and the yield is

� 1

�0
logB(X1(t); X2(t); �0) =

1

�0
[X1(t)C1(�0) +X2(t)C2(�0) + A(�0)] :

But we have set up the model so thatX2(t) is the yield at timet of a bond maturing at timet+ �0.
Thus

X2(t) =
1

�0
[X1(t)C1(�0) +X2(t)C2(�0) + A(�0)] :

This equation must hold for every value ofX1(t) andX2(t), which implies that

C1(�0) = 0; C2(�0) = �0; A(�) = 0:

We must choose the parameters

a11; a12; b1; a21; a22; b2; �1; �2; �; �1; �; �2;

so that these three equations are satisfied.
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Chapter 33

Change of nuḿeraire

Consider a Brownian motion driven market model with time horizonT �. For now, we will have
one asset, which we call a “stock” even though in applications it will usually be an interest rate
dependent claim. The price of the stock is modeled by

dS(t) = r(t) S(t) dt + �(t)S(t) dW (t); (0.1)

where the interest rate processr(t) and the volatility process�(t) are adapted to some filtration
fF(t); 0 � t � T �g. W is a Brownian motion relative to this filtration, butfF(t); 0 � t � T �g
may be larger than the filtration generated byW .

This isnot a geometric Brownian motion model. We are particularly interested in the case that the
interest rate is stochastic, given by a term structure model we have not yet specified.

We shall work only under the risk-neutral measure, which is reflected by the fact that the mean rate
of return for the stock isr(t).

We define theaccumulation factor

�(t) = exp

�Z t

0

r(u) du

�
;

so that the discounted stock priceS(t)
�(t)

is a martingale. Indeed,

d

�
S(t)

�(t)

�
=
S(t)

�(t)
�(t) dW (t):

The zero-coupon bond prices are given by

B(t; T ) = IE

"
exp

(
�
Z T

t
r(u) du

) ����F(t)

#

= IE

�
�(t)

�(T )

����F(t)

�
;
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so

B(t; T )

�(t)
= IE

�
1

�(T )

����F(t)

�

is also a martingale (tower property).

TheT -forward priceF (t; T ) of the stock is the price set at timet for delivery of one share of stock
at timeT with payment at timeT . The value of the forward contract at timet is zero, so

0 = IE

�
�(t)

�(T )
(S(T )� F (t; T ))

����F(t)

�

= �(t)IE

�
S(T )

�(T )

����Ft
�
� F (t; T )IE

�
�(t)

�(T )

����F(t)

�

= �(t)
S(t)

�(t)
� F (t; T )B(t; T )

= S(t)� F (t; T )B(t; T )

Therefore,

F (t; T ) =
S(t)

B(t; T )
:

Definition 33.1 (Numéraire) Any asset in the model whose price is always strictly positive can be
taken as the num´eraire. We then denominate all other assets in units of this num´eraire.

Example 33.1 (Money market as num´eraire) The money market could be the num´eraire. At timet, the
stock is worthS(t)

�(t)
units of money market and theT -maturity bond is worthB(t;T )

�(t)
units of money market.

Example 33.2 (Bond as num´eraire) TheT -maturity bond could be the num´eraire. At timet � T , the stock
is worthF (t; T ) units ofT -maturity bond and theT -maturity bond is worth 1 unit.

We will say that a probability measureIPN is risk-neutral for the num´eraireN if every asset price,
divided byN , is a martingale underIPN . The original probability measureIP is risk-neutral for the
numéraire� (Example 33.1).

Theorem 0.71 LetN be a num´eraire, i.e., the price process for some asset whose price is always
strictly positive. ThenIPN defined by

IPN (A) =
1

N(0)

Z
A

N(T �)
�(T �)

dIP; 8A 2 F(T �);

is risk-neutral forN .
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Note: IP andIPN are equivalent, i.e., have the same probability zero sets, and

IP (A) = N(0)

Z
A

�(T �)
N(T �)

dIPN ; 8A 2 F(T �):

Proof: BecauseN is the price process for some asset,N=� is a martingale underIP . Therefore,

IPN (
) =
1

N(0)

Z



N(T �)
�(T �)

dIP

=
1

N(0)
:IE

�
N(T �)
�(T �)

�

=
1

N(0)

N(0)

�(0)

= 1;

and we see thatIPN is a probability measure.

Let Y be an asset price. UnderIP , Y=� is a martingale. We must show that underIPN , Y=N is
a martingale. For this, we need to recall how to combine conditional expectations with change of
measure (Lemma 1.54). If0 � t � T � T � andX isF(T )-measurable, then

IEN

�
X

����F(t)

�
=
N(0)�(t)

N(t)
IE

�
N(T )

N(0)�(T )
X

����F(t)

�

=
�(t)

N(t)
IE

�
N(T )

�(T )
X

����F(t)

�
:

Therefore,

IEN

�
Y (T )

N(T )

����F(t)

�
=

�(t)

N(t)
IE

�
N(T )

�(T )

Y (T )

N(T )

����F(t)

�

=
�(t)

N(t)

Y (t)

�(t)

=
Y (t)

N(t)
;

which is the martingale property forY=N underIPN .

33.1 Bond price as nuḿeraire

Fix T 2 (0; T �] and letB(t; T ) be the num´eraire. The risk-neutral measure for this num´eraire is

IPT (A) =
1

B(0; T )

Z
A

B(T; T )

�(T )
dIP

=
1

B(0; T )

Z
A

1

�(T )
dIP 8A 2 F(T ):
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Because this bond is not defined after timeT , we change the measure only “up to timeT ”, i.e.,
using 1

B(0;T )
B(T;T )
�(T )

and only forA 2 F(T ).

IPT is called theT -forward measure.Denominated in units ofT -maturity bond, the value of the
stock is

F (t; T ) =
S(t)

B(t; T )
; 0 � t � T:

This is a martingale underIPT , and so has a differential of the form

dF (t; T ) = �F (t; T )F (t; T ) dWT (t); 0 � t � T; (1.1)

i.e., a differential without adt term. The processfWT ; 0 � t � Tg is a Brownian motion under
IPT . We may assume without loss of generality that�F (t; T ) � 0.

We writeF (t) rather thanF (t; T ) from now on.

33.2 Stock price as nuḿeraire

Let S(t) be the num´eraire. In terms of this num´eraire, the stock price is identically 1. The risk-
neutral measure under this num´eraire is

IPS(A) =
1

S(0)

Z
A

S(T �)
�(T �)

dIP; 8A 2 F(T �):

Denominated in shares of stock, the value of theT -maturity bond is

B(t; T )

S(t)
=

1

F (t)
:

This is a martingale underIPS , and so has a differential of the form

d

�
1

F (t)

�
= 
(t; T )

�
1

F (t)

�
dWS(t); (2.1)

wherefWS(t); 0 � t � T �g is a Brownian motion underIPS . We may assume without loss of
generality that
(t; T )� 0.

Theorem 2.72 The volatility
(t; T ) in (2.1) is equal to the volatility�F (t; T ) in (1.1). In other
words, (2.1) can be rewritten as

d

�
1

F (t)

�
= �F (t; T )

�
1

F (t)

�
dWS(t); (2.1’)
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Proof: Let g(x) = 1=x, sog0(x) = �1=x2; g00(x) = 2=x3. Then

d

�
1

F (t)

�
= dg(F (t))

= g0(F (t)) dF (t) + 1

2
g00(F (t)) dF (t) dF (t)

= � 1

F 2(t)
�F (t; T )F (t; T ) dWT (t) +

1

F 3(t)
�2F (t; T )F

2(t; T ) dt

=
1

F (t)

h
��F (t; T ) dWT (t) + �2F (t; T ) dt

i

= �F (t; T )

�
1

F (t)

�
[�dWT (t) + �F (t; T ) dt]:

UnderIPT ; �WT is a Brownian motion. Under this measure,1
F (t)

has volatility�F (t; T ) and mean

rate of return�2F (t; T ). The change of measure fromIPT to IPS makes 1

F (t)
a martingale, i.e., it

changes the mean return to zero, but the change of measure does not affect the volatility. Therefore,

(t; T ) in (2.1) must be�F (t; T ) andWS must be

WS(t) = �WT (t) +

Z t

0

�F (u; T ) du:

33.3 Merton option pricing formula

The price at time zero of a European call is

V (0) = IE

�
1

�(T )
(S(T )�K)+

�

= IE

�
S(T )

�(T )
1fS(T )>Kg

�
�KIE

�
1

�(T )
1fS(T )>Kg

�

= S(0)

Z
fS(T )>Kg

S(T )

S(0)�(T )
dIP �KB(0; T )

Z
fS(T )>Kg

1

B(0; T )�(T )
dIP

= S(0)IPSfS(T ) > Kg �KB(0; T )IPTfS(T ) > Kg
= S(0)IPSfF (T ) > Kg �KB(0; T )IPTfF (T ) > Kg
= S(0)IPS

�
1

F (T )
<

1

K

�
�KB(0; T )IPTfF (T ) > Kg:
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This is a completely general formula which permits computation as soon as we specify�F (t; T ). If
we assume that�F (t; T ) is a constant�F , we have the following:

1

F (T )
=
B(0; T )

S(0)
exp

n
�FWS(T )� 1

2
�2FT

o
;

IPS

�
1

F (T )
<

1

K

�
= IPS

�
�FWS(T )� 1

2
�2FT < log

S(0)

KB(0; T )

�

= IPS

�
WS(T )p

T
<

1

�F
p
T
log

S(0)

KB(0; T )
+ 1

2
�F
p
T

�

= N(�1);

where

�1 =
1

�F
p
T

�
log

S(0)

KB(0; T )
+ 1

2
�2FT

�
:

Similarly,

F (T ) =
S(0)

B(0; T )
exp

n
�FWT (T )� 1

2
�2FT

o
;

IPT fF (T ) > Kg = IPT

�
�FWT (T )� 1

2
�2FT > log

KB(0; T )

S(0)

�

= IPT

�
WT (T )p

T
>

1

�F
p
T

�
log

KB(0; T )

S(0)
+ 1

2
�2FT

��

= IPT

��WT (T )p
T

<
1

�F
p
T

�
log

S(0)

KB(0; T )
� 1

2
�2FT

��

= N(�2);

where

�2 =
1

�F
p
T

�
log

S(0)

KB(0; T )
� 1

2
�2FT

�
:

If r is constant, thenB(0; T ) = e�rT ,

�1 =
1

�F
p
T

�
log

S(0)

K
+ (r+ 1

2
�2F )T

�
;

�2 =
1

�F
p
T

�
log

S(0)

K
+ (r� 1

2
�2F )T

�
;

and we have the usual Black-Scholes formula. Whenr is not constant, we still have the explicit
formula

V (0) = S(0)N(�1)�KB(0; T )N(�2):
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As this formula suggests, if�F is constant, then for0 � t � T , the value of a European call expiring
at timeT is

V (t) = S(t)N(�1(t))�KB(t; T )N(�2(t));

where

�1(t) =
1

�F
p
T � t

�
log

F (t)

K
+ 1

2
�2F (T � t)

�
;

�2(t) =
1

�F
p
T � t

�
log

F (t)

K
� 1

2
�2F (T � t)

�
:

This formula also suggests a hedge: at each timet, hold N(�1(t)) shares of stock and short
KN(�2(t)) bonds.

We want to verify that this hedge isself-financing.Suppose we begin with $V (0) and at each time
t holdN(�1(t)) shares of stock. We short bonds as necessary to finance this. Will the position in
the bond always be�KN(�2(t))? If so, the value of the portfolio will always be

S(t)N(�1(t))�KB(t; T )N(�2(t)) = V (t);

and we will have a hedge.

Mathematically, this question takes the following form. Let

�(t) = N(�1(t)):

At time t, hold�(t) shares of stock. IfX(t) is the value of the portfolio at timet, thenX(t) �
�(t)S(t) will be invested in the bond, so the number of bonds owned isX(t)��(t)

B(t;T )
S(t) and the

portfolio value evolves according to

dX(t) = �(t) dS(t) +
X(t)��(t)

B(t; T )
S(t) dB(t; T ): (3.1)

The value of the option evolves according to

dV (t) = N(�1(t)) dS(t) + S(t) dN(�1(t)) + dS(t) dN(�1(t))

�KN(�2(t)) dB(t; T )�K dB(t; T ) dN(�2(t))�KB(t; T ) dN(�2(t)): (3.2)

If X(0) = V (0), will X(t) = V (t) for 0 � t � T?

Formulas (3.1) and (3.2) are difficult to compare, so we simplify them by a change of num´eraire.
This change is justified by the following theorem.

Theorem 3.73 Changes of num´eraire affect portfolio values in the way you would expect.

Proof: Suppose we have a model withk assets with pricesS1; S2; : : : ; Sk. At each timet, hold
�i(t) shares of asseti, i = 1; 2; : : : ; k � 1, and invest the remaining wealth in assetk. Begin with
a nonrandom initial wealthX(0), and letX(t) be the value of the portfolio at timet. The number
of shares of assetk held at timet is

�k(t) =

�
X(t)�Pk�1

i=1 �i(t)Si(t)
�

Sk(t)
;
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andX evolves according to the equation

dX =
k�1X
i=1

�i dSi +

 
X �

k�1X
i=1

�iSi

!
dSk

Sk

=
kX
i=1

�i dSi:

Note that

Xk(t) =
kX
i=1

�i(t)Si(t);

and we only get to specify�1; : : : ;�k�1, not�k , in advance.

LetN be a num´eraire, and define

bX(t) =
X(t)

N(t)
; cSi(t) = Si(t)

N(t)
; i = 1; 2; : : : ; k:

Then

d bX =
1

N
dX +X d

�
1

N

�
+ dX d

�
1

N

�

=
1

N

kX
i=1

�i dSi +

 
kX
i=1

�iSi

!
d

�
1

N

�
+

kX
i=1

�i dSi d

�
1

N

�

=
kX
i=1

�i

�
1

N
dSi + Sid

�
1

N

�
+ dSi d

�
1

N

��

=
kX
i=1

�i dcSi:
Now

�k =

�
X �Pk�1

i=1 �iSi

�
Sk

=

�
X=N �Pk�1

i=1 �iSi=N
�

Sk=N

=
bX �Pk�1

i=1 �i
cSicSk :

Therefore,

d bX =
kX
i=1

�i dcSi +
 bX �

k�1X
i=1

�i
cSi
!
dcSkcSk
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This is the formula for the evolution of a portfolio which holds�i shares of asseti, i = 1; 2; : : : ; k�
1, and all assets and the portfolio are denominated in units ofN .

We return to the European call hedging problem (comparison of (3.1) and (3.2)), but we now use
the zero-coupon bond as num´eraire. We still hold�(t) = N(�1(t)) shares of stock at each timet.
In terms of the new num´eraire, the asset values are

Stock:
S(t)

B(t; T )
= F (t);

Bond:
B(t; T )

B(t; T )
= 1:

The portfolio value evolves according to

d bX(t) = �(t) dF (t) + ( bX(t)��(t))
d(1)

1
= �(t) dF (t): (3.1’)

In the new num´eraire, the option value formula

V (t) = N(�1(t))S(t)�KB(t; T )N(�2(t))

becomes bV (t) =
V (t)

B(t; T )
= N(�1(t))F (t)�KN(�2(t));

and

d bV = N(�1(t)) dF (t) + F (t) dN(�1(t)) + dN(�1(t)) dF (t)�K dN(�2(t)):

(3.2’)

To show that the hedge works, we must show that

F (t) dN(�1(t)) + dN(�1(t)) dF (t)�K dN(�2(t)) = 0:

This is a homework problem.
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Chapter 34

Brace-Gatarek-Musiela model

34.1 Review of HJM under risk-neutral IP

f(t; T ) = Forward rate at timet for borrowing at timeT:

df(t; T ) = �(t; T )��(t; T ) dt + �(t; T ) dW (t);

where

��(t; T ) =
Z T

t
�(t; u) du

The interest rate isr(t) = f(t; t). The bond prices

B(t; T ) = IE

"
exp

(
�
Z T

t
r(u) du

)����F(t)

#

= exp

(
�
Z T

t
f(t; u) du

)

satisfy
dB(t; T ) = r(t) B(t; T ) dt� ��(t; T )| {z }

volatility of T -maturity bond.

B(t; T ) dW (t):

To implement HJM, you specify a function

�(t; T ); 0 � t � T:

A simple choice we would like to use is

�(t; T ) = �f(t; T )

where� > 0 is the constant “volatility of the forward rate”. This is not possible because it leads to

��(t; T ) = �

Z T

t
f(t; u) du;

df(t; T ) = �2f(t; T )

 Z T

t
f(t; u) du

!
dt+ �f(t; T ) dW (t);
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and Heath, Jarrow and Morton show that solutions to this equation explode beforeT .

The problem with the above equation is that thedt term grows like the square of the forward rate.
To see what problem this causes, consider the similar deterministic ordinary differential equation

f 0(t) = f2(t);

wheref(0) = c > 0. We have

f 0(t)
f2(t)

= 1;

� d

dt

1

f(t)
= 1;

� 1

f(t)
+

1

f(0)
=

Z t

0

1 du = t

� 1

f(t)
= t� 1

f(0)
= t� 1=c =

ct� 1

c
;

f(t) =
c

1� ct
:

This solution explodes att = 1=c.

34.2 Brace-Gatarek-Musiela model

New variables:

Current timet

Time to maturity� = T � t:

Forward rates:

r(t; �) = f(t; t+ �); r(t; 0) = f(t; t) = r(t); (2.1)

@

@�
r(t; �) =

@

@T
f(t; t+ �) (2.2)

Bond prices:

D(t; �) = B(t; t + �) (2.3)

= exp

�
�
Z t+�

t
f(t; v) dv

�

(u = v � t; du = dv) : = exp

�
�
Z �

0

f(t; t+ u) du

�

= exp

�
�
Z �

0

r(t; u) du

�
@

@�
D(t; �) =

@

@T
B(t; t + �) = �r(t; �)D(t; �): (2.4)
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We will now write�(t; �) = �(t; T � t) rather than�(t; T ). In this notation, the HJM model is

df(t; T ) = �(t; �)��(t; �) dt + �(t; �) dW (t); (2.5)

dB(t; T ) = r(t)B(t; T ) dt� ��(t; �)B(t; T ) dW (t); (2.6)

where

��(t; �) =
Z �

0

�(t; u) du; (2.7)

@

@�
��(t; �) = �(t; �): (2.8)

We now derive the differentials ofr(t; �) andD(t; �), analogous to (2.5) and (2.6) We have

dr(t; �) = df(t; t+ �)| {z }
differential applies only to first argument

+
@

@T
f(t; t+ �) dt

(2.5),(2.2)
= �(t; �)��(t; �) dt+ �(t; �) dW (t) +

@

@�
r(t; �) dt

(2.8)
=

@

@�

h
r(t; �) + 1

2
(��(t; �))2

i
dt+ �(t; �) dW (t): (2.9)

Also,

dD(t; �) = dB(t; t+ �)| {z }
differential applies only to first argument

+
@

@T
B(t; t+ �) dt

(2.6),(2.4)
= r(t) B(t; t + �) dt� ��(t; �)B(t; t+ �) dW (t)� r(t; �)D(t; �) dt

(2.1)
= [r(t; 0)� r(t; �)]D(t; �) dt� ��(t; �)D(t; �) dW (t): (2.10)

34.3 LIBOR

Fix � > 0 (say,� = 1

4
year). $D(t; �) invested at timet in a (t+ �)-maturity bond grows to $ 1 at

time t + �. L(t; 0) is defined to be the corresponding rate of simple interest:

D(t; �)(1 + �L(t; 0)) = 1;

1 + �L(t; 0) =
1

D(t; �)
= exp

(Z @

0

r(t; u) du

)
;

L(t; 0) =
exp

nR @
0
r(t; u) du

o
� 1

�
:



338

34.4 Forward LIBOR

� > 0 is still fixed. At timet, agree to invest $D(t;�+�)
D(t;�)

at timet + � , with payback of $1 at time

t + � + �. Can do this at timet by shortingD(t;�+�)

D(t;�)
bonds maturing at timet + � and going long

one bond maturing at timet + � + �. The value of this portfolio at timet is

�D(t; � + �)

D(t; �)
D(t; �) +D(t; � + �) = 0:

Theforward LIBORL(t; �) is defined to be the simple (forward) interest rate for this investment:

D(t; � + �)

D(t; �)
(1 + �L(t; �)) = 1;

1 + �L(t; �) =
D(t; �)

D(t; � + �)
=

exp f� R �
0
r(t; u) dug

exp
n
� R �+�

0
r(t; u) du

o

= exp

(Z �+�

�
r(t; u) du

)
;

L(t; �) =
exp

nR �+�
� r(t; u) du

o
� 1

�
: (4.1)

Connection with forward rates:

@

@�
exp

(Z �+�

�
r(t; u) du

) ����
�=0

= r(t; � + �) exp

(Z �+�

�
r(t; u) du

)����
�=0

= r(t; �);

so

f(t; t+ �) = r(t; �) = lim
�#0

exp
nR �+�

� r(t; u) du
o
� 1

�

L(t; �) =
exp

nR �+�
� r(t; u) du

o
� 1

�
; � > 0 fixed:

(4.2)

r(t; �) is the continuously compounded rate.L(t; �) is the simple rate over a period of duration�.

We cannot have a log-normal model forr(t; �) because solutions explode as we saw in Section 34.1.
For fixed positive�, wecanhave a log-normal model forL(t; �).

34.5 The dynamics ofL(t; � )

We want to choose�(t; �); t � 0; � � 0, appearing in (2.5) so that

dL(t; �) = (: : :) dt+ L(t; �) 
(t; �) dW (t)
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for some
(t; �); t � 0; � � 0. This is the BGM model, and is a subclass of HJM models,
corresponding to particular choices of�(t; �).

Recall (2.9):

dr(t; �) =
@

@u

h
r(t; u) + 1

2
(��(t; u))2

i
dt + �(t; u) dW (t):

Therefore,

d

 Z �+�

�
r(t; u) du

!
=

Z �+�

�
dr(t; u) du (5.1)

=

Z �+�

�

@

@u

h
r(t; u) + 1

2
(��(t; u))2

i
du dt+

Z �+�

�
�(t; u) du dW (t)

=
h
r(t; � + �)� r(t; �) + 1

2
(��(t; � + �))2 � 1

2
(��(t; �))2

i
dt

+ [��(t; � + �)� ��(t; �)] dW (t)

and

dL(t; �)
(4:1)
= d

2
4exp

nR �+�
� r(t; u) du

o
� 1

�

3
5

=
1

�
exp

(Z �+�

�
r(t; u) du

)
d

Z �+�

�
r(t; u) du

+
1

2�
exp

(Z �+�

�
r(t; u) du

)  
d

Z �+�

�
r(t; u) du

!2

(4.1), (5.1)
=

1

�
[1 + �L(t; �)]� (5.2)

�
�
[r(t; � + �)� r(t; �) + 1

2
(��(t; � + �))2 � 1

2
(��(t; �))2] dt

+ [��(t; � + �)� ��(t; �)] dW (t)

+ 1

2
[��(t; � + �)� ��(t; �)]2 dt

�

=
1

�
[1 + �L(t; �)]

�
[r(t; � + �)� r(t; �)] dt

+ ��(t; � + �)[��(t; � + �)� ��(t; �)] dt

= +[��(t; � + �)� ��(t; �)] dW (t)

�
:
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But

@

@�
L(t; �) =

@

@�

2
4exp

nR �+�
� r(t; u) du

o
� 1

�

3
5

= exp

(Z �+�

�
r(t; u) du

)
:[r(t; � + �)� r(t; �)]

=
1

�
[1 + �L(t; �)][r(t; � + �)� r(t; �)]:

Therefore,

dL(t; �) =
@

@�
L(t; �) dt+

1

�
[1 + �L(t; �)][��(t; � + �)� ��(t; �)]:[��(t; � + �) dt+ dW (t)]:

Take
(t; �) to be given by


(t; �)L(t; �) =
1

�
[1 + �L(t; �)][��(t; � + �)� ��(t; �)]: (5.3)

Then

dL(t; �) = [
@

@�
L(t; �) + 
(t; �)L(t; �)��(t; � + �)] dt+ 
(t; �)L(t; �) dW (t):

(5.4)

Note that (5.3) is equivalent to

��(t; � + �) = ��(t; �) +
�L(t; �)
(t; �)

1 + �L(t; �)
: (5.3’)

Plugging this into (5.4) yields

dL(t; �) =

"
@

@�
L(t; �) + 
(t; �)L(t; �)��(t; �) +

�L2(t; �)
2(t; �)

1 + �L(t; �)

#
dt

+ 
(t; �)L(t; �) dW (t): (5.4’)

34.6 Implementation of BGM

Obtain the initialforward LIBOR curve

L(0; �); � � 0;

from market data. Choose aforward LIBOR volatility function(usually nonrandom)


(t; �); t � 0; � � 0:
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Because LIBOR gives no rate information on time periods smaller than�, we must also choose a
partial bond volatility function

��(t; �); t � 0; 0 � � < �

for maturities less than� from the current time variablet.

With these functions, we can for each� 2 [0; �) solve (5.4’) to obtain

L(t; �); t � 0; 0 � � < �:

Plugging the solution into (5.3’), we obtain��(t; �) for � � � < 2�. We then solve (5.4’) to obtain

L(t; �); t � 0; � � � < 2�;

and we continue recursively.

Remark 34.1 BGM is a special case of HJM with HJM’s��(t; �) generated recursively by (5.3’).
In BGM, 
(t; �) is usually taken to be nonrandom; the resulting��(t; �) is random.

Remark 34.2 (5.4) (equivalently, (5.4’)) is a stochasticpartial differential equation because of the
@
@�L(t; �) term. This is not as terrible as it first appears. Returning to the HJM variablest andT ,
set

K(t; T ) = L(t; T � t):

Then

dK(t; T ) = dL(t; T � t)� @

@�
L(t; T � t) dt

and (5.4) and (5.4’) become

dK(t; T ) = 
(t; T � t)K(t; T ) [��(t; T � t + �) dt+ dW (t)]

= 
(t; T � t)K(t; T )

�
��(t; T � t) dt +

�K(t; T )
(t; T � t)

1 + �K(t; T )
dt+ dW (t)

�
:

(6.1)

Remark 34.3 From (5.3) we have


(t; �)L(t; �) = [1 + �L(t; �)]
��(t; � + �)� ��(t; �)

�
:

If we let �#0, then


(t; �)L(t; �)! @

@�
��(t; � + �)

����
�=0

= �(t; �);

and so

(t; T � t)K(t; T )!�(t; T � t):

We saw before (eq. 4.2) that as�#0,

L(t; �)!r(t; �) = f(t; t+ �);
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so

K(t; T )!f(t; T ):

Therefore, the limit as�#0 of (6.1) is given by equation (2.5):

df(t; T ) = �(t; T � t) [��(t; T � t) dt + dW (t)] :

Remark 34.4 Although thedt term in (6.1) has the term�

2(t;T�t)K2(t;T )

1+K(t;T )
involvingK2, solutions

to this equation do not explode because

�
2(t; T � t)K2(t; T )

1 + �K(t; T )
� �
2(t; T � t)K2(t; T )

�K(t; T )

� 
2(t; T � t)K(t; T ):

34.7 Bond prices

Let �(t) = exp
nR t

0
r(u) du

o
: From (2.6) we have

d

�
B(t; T )

�(t)

�
=

1

�(t)
[�r(t)B(t; T ) dt+ dB(t; T )]

= �B(t; T )

�(t)
��(t; T � t) dW (t):

The solutionB(t;T )
�(t)

to this stochastic differential equation is given by

B(t; T )

�(t)B(0; T )
= exp

�
�
Z t

0

��(u; T � u) dW (u)� 1

2

Z t

0

(��(u; T � u))2 du

�
:

This is a martingale, and we can use it to switch to theforward measure

IPT (A) =
1

B(0; T )

Z
A

1

�(T )
dIP

=

Z
A

B(T; T )

�(T )B(0; T )
dIP 8A 2 F(T ):

Girsanov’s Theorem implies that

WT (t) = W (t) +

Z t

0

��(u; T � u) du; 0 � t � T;

is a Brownian motion underIPT .
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34.8 Forward LIBOR under more forward measure

From (6.1) we have

dK(t; T ) = 
(t; T � t)K(t; T ) [��(t; T � t+ �) dt+ dW (t)]

= 
(t; T � t)K(t; T ) dWT+�(t);

so

K(t; T ) = K(0; T ) exp

�Z t

0


(u; T � u) dWT+�(u)� 1

2

Z t

0


2(u; T � u) du

�

and

K(T; T ) = K(0; T ) exp

(Z T

0


(u; T � u) dWT+�(u)� 1

2

Z T

0


2(u; T � u) du

)
(8.1)

= K(t; T ) exp

(Z T

t

(u; T � u) dWT+�(u)� 1

2

Z T

t

2(u; T � u) du

)
:

We assume that
 is nonrandom. Then

X(t) =

Z T

t

(u; T � u) dWT+�(u)� 1

2

Z T

t

2(u; T � u) du (8.2)

is normal with variance

�2(t) =

Z T

t

2(u; T � u) du

and mean�1

2
�2(t).

34.9 Pricing an interest rate caplet

Consider a floating rate interest payment settled in arrears. At timeT + �, the floating rate interest
payment due is�L(T; 0) = �K(T; T ); the LIBOR at timeT . A caplet protects its owner by
requiring him to pay only the cap�c if �K(T; T ) > �c. Thus, the value of the caplet at timeT + �

is �(K(T; T )� c)+. We determine its value at times0 � t � T + �.

Case I:T � t � T + �.

CT+�(t) = IE

�
�(t)

�(T + �)
�(K(T; T )� c)+

����F(t)

�
(9.1)

= �(K(T; T )� c)+IE

�
�(t)

�(T + �)

����F(t)

�

= �(K(T; T )� c)+B(t; T + �):
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Case II: 0 � t � T .
Recall that

IPT+�(A) =

Z
A
Z(T + �) dIP; 8A 2 F(T + �);

where

Z(t) =
B(t; T + �)

�(t)B(0; T + �)
:

We have

CT+�(t) = IE

�
�(t)

�(T + �)
�(K(T; T )� c)+

����F(t)

�

= �B(t; T + �)
�(t)B(0; T + �)

B(t; T + �)| {z }
1

Z(t)

IE

2
66664

B(T + �; T + �)

�(T + �)B(0; T + �)| {z }
Z(T+�)

(K(T; T )� c)+
����F(t)

3
77775

= �B(t; T + �)IET+�

�
(K(T; T )� c)+

����F(t)

�

From (8.1) and (8.2) we have

K(T; T ) = K(t; T ) expfX(t)g;

whereX(t) is normal underIPT+� with variance�2(t) =
R T
t 
2(u; T � u) du and mean�1

2
�2(t).

Furthermore,X(t) is independent ofF(t).

CT+�(t) = �B(t; T + �)IET+�

�
(K(t; T ) expfX(t)g � c)+

����F(t)

�
:

Set

g(y) = IET+�

h
(y expfX(t)g � c)+

i
= y N

�
1

�(t)
log

y

c
+ 1

2
�(t)

�
� c N

�
1

�(t)
log

y

c
� 1

2
�(t)

�
:

Then

CT+�(t) = � B(t; T + �) g(K(t; T )); 0 � t � T � �: (9.2)

In the case of constant
, we have
�(t) = 


p
T � t;

and (9.2) is called theBlack caplet formula.
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34.10 Pricing an interest rate cap

Let
T0 = 0; T1 = �; T2 = 2�; : : : ; Tn = n�:

A cap is a series of payments

�(K(Tk; Tk)� c)+ at timeTk+1; k = 0; 1; : : : ; n� 1:

The value at timet of the cap is the value of all remaining caplets, i.e.,

C(t) =
X

k:t�Tk
CTk(t):

34.11 Calibration of BGM

The interest rate capletc onL(0; T ) at timeT + � has time-zero value

CT+�(0) = �B(0; T + �) g(K(0; T ));

whereg (defined in the last section) depends on

Z T

0


2(u; T � u) du:

Let us suppose
 is a deterministic function of its second argument, i.e.,


(t; �) = 
(�):

Theng depends on Z T

0


2(T � u) du =

Z T

0


2(v) dv:

If we know the caplet priceCT+�(0), we can “back out” the squared volatility
R T
0

2(v) dv. If we

know caplet prices
CT0+�(0); CT1+�(0); : : : ; CTn+�(0);

whereT0 < T1 < : : : < Tn, we can “back out”

Z T0

0


2(v) dv;

Z T1

T0


2(v) dv =

Z T1

0


2(v) dv �
Z T0

0


2(v) dv;

: : : ;

Z Tn

Tn�1


2(v) dv: (11.1)

In this case, we may assume that
 is constant on each of the intervals

(0; T0); (T0; T1); : : : ; (Tn�1; Tn);
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and choose these constants to make the above integrals have the values implied by the caplet prices.

If we know caplet pricesCT+�(0) for all T � 0, we can “back out”
R T
0

2(v) dv and then differen-

tiate to discover
2(�) and
(�) =
p

2(�) for all � � 0.

To implement BGM, we need both
(�); � � 0, and

��(t; �); t � 0; 0 � � < �:

Now ��(t; �) is the volatility at timet of a zero coupon bond maturing at timet + � (see (2.6)).
Since� is small (say1

4
year), and0 � � < �, it is reasonable to set

��(t; �) = 0; t � 0; 0 � � < �:

We can now solve (or simulate) to get

L(t; �); t � 0; � � 0;

or equivalently,
K(t; T ); t � 0; T � 0;

using the recursive procedure outlined at the start of Section 34.6.

34.12 Long rates

The long rate is determined by long maturity bond prices. Letn be a large fixed positive integer, so
thatn� is 20 or 30 years. Then

1

D(t; n�)
= exp

(Z n�

0

r(t; u) du

)

=
nY

k=1

exp

(Z k�

(k�1)�
r(t; u) du

)

=
nY

k=1

[1 + �L(t; (k� 1)�)];

where the last equality follows from (4.1). The long rate is

1

n�
log

1

D(t; n�)
=

1

n�

nX
k=1

log[1 + �L(t; (k� 1)�)]:

34.13 Pricing a swap

Let T0 � 0 be given, and set

T1 = T0 + �; T2 = T0 + 2�; : : : ; Tn = T0 + n�:
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The swap is the series of payments

�(L(Tk; 0)� c) at timeTk+1; k = 0; 1; : : : ; n� 1:

For0 � t � T0, the value of the swap is
n�1X
k=0

IE

�
�(t)

�(Tk+1)
�(L(Tk; 0)� c)

����F(t)

�
:

Now

1 + �L(Tk; 0) =
1

B(Tk ; Tk+1)
;

so

L(Tk; 0) =
1

�

�
1

B(Tk; Tk+1)
� 1

�
:

We compute

IE

�
�(t)

�(Tk+1)
�(L(Tk; 0)� c)

����F(t)

�

= IE

�
�(t)

�(Tk+1)

�
1

B(Tk; Tk+1)
� 1� �c

� ����F(t)

�

= IE

2
66664

�(t)

�(Tk)B(Tk; Tk+1)
IE

�
�(Tk)

�(Tk+1)

����F(Tk)

�
| {z }

B(Tk;Tk+1)

����F(t)

3
77775� (1 + �c)B(t; Tk+1)

= IE

�
�(t)

�(Tk+1)

����F(t)

�
� (1 + �c)B(t; Tk+1)

= B(t; Tk)� (1 + �c)B(t; Tk+1):

The value of the swap at timet is
n�1X
k=0

IE

�
�(t)

�(Tk+1)
�(L(Tk; 0)� c)

����F(t)

�

=
n�1X
k=0

[B(t; Tk)� (1 + �c)B(t; Tk+1)]

= B(t; T0)� (1 + �c)B(t; T1) +B(t; T1)� (1 + �c)B(t; T2) + : : :+ B(t; Tn�1)� (1 + �c)B(t; Tn)

= B(t; T0)� �cB(t; T1)� �cB(t; T2)� : : :� �cB(t; Tn)�B(t; Tn):

The forward swap ratewT0(t) at timet for maturityT0 is the value ofc which makes the time-t
value of the swap equal to zero:

wT0(t) =
B(t; T0)�B(t; Tn)

� [B(t; T1) + : : :+B(t; Tn)]
:

In contrast to the cap formula, which depends on the term structure model and requires estimation
of 
, the swap formula is generic.


