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Chapter 1

Introduction to Probability Theory

1.1 The Binomial Asset Pricing Model

The binomial asset pricing modgirovides a powerful tool to understand arbitrage pricing theory
and probability theory. In this course, we shall use it for both these purposes.

In the binomial asset pricing model, we model stock prices in discrete time, assuming that at each
step, the stock price will change to one of two possible values. Let us begin with an initial positive
stock priceS,. There are two positive numbersandu, with

0<d<u, (1.2)

such that at the next period, the stock price will be eith®y or v.S,. Typically, we taked andu

to satisfy0 < d < 1 < wu, so change of the stock price froffy to d.S, represents @ownward
movement, and change of the stock price frémto «.S, represents anpwardmovement. It is
common to also havé = 1, and this will be the case in many of our examples. However, strictly
speaking, for what we are about to do we need to assume only (1.1) and (1.2) below.

Of course, stock price movements are much more complicated than indicated by the binomial asset
pricing model. We consider this simple model for three reasons. First of all, within this model the
concept of arbitrage pricing and its relation to risk-neutral pricing is clearly illuminated. Secondly,
the model is used in practice because with a sufficient number of steps, it provides a good, compu-
tationally tractable approximation to continuous-time models. Thirdly, within the binomial model
we can develop the theory of conditional expectations and martingales which lies at the heart of
continuous-time models.

With this third motivation in mind, we develop notation for the binomial model which is a bit
different from that normally found in practice. Let us imagine that we are tossing a coin, and when
we get a “Head,” the stock price moves up, but when we get a “Tail,” the price moves down. We
denote the price at timeby S, (H) = w.S, if the toss results in head (H), and By(7') = d.S; if it

11



12

/ S,(HH) = 16
=8

\ S(HT) =4

9= / S,(TH) = 4
§M =2

(M =1

Figure 1.1:Binomial tree of stock prices withy = 4, u = 1/d = 2.

results in tail (T). After the second toss, the price will be one of:

SQ(HH) = uSl(H) = UQSO7 SQ(HT) = dSl(H) = duS(),

52 (TH) = u51 (T) = udS(), 52 (TT) = dSl (T) = dQSo.

After three tosses, there are eight possible coin sequences, although not all of them resultin different
stock prices at tima.

For the moment, let us assume that the third toss is the last one and denote by
Q={HHH,HHT,HTH, HTT,THH,THT,TTH,TTT}

the set of all possible outcomes of the three tosses. The@ sétall possible outcomes of a ran-
dom experiment is called treample spacéor the experiment, and the element®f 2 are called
sample pointsin this case, each sample poinis a sequence of length three. We denotektltle
component oo by w;. For example, whew = HT H,we havev; = H,ws, = T andws = H.

The stock prices;, at timek depends on the coin tosses. To emphasize this, we oftenSyiite .
Actually, this notation does not quite tell the whole story, for wtiledepends on all of, .S,
depends on only the first two components.0fS; depends on only the first componentafand
Sy does not depend anat all. Sometimes we will use notation susf{w; , ws) justto record more
explicitly how S; depends o = (wy, wz,ws).

Example 1.1 SetS; = 4, w = 2 andd = 3. We have then the binomial “tree” of possible stock
prices shown in Fig. 1.1. Each sample paint (wq,ws,ws) represents a path through the tree.
Thus, we can think of the sample sp&eeas either the set of all possible outcomes from three coin
tosses or as the set of all possible paths through the tree.

To complete our binomial asset pricing model, we introducecmey marketvith interest rater;
$1 invested in the money market becorfi¢s + r) in the next period. We taketo be the interest
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rate for bothborrowingandlending (This is not as ridiculous as it first seems, because in a many
applications of the model, an agent is either borrowing or lending (not both) and knows in advance
which she will be doing; in such an application, she should tatebe the rate of interest for her
activity.) We assume that

d<1l+4r<u. (1.2)

The model would not make sense if we did not have this condition. For example,if> «, then

the rate of return on the money market is always at least as great as and sometimes greater than the
return on the stock, and no one would invest in the stock. The inequality + r cannot happen

unless either is negative (which never happens, except maybe once upon a time in Switzerland) or

d > 1. In the latter case, the stock does not really go “down” if we get a tail; it just goes up less
than if we had gotten a head. One should borrow money at interest eaie invest in the stock,

since even in the worst case, the stock price rises at least as fast as the debt used to buy it.

With the stock as the underlying asset, let us consideumpean call optiorwith strike price
K > 0 and expiration timéd. This option confers the right to buy the stock at tiimir i dollars,
and so is worttpb; — K attimel if S; — K is positive and is otherwise worth zero. We denote by

Vi(w) = (S1(w) — K)T 2 max{S;(w) - K,0}

the value (payoff) of this option at expiration. Of cour$g(w) actually depends only ap,, and
we can and do sometimes writg(w, ) rather thari/; (w). Our first task is to compute tlabitrage
price of this option at time zero.

Suppose at time zero you sell the call #dy dollars, wherd/ is still to be determined. You now
have an obligation to pay offuSy — K)* if w; = H and to pay off(dSy — K)T if w; = T. At

the time you sell the option, you don't yet know which valuewill take. You hedgeyour short
position in the option by buying\, shares of stock, wherg, is still to be determined. You can use

the proceed¥, of the sale of the option for this purpose, and then borrow if necessary at interest
rater to complete the purchase. ¥, is more than necessary to buy thg shares of stock, you
invest the residual money at interest ratén either case, you will havi, — Aq.Sy dollars invested

in the money market, where this quantity might be negative. You will alsoAwshares of stock.

If the stock goes up, the value of your portfolio (excluding the short position in the option) is
AoSi(H) + (1+7)(Vo — AoSo),
and you need to haveé, (H). Thus, you want to choodg andA, so that
Vi(H) = AoS1(H) + (1+7)(Vo — ApSo). (1.3)
If the stock goes down, the value of your portfolio is
AgS1(T) + (14 7r) (Vo — AoSo),
and you need to havié, (7). Thus, you want to choodg andA to also have

Vl(T) = A()Sl (T) + (1 + T‘) (Vo - Aoso). (14)
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These are two equations in two unknowns, and we solve them below
Subtracting (1.4) from (1.3), we obtain

Vi(H) = Vi(T) = Ao(S1(H) — 51(1)), (1.5)

so that

Vi(H) - Va(T)

Bo = Sy(H) = S1(T)°

(1.6)

This is a discrete-time version of the famous “delta-hedging” formula for derivative securities, ac-
cording to which the number of shares of an underlying asset a hedge should hold is the derivative
(in the sense of calculus) of the value of the derivative security with respect to the price of the
underlying asset. This formula is so pervasive the when a practitioner says “delta”, she means the
derivative (in the sense of calculus) just described. Note, however, thdefinjtionof A, is the
number of shares of stock one holds at time zero, and (1.6) is a consequence of this definition, not
the definition of A, itself. Depending on how uncertainty enters the model, there can be cases
in which the number of shares of stock a hedge should hold is not the (calculus) derivative of the
derivative security with respect to the price of the underlying asset.

To complete the solution of (1.3) and (1.4), we substitute (1.6) into either (1.3) or (1.4) and solve
for V. After some simplification, this leads to the formula

1 [14+r—-d w—(1+7r)

Vozl—l—r uw—d Vi(H) + uw—d

Vi(T)|. .7

This is thearbitrage pricefor the European call option with payoff; at time1. To simplify this
formula, we define

A l4+r—d Au—(14+r B
pé77 qéﬁzl—lx (18)
uw—d uw—d
so that (1.7) becomes
1 . -

Because we have takeh< u, bothp andg are defined,i.e., the denominator in (1.8) is not zero.
Because of (1.2), bothhandq are in the interva(0, 1), and because they sum tpwe can regard

them as probabilities off andT’, respectively. They are thésk-neutralprobabilites. They ap-
peared when we solved the two equations (1.3) and (1.4), and have nothing to do with the actual
probabilities of getting? or T on the coin tosses. In fact, at this point, they are nothing more than

a convenient tool for writing (1.7) as (1.9).

We now consider a European call which pays Effdollars at time2. At expiration, the payoff of

this option isV, E (S2 — K)*, whereV, and.S; depend onv; andws, the first and second coin

tosses. We want to determine the arbitrage price for this option at time zero. Suppose an agent sells
the option at time zero fo¥;, dollars, wheré/, is still to be determined. She then buig shares
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of stock, investing’, — AgSy dollars in the money market to finance this. At tifnghe agent has
a portfolio (excluding the short position in the option) valued at

X1 é A()Sl + (1 + T‘) (VO - Aoso). (110)

Although we do not indicate it in the notatiof; and thereforeX; depend onvy, the outcome of
the first coin toss. Thus, there are really two equations implicit in (1.10):

12

X1(H)
X4(T)

AgSy (H) + (1 + T‘) (VO - A050)7
AoS1(T) + (14 ) (Vo — AoSo).

12

After the first coin toss, the agent has dollars and can readjust her hedge. Suppose she decides to
now holdA; shares of stock, wher&, is allowed to depend og;, because the agent knows what
valuew; has taken. She invests the remainder of her wealth,- A5, in the money market. In

the next period, her wealth will be given by the right-hand side of the following equation, and she
wants it to bel’;. Therefore, she wants to have

V2 IA152—|—(1—|—T‘)(X1 —Alsl). (111)

Although we do not indicate it in the notatiofi; andV; depend oy, andw,, the outcomes of the
first two coin tosses. Considering all four possible outcomes, we can write (1.11) as four equations:

Vo(HH) = A((H)S:(HH)+ (14 r)(Xa(H) — A (H)S1(H)),
Vo (HT) AL(H)S:(HT) + (1 +r)(Xa(H) — A (H)S1(H)),
Vo(TH) A (TYS2(TH) + (14 r) (X1 (T) — A(T)51(T)),
Vo(TT) = A(T)S2(TT) + (14 r)(Xo(T) = AL (T)S1(T)).

We now have six equations, the two represented by (1.10) and the four represented by (1.11), in the
six unknownsy, Ag, Ay (H), Ay (T), X1 (H),and X (7).

To solve these equations, and thereby determine the arbitragé/pt¢ime zero of the option and
the hedging portfolid\g, Ay (H ) andA, (1), we begin with the last two

Vo(TH) = A(T)S:(TH) + (1+ r)(Xi(T) — A(T)5:(T)),
Vo(TT) = A(T)So(TT) 4+ (1 4+ r)(Xo(T) = A (T)S1(T)).

Subtracting one of these from the other and solvingXe(7’), we obtain the “delta-hedging for-
mula”

A(T) = (1.12)

and substituting this into either equation, we can solve for

X (T) = H%@VQ(TH) +qVa(TTY]. (1.13)
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Equation (1.13), gives the value the hedging portfolio should have atltifinéne stock goes down
between time$ and1. We define this quantity to be tlabitrage value of the option at timeif
wy = T', and we denote it by, (7). We have just shown that

.. .
Vi(T) 2 T VAT H) + V(1)) (1.14)
The hedger should choose her portfolio so that her wesltfi’) if wy = 7" agrees withV; (7')
defined by (1.14). This formula is analgous to formula (1.9), but postponed by one step. The first
two equations implicitin (1.11) lead in a similar way to the formulas

Ay (H) = (1.15)
and X, (H) = Vi(H), whereV;(H ) is the value of the option at timeif w;y = H, defined by
1 ~
Vi(H) £ T PV H) + GVa(HT)) (1.16)

This is again analgous to formula (1.9), postponed by one step. Finally, we plug the ¥alué$ =

Vi(H) and X (T) = V4 (T') into the two equations implicit in (1.10). The solution of these equa-
tions for Ay andVj is the same as the solution of (1.3) and (1.4), and results again in (1.6) and
(1.9).

The pattern emerging here persists, regardless of the number of perid@sidhotes the value at

time k£ of a derivative security, and this depends on the firsbin tossesy, . . ., wg, then at time
k — 1, after the firstt — 1 tossesvy, ...,wi_1 are known, the portfolio to hedge a short position
should holdA,_; (w1, .. .,wk—1) shares of stock, where

Vk(wh .. .7Wk_17H) — Vk(wh .. .7Wk_17T)
Sk(wiy . ywp—1, H) = Sp(wr, .., wp—1, 1)

Ak_l(wh...,bdk_l) = (117)

and the value at timgé — 1 of the derivative security, when the firkt— 1 coin tosses result in the
outcomesvy, . .., wkr_1, iS given by

1 N N
Vici(wiy ooy wp—1) = m[PVk(le coowhot, H) + GVi(wnr, ooy wir, 1))
(1.18)

1.2 Finite Probability Spaces

Let 2 be a set with finitely many elements. An example to keep in mind is
Q={HHH,HHT,HTH, HTT,THH,THT,TTH,TTT} (2.1)

of all possible outcomes of three coin tosses. Edie the set of all subsets &f Some sets iF
are(), {HHH,HHT,HTH, HTT},{TTT}, andQ itself. How many sets are there j#?
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Definition 1.1 A probability measureP is a function mappingF into [0, 1] with the following
properties:

() P(Q) =1,

(i) If Ay, Ao, ... is asequence of disjoint sets/ then
P (U Ak) = P(Ay).
k=1 k=1

Probability measures have the following interpretation. Kdie a subset af. Imagine thaf? is

the set of all possible outcomes of some random experiment. There is a certain probability, between
0 and 1, that when that experiment is performed, the outcome will lie in thedseWWe think of

IP(A) as this probability.

Example 1.2 Suppose a coin has probabilifyfor # and 2 for 7. For the individual elements of
Q2in (2.1), define

P{HHH} = (%)3, P{HHT} = (%)2 (3)
Py = (3 (3). Py = (3)(3)
pernmy = () (). prnmy= () (3)°)
P{rTHY = (1) (2), PTTTY = (2)°
For A € F, we define
P(A) = > IP{w}. (2.2)
wEA

For example,

P{HHH,HHT,HTH,HTT} = (%)3 +2 (%)2 (;) - (%) (;)2 = %

which is another way of saying that the probabilityéfon the first toss i%.

As in the above example, it is generally the case that we specify a probability measure on only some
of the subsets dR and then use property (ii) of Definition 1.1 to determiftéA) for the remaining

setsA € F. In the above example, we specified the probability measure only for the sets containing
a single element, and then used Definition 1.1(ii) in the form (2.2) (see Problem 1.4(ii)) to determine
IP for all the other sets itF.

Definition 1.2 Let 2 be a nonempty set. &-algebra is a collectiog of subsets of? with the
following three properties:

(i) 0 eg,
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(i) If A € G, then its complement© € ¢,

(i) If Ay, Ay, As, ... isasequence of setséh thenus? | A is also inG.

Here are some importantalgebras of subsets of the $&in Example 1.2:

Fo = {®79}7

T o= {@7 Q{HHH HHT,HTH,HTT},{THH, THT,TTH, TTT}},
Fy = {(Z), Q{HHH HHTY},{HTH, HTT}, {THH,THT},{TTH,TTT},

and all sets which can be built by taking unions of t)}ase
F3 = JF = The set of all subsets 6i.

To simplify notation a bit, let us define

Ap 2 {HHH, HHT, HTH, HTT} = {H on the first tosh
Ar 2 {THH, THT,TTH, TTT} = {T on the first tosh
so that
‘7:1 = {®7 Qv AH7 AT}7

and let us define

Apn 2 {HHH,HHT} = {H H on the first two tossés
Apr 2 {HTH,HTT}={HT on the first two tossés
Arp 2 {THH,THT} = {TH on the first two tossés
App 2 {T'TH,TTT} = {TT on the first two tosses

so that

Fo = {0, Apn, Aur, Are, Arr,
A, AT, Arr U At A U Arr, Aar U Are, At U AT,

c c c c
AHH7 AHT7 ATH7 ATT}‘

We interpretr-algebras as a record of information. Suppose the coin is tossed three times, and you
are not told the outcome, but you are told, for every setimwhether or not the outcome is in that

set. For example, you would be told that the outcome is nétand is in2. Moreover, you might

be told that the outcome is not iy butis in A7. In effect, you have been told that the first toss
was al’, and nothing more. The-algebraF; is said to contain the “information of the first toss”,
which is usually called the “information up to timé&. Similarly, F; contains the “information of



CHAPTER 1. Introduction to Probability Theory 19

the first two tosses,” which is the “information up to tim& The o-algebraF; = F contains “full
information” about the outcome of all three tosses. The so-called “trivia@lgebra’, contains no
information. Knowing whether the outcomeof the three tosses is ih(it is not) and whether it is
in € (it is) tells you nothing about

Definition 1.3 Let€) be a nonempty finite set. filtrationis a sequence ef-algebrasry, 71, Fo, ..., F,
such that each-algebra in the sequence contains all the sets contained by the prevadgesbra.

Definition 1.4 Let Q2 be a nonempty finite set and &t be theo-algebra of all subsets ¢t. A
random variable is a function mappifjinto k.

Example 1.3 Let €2 be given by (2.1) and consider the binomial asset pricing Example 1.1, where
So = 4, u = 2andd = % Then Sy, S, S2 andSs are all random variables. For example,
So(HHT) = u?Sy = 16. The “random variable’ is really not random, sincéy(w) = 4 for all

w € Q. Nonetheless, it is a function mappifyinto /R, and thus technically a random variable,

albeit a degenerate one.

A random variable mapQ into IR, and we can look at the preimage under the random variable of
sets inlkR. Consider, for example, the random variableof Example 1.1. We have

So(HHH) = Sy(HHT) = 16,
So(HTH) = Sy(HTT) = So(THH) = Sy (THT) = 4,
So(TTH) = Sy(TTT) = 1.

Let us consider the interval, 27]. The preimage undef; of this interval is defined to be
{w € Qi Sylw) € [4,27]) = {w € V4 < Sy < 27} = Afy.
The complete list of subsets 8fwe can get as preimages of setdfins:
0,9, Agn, AuT U Arh, AT,

and sets which can be built by taking unions of these. This collection of sets-&gebra, called

the o-algebra generated by the random varialfle, and is denoted by (Sz). The information
content of thiss-algebra is exactly the information learned by observhg More specifically,
suppose the coin is tossed three times and you do not know the outcdsaesomeone is willing

to tell you, for each set im(S3), whetherw is in the set. You might be told, for example, thats

notin Az, isin Agr U Argr, and is notindrr. Then you know that in the first two tosses, there
was a head and a tail, and you know nothing more. This information is the same you would have
gotten by being told that the value 8§ (w) is 4.

Note thatF; defined earlier contains all the sets which are (1%;), and even more. This means
that the information in the first two tosses is greater than the informatiSg.im particular, if you
see the first two tosses, you can distinguishy from Ay, but you cannot make this distinction
from knowing the value of, alone.
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Definition 1.5 Let 2 be a nonemtpy finite set and [&tbe thes-algebra of all subsets 61. Let X
be arandom variable dif?, 7). Thec-algebras (X') generated byX is defined to be the collection
of all sets of the forr{w € Q; X (w) € A}, whereA is a subset ofR. LetG be a subs-algebra of
F. We say thatX is G-measurabléf every setino (X)) is also inG.

Note: We normally write simply X € A} rather thanfw € ; X (w) € A}.

Definition 1.6 Let (2 be a nonempty, finite set, I&t be thes-algebra of all subsets &%, let IP be
a probabilty measure off2, F), and letX be a random variable dn. Given any setd C IR, we
define thenduced measuref A to be

Lx(A) 2 P{X € A}.

In other words, the induced measure of a4églls us the probability thaX” takes a value ini. In
the case of, above with the probability measure of Example 1.2, some sdisand their induced
measures are:

£6,[0,3] = P{S, = 1} = P(Agr) = (;)2

2
In fact, the induced measure 8§ places a mass of siz@) = % at the numbet 6, a mass of size

2
2 at the numbet, and a mass of sizé%) = £ at the numbet. A common way to record this
information is to give theumulative distribution functiof’s, (z) of S, defined by

if z <1,
if 1 <a<d4,
if 4 < < 16,
if 16 < z.

[

Fs,(x) 2 IP(S; < @) = (2.3)

— OOk D

By the distributionof a random variableX', we mean any of the several ways of characterizing
Lx. If X is discrete, as in the case 8§ above, we can either tell where the masses are and how
large they are, or tell what the cumulative distribution function is. (Later we will consider random
variablesX which have densities, in which case the induced measure off&ef? is the integral

of the density over the set.)

Important Note. In order to work through the concept of a risk-neutral measure, we set up the
definitions to make a clear distinction between random variables and their distributions.

A random variablds a mapping fronf2 to IR, nothing more. It has an existence quite apart from
discussion of probabilities. For example, in the discussion ab®v&7'H) = So(T1TT) = 1,
regardless of whether the probability fiiris £ or 1.



CHAPTER 1. Introduction to Probability Theory 21

Thedistributionof a random variable is a measute on IR, i.e., a way of assigning probabilities
to setsinik. It depends on the random varialleand the probability measui® we use in. If we
set the probability off to be%, thenlg, assigns mas%; to the numbet 6. If we set the probability
of H to be%, thenLgs, assigns mas§ to the numbei 6. The distribution ofS, has changed, but
the random variable has not. It is still defined by

So(HHH) = Sy(HHT) = 16,
So(HTH) = Sy(HTT) = So(THH) = Sy (THT) = 4,
So(TTH) = Sy(TTT) = 1.

Thus, arandom variable can have more than one distribution (a “market” or “objective” distribution,
and a “risk-neutral” distribution).

In a similar vein, twadifferent random variablesan have thesame distribution Suppose in the
binomial model of Example 1.1, the probability 6f and the probability of/" is % Consider a
European call with strike pricet expiring at time2. The payoff of the call at time is the random
variable(S; — 14)T, which takes the valugif w = HH H orw = H HT', and takes the valugin
every other case. The probability the payoftis i and the probability itis zero % Consideralso

a European put with strike prickeexpiring at time2. The payoff of the put at tim2 is (3 — S) T,
which takes the valug if w = TTH orw = TTT. Like the payoff of the call, the payoff of the
put is2 with probability; and0 with probability2. The payoffs of the call and the put are different
random variables having the same distribution.

Definition 1.7 Let2 be a nonempty, finite set, I&t be thes-algebra of all subsets 6%, let IP be
a probabilty measure off2, F), and letX be a random variable dia. Theexpected valuef X is
defined to be

EX2Y X(w)P{w). (2.4)
wEeN

Notice that the expected value in (2.4) is defined to be asuenthe sample spaé¢e Sincef? is a
finite set, X can take only finitely many values, which we labgl . . ., z,,. We can patrtitior? into
the subset$ Xy = =1 },...,{X, = z,}, and then rewrite (2.4) as
EX 2 Y X(w)P{w)
wefl

= Zn: Z X (w)IP{w}

k=1 wE{Xk:l’k}

= Zn:xk Z P{w}

k=1 WE{Xk:xk}

= Z eplP{ Xy = 21}
k=1

= Z eplx{xr}.
k=1
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Thus, although the expected value is defined as a sum over the samplé&€spacean also write it
as a sum ovefk.

To make the above set of equations absolutely clear, we corfsjdeith the distribution given by
(2.3). The definition ofF’ S5 is

ESy = So(HHH)IP{HHH}+ Sy(HHT)IP{HHT}
+So(HTHYIP{HTH} + So(HTT)IP{HTT}
+So(THH)YIP{THH} + So(THT)IP{THT}
+So(TTHYIP{TTH} 4 Sy (TTT)IP{TTT}

= 16 -P(Agg)+4 - P(Agr U Arm) + 1- IP(A7T)
= 16-IP{Sy =16} +4-IP{So =4} +1-IP{Sy =1}
= 16-Lg,{16}+4- Lo, {4} +1-Ls, {1}

1 4 4
= 16— 4. — 4. —

9+ 9+ 9
Rt

Definition 1.8 Let$2 be a nonempty, finite set, 1t be thes-algebra of all subsets éf, let IP be a
probabilty measure off, ), and letX be a random variable dn. Thevarianceof X is defined
to be the expected value 6k — IFX)?, i.e

Var(X) 2 3 (X (w) - EX)*P{w)}. (2.5)
wEeN

One again, we can rewrite (2.5) as a sum afiferather than ovef2. Indeed, ifX takes the values
Z1,..., T, then

n

Var(X) = > (vp — EX)PIP{X = a3} = Y (ar — EX)*Lx (21).
k=1 k=1

1.3 Lebesgue Measure and the Lebesgue Integral

In this section, we consider the set of real numbBrsvhich is uncountably infinite. We define the
Lebesgue measudé intervals iniR to be their length. This definition and the properties of measure
determine the Lebesgue measure of many, but not all, subsé#ts dhe collection of subsets of
IR we consider, and for which Lebesgue measure is defined, is the collectinrelfsetsdefined
below.

We use Lebesgue measure to constructltbleesgue integrala generalization of the Riemann
integral. We need this integral because, unlike the Riemann integral, it can be defined on abstract
spaces, such as the space of infinite sequences of coin tosses or the space of paths of Brownian
motion. This section concerns the Lebesgue integral on the diaoely; the generalization to

other spaces will be given later.



CHAPTER 1. Introduction to Probability Theory 23

Definition 1.9 The Borel s-algebra denoted5(IR), is the smallestr-algebra containing all open
intervals inlk. The sets i3(/R) are calledBorel sets

Every set which can be written down and just about every set imaginabl&igi. The following
discussion of this fact uses thealgebra properties developed in Problem 1.3.

By definition, every open intervdkh, b) is in B(IR), wherea andb are real numbers. Sinéq IR) is
ac-algebra, every union of open intervals is alsd5ifi?). For example, for every real number
theopen half-line

(G

(a,a+ n)

(av OO) =

Il
—

n

is a Borel set, as is

(G

(—o0,a) = (a —n,a).

n=1

For real numbers andb, the union
(=00, a) U (b, 00)

is Borel. SinceB(IR) is ac-algebra, every complement of a Borel set is Borel3$#?) contains

C

[, 6] = ((=00,a) U (b)) .

This shows that every closed interval is Borel. In addition dlesed half-lines

o0
U a a—l—n
n=1

and
o0
U a—na

are Borel. Half-open and half-closed intervals are also Borel, since they can be written as intersec-
tions of open half-lines and closed half-lines. For example,

(a,b] = (=00, b] N (a, o).

Every set which contains only one real number is Borel. Indeedisifa real number, then
Py 1 1
{a} :nol (a— 5,a—l— ;) .

This means that every set containing finitely many real numbers is Borél=if{a, as, ..., a,},
then

A= O {ar}.
k=1
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In fact, every set containing countably infinitely many numbers is Borel;# {a4, as, ...}, then

A= O {ar}.

k=1
This means that the set of rational numbers is Borel, as is its complement, the set of irrational
numbers.

There are, however, sets which are not Borel. We have just seen that any non-Borel set must have
uncountably many points.

Example 1.4 (The Cantor set.)rhis example gives a hint of how complicated a Borel set can be.
We use it later when we discuss the sample space for an infinite sequence of coin tosses.

Consider the unit intervgD, 1], and remove the middle half, i.e., remove the open interval

AléG,%).
41

1 3
=10,~ 1
cr=log] 3]
has two pieces. From each of these pieces, remove the middle half, i.e., remove the open set
A1l 3 13 15
Ay = | —, — i
? (16’ 16) U (16’ 16)
1 31 3 13 15
i = o5 U 553U 535 Ul
has four pieces. Continue this process, so at staghe set”;, has2* pieces, and each piece has
length . TheCantor set

The remaining set

The remaining set

c2 Ny
k=1
is defined to be the set of points not removed at any stage of this nonterminating process.
Note that the length ofi;, the first set removed, § The “length” of A, the second set removed,
is 1 + & = 1. The “length” of the next set removedds 35 = %, and in general, the length of the
k-th set removed i8~*. Thus, the total length removed is
Y

k=1 2

and so the Cantor set, the set of points not removed, has zero “length.”

Despite the fact that the Cantor set has no “length,” there are lots of points in this set. In particular,
none of the endpoints of the pieces of the g€, . .. is ever removed. Thus, the points

13 1 3 1315 1
0 1, —, —, = = —

are all in C. This is a countably infinite set of points. We shall see eventually that the Cantor set
has uncountably many points. o
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Definition 1.10 Let B(/R) be theos-algebra of Borel subsets @. A measure of{/R, B(IR)) is a
functionu mapping5 into [0, oo] with the following properties:

(i) 1) =0,
(i) If Ay, Ay, ... is asequence of disjoint setsfi k), then

I (U Ak) = n(Ap).
k=1 k=1
Lebesgue measure defined to be the measure 0%, B(IR)) which assigns the measure of each

interval to be its length. Following Williams's book, we denote Lebesgue measurg by

A measure has all the properties of a probability measure given in Problem 1.4, except that the total
measure of the space is not necessarilin fact, o (/R) = o), one no longer has the equation

p(A%) = 1 - p(A)
in Problem 1.4(iii), and property (v) in Problem 1.4 needs to be modified to say:

(v) If Ay, Aq, ... is asequence of sets B(IR) with 41 O A, O --- andu(A;) < oo, then
" (ﬂ Ak) = lim_ p(A,).
k=1
To see that the additional requirmer(t4; ) < oo is needed in (v), consider
Al = [1700)7142 = [2700)7143 = [3700)7 e

ThenngZ, Ax = 0, sopo (N2, Ag) = 0, butlim,, ., po(4,) = co.

We specify that the Lebesgue measure of each interval is its length, and that determines the Lebesgue
measure of all other Borel sets. For example, the Lebesgue measure of the Cantor set in Example
1.4 must be zero, because of the “length” computation given at the end of that example.

The Lebesgue measure of a set containing only one point must be zero. In fact, since
1 1
C i _
oy € (o= poa+ )
for every positive integer, we must have
1 1 2
0 < pofa} < po(a——at~) =2
n n n

Lettingn — oo, we obtain
pofay = 0.
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The Lebesgue measure of a set containing countably many points must also be zero. Indeed, if
A= {al, a9, .. .}, then

o0

fo(A) = i pofar} =>_0=0.
=1

k=1
The Lebesgue measure of a set containing uncountably many points can be either zero, positive and
finite, or infinite. We may not compute the Lebesgue measure of an uncountable set by adding up

the Lebesgue measure of its individual members, because there is no way to add up uncountably
many numbers. The integral was invented to get around this problem.

In order to think about Lebesgue integrals, we must first consider the functions to be integrated.

Definition 1.11 Let f be a function from/R to IR. We say thatf is Borel-measurabléf the set
{z € IR; f(z) € A} isin B(IR) wheneverA € B(IR). In the language of Section 2, we want the
o-algebra generated by to be contained i (IR).

Definition 3.4 is purely technical and has nothing to do with keeping track of information. It is
difficult to conceive of a function which is not Borel-measurable, and we shall pretend such func-
tions don't exist. Hencefore, “function mappirg to IR” will mean “Borel-measurable function
mappinglR to IR” and “subset ofR” will mean “Borel subset of?".

Definition 1.12 An indicator functiong from IR to IR is a function which takes only the values
and1. We call
AZ{ze Rig(r) =1}

the setndicatedby g. We define thé_ebesgue integraif ¢ to be
/ gdiio = o A).
R
A simple functior from IR to IR is a linear combination of indicators, i.e., a function of the form
h(z) = Z ckgr(x),
k=1
where eaclyy, is of the form
( ) . 1, ifx e Ayg,
IKEI=N 0, ifx ¢ Ay,
and each is a real number. We define thebesgue integraif £ to be

/ h dpo 2 Z Ck/ grdpo = Z cro(Ar)-
R k=1 R k=1

Let f be a nonnegative function defined d@ possibly taking the valuec at some points. We
define theLebesgue integraif f to be

/ fduo 2 sup {/ h dpo; b is simple andi(z) < f(xz) for everyz € B} .
R R
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It is possible that this integral is infinite. If it is finite, we say tlfas integrable

Finally, let f be a function defined off?, possibly taking the valuec at some points and the value
—oo at other points. We define thpositiveandnegative part®f f to be

F(2) 2 max{f(z),0}, f (z) 2 max{—f(z),0},

respectively, and we define thebesgue integraif f to be

| Fduo2 [ 1t dpo == [ 5 do

provided the right-hand side is not of the form— cc. If both [, fT due and [y f~ dug are finite
(or equivalently,f, | f| dpo < oo, since|f| = fT + f7), we say thaif is integrable

Let f be a function defined off?, possibly taking the valuec at some points and the valuex at
other points. Let4d be a subset o. We define

/Nmé/hﬂm
A R

IA(x)é{ 1, ifz € A,

where

0, ifadA,

is theindicator function ofA.

The Lebesgue integral just defined is related to the Riemann integral in one very important way: if
the Riemann integrqlf f(z)dz is defined, then the Lebesgue integf@!b] f duo agrees with the
Riemann integral. The Lebesgue integral has two important advantages over the Riemann integral.
The first is that the Lebesgue integral is defined for more functions, as we show in the following
examples.

Example 1.5 Let( be the set of rational numbers[in 1], and considef = I5. Being a countable
set,@ has Lebesgue measure zero, and so the Lebesgue integravef[0, 1] is

| =0,

[0,1]

To compute the Riemann integrﬁ} f(z)dz, we choose partition poind = z¢p < z1 < --+ <
z, = 1 and divide the interval0, 1] into subintervalgzy, z1], [z1, 2], ..., [®n—1,2,]. In each

subintervalz;_1, z;] there is a rational point;, wheref(q;) = 1, and there is also an irrational
pointry, wheref(r;) = 0. We approximate the Riemann integral from above byuyeer sum

n

> flar)(er — wpmy) =

=1

M=

1 (a2 — 2p—1) =1,

o
o
Il

—

and we also approximate it from below by tlogver sum

=

fr)(@e —2p—1) = ) 0 (zx — 2p—1) = 0.

NE

o
Il
—
o
Il
—
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No matter how fine we take the partition [@f 1], the upper sum is alwaylsand the lower sum is
always0. Since these two do not converge to a common value as the partition becomes finer, the
Riemann integral is not defined. o

Example 1.6 Consider the function

A oo, ifa=0,
f(x):{ 0, ifax0.

This is not a simple function because simple function cannot take the walud&very simple
function which lies betweef and f is of the form

Ay, ifz=0,
h(x)—{ 0, ifz#0,

for somey € [0, o), and thus has Lebesgue integral
/ hdpo = ypo{0} = 0.
R
It follows that

/ fduo = sup {/ h dpo; his simple and:(z) < f(z) for everyz € B} =0.
R R

Now consider the Riemann integrél”_ f(z) dz, which for this functionf is the same as the
Riemann integral, f(z) dz. When we partitiofi— 1, 1] into subintervals, one of these will contain

the point0, and when we compute the upper approximating sur‘rﬁqrf(x) dz, this point will
contributecc times the length of the subinterval containing it. Thus the upper approximating sum is
oo. On the other hand, the lower approximating surf,iand again the Riemann integral does not
exist. o

The Lebesgue integral has hBliearity andcomparisomproperties one would expect of an integral.
In particular, for any two functiong andg and any real constant

/R(f-l-g) dpio /deuo + /Bgaluo7
[ efdu = e[ ru

and whenevey (z) < ¢g(z) for all z € IR, we have

[ fduo< [ gdduo.
R R

Finally, if A andB are disjoint sets, then

| sam= [ rduot [ fdu.
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There are threeonvergence theorenssitisfied by the Lebesgue integral. In each of these the sit-
uation is that there is a sequence of functignse = 1, 2, ... convergingpointwiseto a limiting
function f. Pointwise convergengast means that

1i_>m fn(z) = f(x) for everyz € IR.
There are no such theorems for the Riemann integral, because the Riemann integral of the limit-
ing function f is too often not defined. Before we state the theorems, we given two examples of
pointwise convergence which arise in probability theory.

Example 1.7 Consider a sequence of normal densitessch with variancé and then-th having
meann:

A _
fulz) = \/ﬂe 2

These converge pointwise to the function
f(z) = 0foreveryz € IR.
We havefy, f.duo = 1 for everyn, solim, .. [ fadpo =1, but [, fdpe = 0. o
Example 1.8 Consider a sequence of normal densitéssh with meai® and ther-th having vari-
ancel:
2

folz) = /== e 2n.

These converge pointwise to the function

A oo, ifa=0,
f(x):{ 0, ifa0.

We have agairfy, f.duo = 1 for everyn, solim, .., [p fodpo = 1, but [ fdue = 0. The
function f is not the Dirac delta; the Lebesgue integral of this function was already seen in Example
1.6 to be zero. 3

Theorem 3.1 (Fatou’s Lemmal.et f,,,n» = 1,2, ... be a sequence of nonnegative functions con-
verging pointwise to a functiofi. Then

/ fdug < lim inf/ fndio.
R n— 0o R

If lim,— o [ fn duo is defined, then Fatou’s Lemma has the simpler conclusion

/fduoé lim / Jn dpo.
R n—00 R

This is the case in Examples 1.7 and 1.8, where

fim [ dpo =1,
R

n—0oo
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while [}, f duo = 0. We could modify either Example 1.7 or 1.8 by setting= f, if n is even,
butg, = 2f, if nis odd. Now [y, g, duo = 1 if n is even, butf, ¢, duo = 2 if » is odd. The
sequence [ 9. dpo}. ., has two cluster points, and2. By definition, the smaller onel, is
liminf, e [ 9n dpo and the larger one, islim sup,,_, ., [ g» dpo. Fatou’s Lemma guarantees
that even the smaller cluster point will be greater than or equal to the integral of the limiting function.

The key assumption in Fatou’s Lemma is that all the functions take only nonnegative values. Fatou’s
Lemma does not assume much but it is is not very satisfying because it does not conclude that

[ fduwo =t [ . dp.
R n— 0o R
There are two sets of assumptions which permit this stronger conclusion.

Theorem 3.2 (Monotone Convergence Theoret®t f,,,» = 1,2, ... be a sequence of functions
converging pointwise to a functioh Assume that

0< fi(z) < fa(z) < f3(x) < --- foreveryz € IR.

Then
[ fduo =t [ dpo
R n—00 R

where both sides are allowed to be.

Theorem 3.3 (Dominated Convergence Theoreh@t f,,, » = 1, 2, ... be a sequence of functions,
which may take either positive or negative values, converging pointwise to a furfctid@asume
that there is a nonnegative integrable functip(i.e., [, g djo < oo) such that

| fn(2)| < g(z) for everyz € IR for everyn.

Then
[ fduo =t [ dpo
R n—00 R

and both sides will be finite.

1.4 General Probability Spaces

Definition 1.13 A probability space2, F, IP) consists of three objects:

() €2, a nonempty set, called threample spacewhich contains all possible outcomes of some
random experiment;

(i) F,ac-algebra of subsets 6f;

(ii) IP, a probability measure off2, F), i.e., a function which assigns to each det F a number
IP(A) € [0, 1], which represents the probability that the outcome of the random experiment
lies in the setA.
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Remark 1.1 We recall from Homework Problem 1.4 that a prolityomeasurel has the following
properties:

(@) P(0) =0.
(b) (Countable additivity) IfA,, Ao, ... is a sequence of disjoint sets/iy then

r(Ua) =3 rew,
k=1 k=1

(c) (Finite additivity) If » is a positive integer and, . . ., A,, are disjoint sets itf, then

P(AU---UA,) =P(A)+ -+ P(A,).

(d) If AandB are setsinF andA C B, then
P(B) =IP(A)+ IP(B\ A).

In particular,
P(B) > IP(A).

(d) (Continuity from below.) IfA, Ao, ... is a sequence of setsHwith A; C A, C ---, then

P (fj Ak) = lim PP(A,).

k=1

(d) (Continuity from above.) IfA;, Ao, ... is a sequence of setsHwith A; D A, D ---, then

P (ﬁ Ak) = lim PP(A,).

k=1

We have already seen some examples of finite probabildges We repeat these and give some
examples of infinite probability siges as well.

Example 1.9 Finite coin toss space.

Toss a coim times, so thaf? is the set of all sequences &f andT which haver components.
We will use this space quite a bit, and so give it a nafdg: Let F be the collection of all subsets
of Q,,. Suppose the probability af on each toss ig, a number between zero and one. Then the

probability of T" is ¢ 21— p. For eachw = (wy,ws, . ..,w,) in Q,, we define

P{W} é pNumber of Hin w | qNumber of T in W
For each4 € F, we define

PA) 2 Y Plw). 4.1)

weA

We can defindP( A) this way becausd has only finitely many elements, and so only finitely many
terms appear in the sum on the right-hand side of (4.1). o
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Example 1.10 Infinite coin toss space.

Toss a coin repeatedly without stopping, so tds the set of all nonterminating sequencegf
andT'. We call this spac€ ... This is an uncountably infinite space, and we need to exercise some
care in the construction of the-algebra we will use here.

For each positive integer, we defineF,, to be thes-algebra determined by the firsttosses. For
example,F;, contains four basic sets,

A
Apg = {w=(w,wo,ws,...) ;w1 = H,wy=H}
= The set of all sequences which begin wHH,
A
Agr = {w=(w,wa,ws,...);w1 = H,w, =T}
= The set of all sequences which begin wHH,
A
At = {w = (w,wy,ws,... ;w1 =T, wy = H}
= The set of all sequences which begin witl/,
A
Arr = Hw= (w1, w2,w3,... ;w1 =T, wp =T}

The set of all sequences which begin witfh'.
Becauser, is ac-algebra, we must also put into it the s@t«2, and all unions of the four basic
sets.

In the o-algebra 7, we put every set in every-algebra?,,, wheren ranges over the positive
integers. We also put in every other set which is required to nfake ac-algebra. For example,
the set containing the single sequence

{HHHHH ---} ={H on every tosp

is not in any of theF,, o-algebras, because it depends on all the components of the sequence and
not just the first: components. However, for each positive integethe set

{H on the firstn tosse$

is in F,, and hence irf. Therefore,

{H on every tosk = ﬂ {H on the firstn tosse$

n=1
is also inF.

We next construct the probability measufeon (2., F) which corresponds to probability €

[0, 1] for H and probabilityy = 1 — p for T'. Let A € F be given. If there is a positive integer
such thatd € F,, then the description od depends on only the firattosses, and it is clear how to
definelP(A). For example, supposé= Ap U Ary, where these sets were defined earlier. Then
AlsinF,. We setlP(Apy) = p? andIP(Ary) = ¢p, and then we have

P(A) :P(AHHUATH) :p2—|—qp: (p—|— q)p:p‘

In other words, the probability of & on the second toss js
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Let us now consider a set € F for which there is no positive integersuch that4 € F. Such

is the case for the sétH on every toss. To determine the probability of these sets, we write them
in terms of sets which are ift,, for positive integers:, and then use the properties of probability
measures listed in Remark 1.1. For example,

{H on the first tosp {H on the first two tossés

2
D {H on the first three tossgs
2

)
and

ﬂ {H on the firstn tosse$ = { H on every tosk.

n=1

According to Remark 1.1(d) (continuity from above),
IP{H on every toss = 1i_>m IP{H on the firstn tosse$ = nh—>r%o .

If p=1, thenlP{H on every toss= 1; otherwise JP{ H on every toss = 0.

A similar argument shows thatif < p < 1 sothatd) < ¢ < 1, then every setif2., which contains

only one element (nonterminating sequencéfodndT’) has probability zero, and hence very set

which contains countably many elements also has probabiliy zero. We are in a case very similar to
Lebesgue measure: every point has measure zero, but sets can have positive measure. Of course,
the only sets which can have positive probabiltyln are those which contain uncountably many
elements.

In the infinite coin toss space, we define a sequence of random varigblés . . . by

Af 1 ifw,=H,
}Mw_{OiM%:ﬂ

and we also define the random variable

4w@:§5%§f
k=1

Since eaclY}, is either zero or oneX takes values in the intervd, 1]. Indeed X (T'TTT---) = 0,
X(HHHH---) = 1 and the other values oY lie in between. We define a “dyadic rational
number” to be a number of the ford}, wherek andm are integers. For exampl%,is a dyadic
rational. Every dyadic rational in (0,1) corresponds to two sequencee$..,. For example,

3
X(HHTTTTT---) = X(HTHHHHH---) = 7.

The numbers in (0,1) which are not dyadic rationals correspond to a single...; these numbers
have a unique binary expansion.
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Whenever we place a probability measwfeon (€2, ), we have a corresponding induced measure
Lx on[0, 1]. For example, if we set = ¢ = 1 in the construction of this example, then we have

[ 1] . . 1
Lx |0, 5| = IP{Firsttossisl'} =
1 . _ 1
Lx |5, 1| = IP{FirsttossisH } = ,
_— | )
Lx |0, il = IP{First two tosses ar&7'} = T
11 _ )
Lx T 5] = IP{Firsttwotosses aré H } = T
:1 3 . 1
Lx 31l = IP{First two tosses arf 7'} = T
3 | X
Lx 1 1| = IP{First two tosses arel H } = T

Continuing this process, we can verify that for any positive integensdm satisfying

m—1 m
OSQ—k<2—k§17

we have
m—1 m 1
Lx [—gk Q_k] = ok

In other words, the& x -measure of all intervals if), 1] whose endpoints are dyadic rationals is the
same as the Lebesgue measure of these intervals. The only way this can l&idddye Lebesgue
measure.

It is interesing to consider whaty would look like if we take a value of other than% when we
construct the probability measufe on 2.

We conclude this example with another look at the Cantor set of Example 3.22 L&} be the

subset of2 in which every even-numbered toss is the same as the odd-numbered toss immediately
preceding it. For examplé/ HTTTT H H is the beginning of a sequencefy,;,,, but H7 is not.
Consider now the set of real numbers

C" 2 {X (w);w € Dpairs }-

The numbers betweeft, ) can be written ask (w), but the sequence must begin with either
TH or HT. Therefore, none of these numbers ig’ih Similarly, the numbers betwedr:, )
can be written as{ (w), but the sequence must begin withl’7"I"H or T'T'HT', so none of these
numbers is irC’. Continuing this process, we see th&twill not contain any of the numbers which
were removed in the construction of the Cantor&ein Example 3.2. In other words;” C C.
With a bit more work, one can convince onself that in fa¢t= C, i.e., by requiring consecutive
coin tosses to be paired, we are removing exactly those poifis ihwhich were removed in the
Cantor set construction of Example 3.2. o
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In addition to tossing a coin, another common random experiment is to pick a number, perhaps
using a random number generator. Here are some probabiicgespvhich correspond to different
ways of picking a number at random.

Example 1.11

Suppose we choose a nhumber frdfhin such a way that we are sure to get eitihert or 16.
Furthermore, we construct the experiment so that the probability of géttin@, the probability of
getting4 is g and the probability of getting6 is % We describe this random experiment by taking
Q2 to belR, F to beB(IR), and setting up the probability measure so that

P} = % P{1) = % P16} = %

This determinedP( A) for every setd € B(IR). For example, the probability of the interv@l, 5]
is £, because this interval contains the numbeasd4, but not the numbet6.

The probability measure described in this exampléds, the measure induced by the stock price
S2, when the initial stock pricé, = 4 and the probability off is £. This distributionwas discussed
immediately following Definition 2.8. o

Example 1.12 Uniform distribution on0, 1].

Let Q2 = [0,1] and letF = B([0, 1]), the collection of all Borel subsets containinedlnl]. For
each Borel sett C [0, 1], we definelP(A) = puo(A) to be the Lebesgue measure of the set. Because
tol0, 1] = 1, this gives us a probability measure.

This probability space corresponds to the random experiment of choosing a numbéb fidso

that every number is “equally likely” to be chosen. Since there are infinitely mean numbersjin

this requires that every number have probabilty zero of being chosen. Nonetheless, we can speak of
the probability that the number chosen lies in a particular set, and if the set has uncountably many
points, then this probability can be positive. o

I know of no way to design a physical experiment which corresponds to choosing a number at
random from[0, 1] so that each number is equally likely to be chosen, just as | know of no way to
toss a coin infinitely many times. Nonetheless, both Examples 1.10 and 1.12 provide probability
spaces which are often useful approximations téitsea

Example 1.13 Standard normal distribution.
Define the standard normal density

$2

a 1 -7

LetQ = IR, 7 = B(IR) and for every Borel set C IR, define

P2 [ g du. (4.2)
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If Ain(4.2)is anintervala, b], then we can write (4.2) as the less mysterious Riemann integral:
$2

b 1 _
P[a,b]é/ \/ﬂe 2 dx.

This corresponds to choosing a point at random on the real line, and every single point has probabil-
ity zero of being chosen, but if a sdtis given, then the probability the point is in that set is given
by (4.2). 3

The construction of the integral in a general probability space follows the same steps as the con-
struction of Lebesgue integral. We repeat this construction below.

Definition 1.14 Let (€2, F, IP) be a probability spce, and leiX be a random variable on this space,
i.e., a mapping fronf2 to IR, possibly also taking the valugsx.

e If X is anindicator,i.e,

_ )1 ifwe A,
X(“)_IA(“)_{ 0 ifwe A,

for some setd ¢ F, we define
/ X dP 2 P(A).
Q

e If X is asimple functioni.e,
X(w) = Z cpl 4, (W),
k=1

where eacle;, is a real number and each, is a set inF, we define
/ XdP 2y ck/ Ly, dIP =" e, IP(Ay).
2 k=1 2 k=1
¢ If X isnonnegativéut otherwise general, we define
/ X dIP
Q
2 sup {/ Y dIP;Y is simple and’ (w) < X (w) for everyw € Q} .
Q

In fact, we can always construct a sequence of simple funclipns = 1, 2, ... such that
0 <Yi(w) <Yy(w) <VYs(w) <...foreveryw € Q,

andY (w) = lim, ., Y, (w) for everyw € Q. With this sequence, we can define

/depé lim /YndP.
Q Q

n—0oo
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e If X isintegrablei.e,
/X+d1P<oo, /X—dJP<oo,
Q Q

where
X+ (w) 2 max{X(w),0}, X (w)2 max{—X(w),0},

then we define
/depé/xwfp——/x—dp
Q Q Q

If AisasetinF andX is arandom variable, we define
/ depé/ Iy-XdP.
A Q
Theexpectatiorof a random variabl& is defined to be

jEXé/XdJP.
Q

The above integral has all the linearity and comparison properties one would expect. In particular,
if X andY are random variables ards a real constant, then

/XdP+/Yd1P,
Q Q

/CXdP = c/XdP7
Q Q

If X(w) <Y(w)foreveryw € Q, then

/XdPg/YdP.
Q Q

In fact, we don’t need to hav& (w) < Y (w) for everyw € € in order to reach this conclusion; it is
enough if the set af for which X (w) < Y'(w) has probability one. When a condition holds with
probability one, we say it holdsimost surely Finally, if A and B are disjoint subsets ¢t and X

is a random variable, then

/Q(X—|—Y)dP

/ XdP:/XdP+/XdP.
AUB A B

We restate the Lebesgue integral convergence theorem in this more general context. We acknowl-
edge in these statements that conditions don’t need to hold for eyatynost surely is enough.

Theorem 4.4 (Fatou’s Lemmal)et X,,,n = 1,2, ... be a sequence of almost surely nhonnegative
random variables converging almost surely to a random variablerhen

/ X dP < liminf [ X, dPP,
Q n—00 Q
or equivalently,

FX <liminf X,

n—0oo
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Theorem 4.5 (Monotone Convergence Theoreigt X,,,n = 1,2,... be a sequence of random
variables converging almost surely to a random variallleAssume that

0< Xy <Xy < X3<--- almostsurely

Then
/XdP: lim /XndP,
Q n—00 Q

X = lim IPX,,.
n—00

or equivalently,

Theorem 4.6 (Dominated Convergence Theorel®t X,,,» = 1,2, ... be a sequence of random
variables, converging almost surely to a random variallle Assume that there exists a random
variableY such that

| X,,| <Y almost surely for every.

Then
/XdP: lim /XndP,
Q Q

n—0oo

or equivalently,
FX = lim FX,.

n—0oo

In Example 1.13, we constructed a probability measuré/Bn5(IR)) by integrating the standard
normal density. In fact, wheneveris a nonnegative function defined &wsatisfyingf, ¢ duo = 1,
we call adensityand we can define an associated probability measure by

P(A) 2 /A o duo for every A € B(IR). 4.3)

We shall often have a situation in which two measure are related by an equation like (4.3). In fact,
the market measure and the risk-neutral measures in financial markets are related this way. We say
thaty in (4.3) is theRadon-Nikodym derivativef d IP with respect tq.,, and we write

diP

= T (4.4)

¥

The probability measur& weights different parts of the real line according to the densitijow
supposef is a function on( R, B(IR), IP). Definition 1.14 gives us a value for the abstract integral

/B FdP,

/ f@dﬂm
R

which is an integral with respec to Lebesgue measure over the real line. We want to show that

We can also evaluate

| rap= [ redu. (4.5)
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an equation which is suggested by the notation introduced in (4.4) (sub%&ﬁ%ulkar win(4.5) and
“cancel” thedy,). We include a proof of this because it allows usltastrate the concept of the
standard machinexplained in Williams’s book in Section 5.12, page 5.

The standard machine argument proceeds in four steps.

Step 1. Assume thaff is anindicator functioni.e., f(z) = I 4(z) for some Borel sett C IR. In
that case, (4.5) becomes

P(A) = R dpg.
This is true because it is the défion of IP(A).

Step 2. Now that we know that (4.5) holds whehis an indicator function, assume thatis a
simple functioni.e., a linear combination of indicator functions. In other words,

f(z) = Zn: crhi(z),
k=1

where eacle;, is a real number and eaéh is an indicator function. Then

frae = [ [San] ar

k=1

= ck/ hy, dIP
2 f

= Ck/ hyp dp
2 o e e

e

k=1

= /B fedpo.

Step 3. Now that we know that (4.5) holds whehis a simple function, we consider a general
nonnegative functiorf. We can always construct a sequence of nonnegative simple functions
fn,m=1,2 ... such that

e dpo

0 < fi(z) < fo(z) < f3(z) < ... foreveryz € IR,

andf(z) = lim, . f.(z) for everyz € IR. We have already proved that

/ fndP:/ Foi dug for everyn.
R R

We letn — oo and use the Monotone Convergence Theorem on both sides of this equality to

get
| rap= [ redu.
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Step 4. In the last step, we consider &megrablefunction f, which can take both positive and
negative values. Bintegrable we mean that

/f+d1P<oo, /f—dJP<oo.
R R

¢From Step 3, we have

[orrar = [ rrodu,
[rmar = [ redu.

Subtracting these two equations, we obtain the desired result:

= [ o
= /Rf+soduo—/Rf‘@duo
= /Rf@d,uo-

1.5 Independence

In this section, we define and discuss the notion of independence in a general probability space
(Q, F, IP), although most of the examples we give will be for coin toss space.

1.5.1 Independence of sets

Definition 1.15 We say that two setd € F andB < F areindependenif
P(An B) = IP(A)IP(B).

Suppose a random experiment is conducted.aiglthe outcome. The probability thatc A is
IP(A). Suppose you are not told, but you are told that ¢ B. Conditional on this information,
the probability thaty € A is

A P(A N B)

P(A|B) = PB)

The setsA and B are independent if and only if this conditional probability is the uncondidtional
probability IP(A), i.e., knowing thato € B does not change the probability you assigmitoThis
discussion is symmetric with respect.toand B; if A and B are independent and you know that
w € A, the conditional probability you assign #is still the unconditional probability”( B).

Whether two sets are independent depends on the probability mddstia example, suppose we
toss a coin twice, with probability for H and probabilityy = 1 — p for T" on each toss. To avoid
trivialities, we assume thé@t< p < 1. Then

P{HHY} = p*, P{HT} = P{TH} = pq, P{TT} = ¢". (5.1)
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LetA={HH,HT}andB = {HT,TH}.Inwords,A is the set H on the first toss” and is the
set “oneH and on€l’."” Then AN B = {HT'}. We compute

A) = p® +pg = p,
B) = 2pq,
A)IP(B) = 2p*q,
AN B) = pq.

TRIN

(
(
(
(

These sets are independent if and onBpif¢ = pg, which is the case if and only jf = %

If p = % then IP(B), the probability of one head and one tail lis If you are told that the coin
tosses resulted in a head on the first toss, the probabiliB @fhich is now the probability of &
on the second toss, is stjl

Suppose however that= 0.01. By far the most likely outcome of the two coin tosse'is, and

the probability of one head and one tail is quite small; in f&#t53) = 0.0198. However, if you

are told that the first toss resultedh, it becomes very likely that the two tosses result in one head
and one tail. In fact, conditioned on gettingfaon the first toss, the probability of orfé and one

T is the probability of &' on the second toss, which(s99.

1.5.2 Independence of-algebras

Definition 1.16 LetG andH be sube-algebras ofF. We say tha and# areindependenif every
seting is independent of every set 4, i.e,

IP(An B) =IP(A)IP(B) foreveryA ¢ H, B € G.

Example 1.14 Toss a coin twice, and leP be given by (5.1). Let; = F; be thec-algebra
determined by the first tosg: contains the sets

0,Q,{HH,HTY,{TH,TT}.
Let # be thes-albegra determined by the second tggscontains the sets
0,Q,{HH,THY,{HT,TT}.

These twar-algebras are independent. For example, if we choose tHg&lt H1'} from G and
the set{ H H, T H } from H, then we have

P{HH,HTYIP{HH,TH} = (p* + pg) (p* + pg) = p,
P({HH HT}n{HH,TH}) = P{HH} = .

No matter which set we choosedhand which set we choose 1, we will find that the product of
the probabilties is the probability of the intersection.
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Example 1.14 illustrates the general principle that when the probability for a sequence of tosses is
defined to be the product of the probabilities for the individual tosses of the sequence, then every
set depending on a patrticular toss will be independent of every set depending on a different toss.
We say that the different tosses are independent when we construct probabilities this way. It is also
possible to construct probabilities such that the different tosses are not independent, as shown by
the following example.

Example 1.15 Define IP for the individual elements di = {HH HT,TH, TT}tobe

P} = g, PLAT) = JP{TH} =2 PTT) = L
and for every setl C €2, deflneP( ) to be the sum of the probabllltles of the elementdinThen
IP(Q) = 1, solP is a probability measure. Note that the sgtson firsttos$ = {H H, H1'} and
{H onsecond togs= {H H,TH} have probabilitesP{HH, HT} = 1 andIP{HH,TH} =
2, so the product of the probabilities #&. On the other hand, the intersection {of /, HT'}
and{H H, TH} contains the single elemefiff H }, which has probabilit. These sets are not
independent.

1.5.3 Independence of random variables

Definition 1.17 We say that two random variablésandY areindependenif the o-algebras they
generater (X') ando(Y') are independent.

In the probability space of three independent coin tosses, the fsiad the stock at time is
independent oﬁi This is becaus&; depends on only the first two coin tosses, Whergf’aas
eitherw or d, dependlng on whether thieird coin tossisH or T'.

Definition 1.17 says that for independent random variallesndY’, every set defined in terms of
X isindependent of every set defined in term&ofin the case of, and = just considered, for ex-

ample, the set§S; = udSo} = {HTH, HTT} and{ £ = u} = {HHH, HTH,THH,TTH}
are indepedent sets.

SupposeX andY are independent random variables. We defined earlier the measure induted by
on IR to be
Lx(A) 2 P{X € A}, AC R.

Similarly, the measure induced byis
Ly(B)2 P{Y € B}, BC RR.

Now the pair(X,Y) takes values in the plan&?, and we can define the measure induced by the
pair

,CXy(C) = P{(X,Y) eC}, CC IR?.
The set’' in this last equation is a subset of the pldRé. In particular,C' could be a “rectangle”,
i.e, a set of the forml x B, whereA C IR andB C IR. In this case,

{((X,Y) e Ax B} = {X € AAn{Y € B},
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and X andY are independent if and only if

Lxy(AxB) = P({XeAn{yeB})
= IP{X € AAP{Y € B} (5.2)
= Lx(A)Ly(B).
In other words, for independent random variabteandY’, thejoint distributionrepresented by the

measurel x y factors into the product of thearginal distributiongepresented by the measures
Lx andly.

A joint densityfor (X, Y) is a nonnegative functiofiy y (z, y) such that

Lxy(AxB)= /A/BfX,Y(%y) da dy.

Not every pair of random variablés(, Y') has a joint density, but if a pair does, then the random
variablesX andY havemarginal densitieslefined by

x@= [ peremdn fe) [ for€)de

These have the properties
Lx(A) = /fX(ac)dac, ACHR,
A

Ly(B) = /ny(y)dy, BCR.

SupposeX andY have a joint density. TheX andY are independent variables if and only if
the joint density is the product of the marginal densities. This follows from the fact that (5.2) is
equivalent to independence &fandY . TakeA = (—oc, z] andB = (—oc, y], write (5.1) in terms

of densities, and differentiate with respect to betandy.

Theorem 5.7 SupposeX andY are independent random variables. lggand /2 be functions from
IR to IR. Theng(X) andh(Y') are also independent random variables.

PROOF. Let us denotéV = ¢(X)and”Z = L(Y). We must consider sets in(1V) ando (7). But
a typical setins (W) is of the form

{wiW(w) e A} = {w:g(X(v)) € A},

which is defined in terms of the random variable Therefore, this set is in(.X'). (In general,
we have that every set (1) is also inc(X ), which means thak contains at least as much
information ad¥’. In fact, X can contain strictly more information th&W, which means that(.X)
will contain all the sets i (1) and others besides; this is the case, for exampl&, i£ X2.)

In the same way that we just argued that every set(if/') is also ino(.X), we can show that
every setirnr(Z) is also inc(Y'). Since every setim(.X) is independent of every setin(Y'), we
conclude that every set in(1V) is independent of every setin 7). o
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Definition 1.18 Let Xy, X5, ... be a sequence of random variables. We say that these random
variables aréndependenif for every sequence of set§; € o(X1), A2 € 0(X3), ... and for every
positive integen,

P(A1nAyNn---A,) = IP(A)IP(Ay) - - - IP(A,).

1.5.4 Correlation and independence

Theorem 5.8 If two random variables{ andY are independent, and ifandh are functions from
IR to IR, then
Elg(X)h(Y)] = Eg(X)- ERY),

provided all the expectations are defined.

PROOF Letg(z) = I4(x) andh(y) = Ir(y) be indicator functions. Then the equation we are
trying to prove becomes

P({X € A} {Y € B}) = IP{X € A}P{Y € B},
which is true becaus& andY are independent. Now use the standard machine to get the result for

general functiong andh. o
Thevarianceof a random variableéX is defined to be

var(X) £ E[X - EX]%.

The covariance of two random variabl&sandY is defined to be

Cov(X,Y) £ I[(X - EX)(Y - EY)]

= [E[XY]-EX-FEY.
According to Theorem 5.8, for independent random variables, the covariance is z&r@andY’
both have positive variances, we define thairrelation coefficient

Cov(X,Y)

A
PN = R TovaTT

For independent random variables, the correlation coefficient is zero.

Unfortunately, two random variables can have zero correlation and still not be independent. Con-
sider the following example.

Example 1.16 Let X be a standard normal random variable,Zebe independent ok’ and have
the distributionfP{Z = 1} = IP{Z = —1} = 0. DefineY = X 7. We show that” is also a
standard normal random variablgé,andY” are uncorrelated, buf andY are notindependent.

The last claim is easy to see. Xf andY were independent, so would B&* andY?, but in fact,
X? = Y? almost surely.
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We next check that” is standard normal. Far € IR, we have

P{Y <y} = IPP{Y <yandZ =1} + P{Y <yandZ = -1}
= P{X <yandZ=1}+ P{-X <yandZ = -1}
= P{X <ypP{Z =1} + P{-X <y}lP{Z = -1}
1 1
= PIX <yi+oPi-X <yl

SinceX is standard normalP{ X < y} = IP{X < —y}, andwe haveP{Y <y} = IP{X <y},
which shows thaYt is also standard normal.

Being standard normal, botk andY have expected value zero. Therefore,
Cov(X,Y)=E[XY]=E[X*Z]=EX* FZ=1-0=0.
Where inik? does the measury y putits mass, i.e., what is the distribution(af, Y)?

We conclude this section with the observation that for independent random variables, the variance
of their sum is the sum of their variances. IndeedXifand} are independentand = X + Y/,
then

12

var(2) E[(Z - E2)]

= E(X—|—Y EX - EY)?]
E[(X - EX)? +2(X — EX)(Y = BY) + (Y — BY)?]

= Var(X)+ QE[X — EX]E[Y — EY] + Var(Y)

= Var(X)+ Var(Y).

This argument extends to any finite number of random variables. If we are given independent
random variables(y, X5, ..., X, then

Var(X; + Xo + -+ -+ X,,) = Var(X;) 4+ Var(X3) + - - - + Var(X,,). (5.3)

1.5.5 Independence and conditional expectation.

We now return to property (k) for conditional expectations, presented in the lecture dated October
19, 1995. The property as stated there is taken from Williams’s book, page 88; we shall need only
the second assertion of the property:

(k) If arandom variableX is independent of a-algebrat, then

E[X|H] =

The point of this statement is that X is independent ot{, then the best estimate &f based on
the information in is I X, the same as the best estimateXobased on no information.
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To show this equality, we observe first thatX is 7{-measurable, since it is not random. We must
also check the partial averaging property

/ FEXdP = / X dIP forevery A € H.
A A

If X is an indicator of some sét, which by assumption must be independerit/othen the partial
averaging equation we must check is

/AP(B) dP:/AIB 4P,

The left-hand side of this equation#3( A) IP(B), and the right hand side is

/IAIBdP:/IAanP:P(AﬂB).
Q Q

The partial averaging equation holds becadsand B are independent. The partial averaging
equation for generaX independent of{ follows by the standard machine.

1.5.6 Law of Large Numbers

There are two fundamental theorems about sequences of independent random variables. Here is the
first one.

Theorem 5.9 (Law of Large Numbers)Let X, X5, ... be a sequence of independent, identically
distributed random variables, each with expected valand variances2. Define the sequence of

averages

y, At Xe b X o
n

ThenY,, converges tq almost surely ag — oc.

We are not going to give the proof of this theorem, but here is an argument which makes it plausible.
We will use this argument later when developing stochastic calculus. The argument proceeds in two
steps. We first check thdt'y,, = n for everyn. We next check that Va¥,,) — 0 asn — 0. In

other words, the random variablEgs are increasingly tightly distributed aroupdasn — oc.

For the first step, we simply compute

1 1
BY, = ~[EXi+ EXo+ -+ EXo] = —[utp+--+pl=p

n

» times

For the second step, we first recall from (5.3) that the variance of the sum of independent random
variables is the sum of their variances. Therefore,

var(y,) = kZ::lVar (%) = o _7

Asn — oo, we have VafY,,) — 0.



CHAPTER 1. Introduction to Probability Theory 47

1.5.7 Central Limit Theorem

The Law of Large Numbers is a bit boring because the limit is nonrandom. This is because the
denominator in the definition df,, is so large that the variance Bf converges to zero. If we want

to prevent this, we should divide Ryn rather tham. In particular, if we again have a sequence of
independent, identically distributed random variables, each with expectedwahavariance?,

but now we set
A K-+ Xo—p) -+ (Xn—p)

\/ﬁ 9

Zn

then eacl¥,, has expected value zero and

Var(Z,) = kZ:Var<Xi/%u) = Zn: % =2

k=1

As n — oo, the distributions of all the random variabl&s have the same degree of tightness, as
measured by their variance, around their expected valiide Central Limit Theorem asserts that
asn — oo, the distribution ofZ,, approaches that of a normal random variable with mean (expected
value) zero and variane€®. In other words, for every set C IR,

1 _ 2%
e 202dzx.

lim P{Z, € A} =
n—00 o\2m JA
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Chapter 2

Conditional Expectation

Please see Hull's book (Section 9.6.)

2.1 A Binomial Model for Stock Price Dynamics

Stock prices are assumed to follow this simple binomial model: The initial stock price during the
period under study is denoté. At each time step, the stock price either goes up by a factor of
or down by a factor ofl. It will be useful to visualize tossing a coin at each time step, and say that

e the stock price moves up by a factor:off the coin comes out head#/(), and

e down by a factor ofl if it comes out tails ().

Note that we are not specifying the probability of heads here.

Consider a sequence of 3 tosses of the coin (See Fig. 2.1) The collection of all possible outcomes
(i.e. sequences of tosses of length 3) is

Q={HHH,HHT,HTH,HTT,THH,THH, THT, TTH, TTT}.

A typical sequence d will be denotedv, andw,, will denote thekth element in the sequence
We write S, (w) to denote the stock price at “timé”(i.e. afterk tosses) under the outcome Note
thatSy (w) depends only ow, ws, ... ,w,. Thusin the 3-coin-toss example we write for instance,

S1(w) £ Sy (w1, waws) £ 81 (wr),

A
Sa(w) £ Sy(wr,wa,ws) £ Sawr, ws).

EachsS; is arandom variabledefined on the se®. More precisely, letF = P(2). ThenF is a
o-algebra and(?, F) is a measurable space. Eaghis anF-measurable functiofR— IR, that is,
Sk‘1 is a function5—F whereB is the Borelo-algebra orR. We will see later thab, is in fact

49
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y%(HHH)uf’so

S, (HH) =u 2
w=H = SHHT) = Pd
S = ug, SHTH) = Pd
oot Sg(THH)=L12d S
o S (HT) = ud §
S (TH) = ud §
T
X / S3(HTT) = d%u Sy
2
%_(T)—d% S(THN) =d"u
_ 3(TH) = du S
=T wy=

Figure 2.1:A three coin period binomial model.

measurable under a subalgebra ofF. Recall that the Boret-algebrals is thes-algebra generated
by the open intervals dRl In this course we will always deal with subset$otHat belong tds.

For any random variabl& defined on a sample spaQeand anyy € IR, we will use the notation:

(X <y} S {weX(w) <y}

Thesetd X < y},{X >y}, {X = y}, etc, are defined similarly. Similarly for any subgebf i,
we define A
{XeB}={weX(w) € B}

Assumption 2.1 u > d > 0.

2.2 Information

Definition 2.1 (Sets determined by the first: tosses.)We say that a sett C (2 is determined by
the firstk coin tossed, knowing only the outcome of the firéttosses, we can decide whether the
outcome ofall tosses is iM. In general we denote the collection of sets determined by the:first
tosses byF;. Itis easy to check thaf . is ac-algebra.

Note that the random variable, is 7,-measurable, for each=1,2,...  n.

Example 2.1 In the 3 coin-toss example, the collectigh of sets determined by the first toss consists of:
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1. Ay £ {HHH,HHT,HTH, HTT},
2. Ar 2 {THH, THT, TTH,TTT},
3. ¢,

4. Q.

The collectionF - of sets determined by the first two tosses consists of:

Apg S {HHH HATY,
Apr 2 {HTH, HTT),
Arg 2 {THH, THTY,

Ay 2 {TTH, TTT},

. The complements of the above sets,

. Any union of the above sets (including the complements),
. ¢ andQ.

Noopr w N e
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Definition 2.2 (Information carried by a random variable.) Let X be arandom variab— IR.
We say that a set C €2 is determined by the random variabké if, knowing only the valueX (w)
of the random variable, we can decide whether ounet A. Another way of saying this is that for
everyy € IR, eitherX~1(y) c A or X~!(y) N A = ¢. The collection of susbets 6t determined

by X is ac-algebra, which we call the-algebra generated by, and denote by (X).

If the random variableX takes finitely many different values, the.X') is generated by the collec-

tion of sets
{XTHX (W)|w € Q)

these sets are called thoomsof thes-algebras (.X).
In general, ifX is a random variabl@— IR, thens (X') is given by

o(X)={X"YB);B € B}.

Example 2.2 (Sets determined byss) Theo-algebra generated I8 consists of the following sets:

Appg ={HHH HHT} = {w € Q; S5(w) = u*Sp},
App = {TTH, TTT} = {Ss = d*Sy},

Apgp UApg = {S2 = udSp},

Complements of the above sets,

. Any union of the above sets,

. ¢ ={5(w) € ¢},

. =A{5(w) € R}.

No o s wN e
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2.3 Conditional Expectation

In order to talk about conditional expectation, we need to introduce a probability measure on our
coin-toss sample spa€k Let us define

e p € (0,1)is the probability ofH,

e ¢ 2 (1 - p) is the probability ofr,

e the coin tosses aiadependento that, e.g.JP(H HT) = p?q, etc.
o P(A) 2 Yo, P(w), VA C Q.

Definition 2.3 (Expectation.)

EX2 Y X(w)Pw).

we
If A C Qthen
Al ifweA
IA(“’)—{ 0 ifwgA
and

E(I4X) = /AXdP = > X(wPw).
WEeA

We can think off” (1 4.X') as apartial averageof X over the setd.

2.3.1 Anexample

Let us estimates;, given S;. Denote the estimate b§’'(S1|S2). From elementary probability,
IE(51]52) is arandom variabl® whose value at is defined by

Y (w) = E(51]52 = y),
wherey = 5;(w). Properties ofF2 (51].52):
e [F/(51]52) should depend oa, i.e., it is arandom variable
e If the value ofS; is known, then the value df’(S;|S2) should also be known. In particular,

— Ifw=HHHorw= HHT,thenS;(w) = u%Sy. If we know thatSy(w) = u?Sp, then
even without knowingv, we know thatS; (w) = uSy. We define

—Ifw=TTTorw=TTH,thenSy(w) = d*Sy. If we know thatSy(w) = d*S, then
even without knowingv, we know thatS; (w) = d.S;. We define

E(S1]S2)(TTT) = IE(S1|S)(TTH) = dS.
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- fweA={HTH HIT,THH,THT}, thenS;(w) = udSp. If we know S;(w) =
ud.Sy, then we do not know whethél, = u.Sy or Sy = dSy. We then take a weighted
average:

P(A) = p*q + pg* + p*q + pg* = 2pq.

Furthermore,

/A SidlP = pzquSO + pq2u50 + pzquO + pq2d50

= pq(u+d)So
Forw € A we define
[, S1dIP
E(5:1]5)(w) = f}pT) = 3(u+ d)S.

Then
/175(51|52)d1P:/ SydIP.
A A

In conclusion, we can write
IE(51]52) (w) = g(Sa2(w)),

where
uSg if 2 =425
g(z) =% F(u+d)So if 2 = udSo
dSO if v = d250

In other words/F/(51].S2) is randomonly through dependence ¢. We also write
E(51|52 = ) = g(x),

whereg is the function defined above.
The random variabl&’(.51].52) has two fundamental properties:

e [F(51]92) iso(Sz)-measurable.

e Forevery setd € o(Sz),
/175(51|52)d1P = /SldP.
A A

2.3.2 Definition of Conditional Expectation

Please see Williams, p.83.

Let (2, F, IP) be a probability spce, and leg be a subs-algebra ofF. Let X be a random variable
on (2, 7, IP). ThenlE(X|G) is defined to be any random varialifethat satisfies:

(d) Y isG-measurable,
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(b) For every setd € G, we have the “partial averaging property”

/ VP = / XdP.
A A

Existence. There is always a random variable satisfying the above properties (provided that
IF|X| < o), i.e., conditional expectations always exist.

Uniqueness.There can be more than one random variabkeatisfying the above properties, but if
Y’ is another one, thel = Y’ almost surely, i.eP{w € ;Y (w) =Y'(w)} = 1.

Notation 2.1 For random variableX', Y, itis standard notation to write
A
F(X|Y)=IEX|oY)).
Here are some useful ways to think abdu¢.X |G):

e A random experiment is performed, i.e., an elemerdf Q2 is selected. The value of is
partially but not fully revealed to us, and thus we cannot compute the exact vaKig.0f
Based on what we know about we compute an estimate &f (w). Because this estimate
depends on the partial information we have ahouit depends om, i.e., IF[X|Y](w) is a
function ofw, although the dependence ©ns often not shown explicitly.

o Ifthe s-algebray contains finitely many sets, there will be a “smallest”.4éh G containing
w, which is the intersection of all setsfhcontainingv. The wayw is partially revealed to us
is that we are told it is imd, but not told which element of it is. We then defind’[.X |Y](w)
to be the average (with respectift) value of X over this setd. Thus, for alko in this setA,
E1X|Y](w) will be the same.

2.3.3 Further discussion of Partial Averaging
The partial averaging property is
/AE(X|Q)dP: /AXdJP,VA €q. (3.1)
We can rewrite this as
E[I4.E(X|G)] = E[14.X]. (3.2)
Note that/ 4 is aG-measurable random variable. In fact the following holds:

Lemma 3.10 If V' is anyG-measurable random variable, then providédV. ' (X |G)| < oo,

E[V.E(X|9)] = E[V.X). (3.3)
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Proof: To see this, first use (3.2) and linearity of expectations to prove (3.3) whisma simple
G-measurable random variable, i.€.js of the formV = >"7'_, cx 14, , where eachd;, is in G and
eachc; is constant. Next consider the case that a nonnegativg-measurable random variable,
but is not necessarily simple. SuchVacan be written as the limit of an increasing sequence
of simple random variableg,,; we write (3.3) for each/, and then pass to the limit, using the
Monotone Convergence Theorem (See Williams), to obtain (3.3} forFinally, the generalj-
measurable random varialdlecan be written as the difference of two nonnegative random-variables
V = V*+ — VvV, and since (3.3) holds fdr+ andV ~ it must hold forV" as well. Williams calls

this argument the “standard machine” (p. 56). [

Based on this lemma, we can replace the second condition in the definition of a conditional expec-
tation (Section 2.3.2) by:

(b’) For everyG-measurable random-variable we have

E[V.E(X|G)] = E[V.X]. (3.4)

2.3.4 Properties of Conditional Expectation

Please see Willams p. 88. Proof sketches of some of the properties are provided below.

(@) E(IE(X|9) = E(X).
Proof: Just takel in the partial averaging property to be

The conditional expectation of is thus an unbiased estimator of the random variable
(b) If X isG-measurable, then
F(X|G6) = X.
Proof: The partial averaging property holds trivially whegris replaced byX. And sinceX
is G-measurableX satisfies the requirement (a) of a conditional expectation as well.
If the information content of; is sufficient to determin&’, then the best estimate &f based
ong is X itself.

(c) (Linearity)
(a1 X1+ a2 X2|G) = a2 (X41|G) + a2l (X4|G).

(d) (Positivity) If X > 0 almost surely, then
FE(X|G) > 0.
Proof: Taked = {w € Q; IF(X|G)(w) < 0}. Thissetisirng sincel'(X|G) isG-measurable.
Partial averaging implieg, /(X |G)dIP = [, XdIP. The right-hand side is greater than

or equal to zero, and the left-hand side is strictly negative, unléss$) = 0. Therefore,
P(A) =0.
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(h) (Jensen’s Inequality) b : R—R is convex andE|¢(X)| < oo, then
E(¢(X)IG) > o(IB(X|G)).
Recall the usual Jensen’s Inetiya F6(X) > ¢(IE(X)).
(i) (Tower Property) If is a subs-algebra ofg, then
E(E(X|G)|H) = E(X[H).

H is a sube-algebra ofG means tha@ contains more information thaki. If we estimateX
based on the information iG, and then estimate the estimator based on the smaller amount
of information in7{, then we get the same result as if we had estimatetirectly based on

the information in{.

() (Taking out what is known) I is G-measurable, then
F(ZX|6) = Z.FE(X|G).

When conditioning o7, theG-measurable random variabteacts like a constant.

Proof: LetZ be aG-measurable random variable. A random variables I/(Z X |G) if and
only if

(@) Y is G-measurable;

TakeY = Z.IF(X|G). ThenY satisfies (a) (a product ¢i-measurable random variables is
G-measurable)Y also satisfies property (b), as we can check below:

/YdJP — E(LY)
A

= E[4ZE(X|G)]
= E[I4Z.X] (0)WithV = I47

= / ZXdIP.
A

(k) (Role of Independence) # is independent of (o (X ), G), then
E(X|o(G,H)) = E(X|9).
In particular, if X' is independent of, then
F(X|H) = E(X).

If # is independent ok and{g, then nothing is gained by including the information content
of # in the estimation ofY .
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2.3.5 Examples from the Binomial Model

Recall thatF, = {¢, Ay, Ar, Q}. Notice thatl’(Sz|F1) must be constant oAy and A7.
Now sincell’(S2| F1) must satisfy the partial averaging property,

/ IE(Sz|Fq)dIP = SodIP,
AH AH

/ (S| Fq)dIP = Sod IP.

AT AT
We compute

/A E(Sy|F1)dIP = P(Ag).JE (S| Fy)(w)
H
= plE(S:|F1)(w),Vw € Ag.
On the other hand,
SodIP = p*u*Sy + pqudSo.

Apg

Therefore,

E(S:|F1)(w) = pu?Sy + qudSy, Yw € Ap.
We can also write
E(So|F1)(w) = pu*So+ qudSo

(pu + qd)uSy
= (pu+qd)Si(w),Vw € Ag

Similarly,
E(Sz:|F1)(w) = (pu+ qd)S1(w),Vw € Ar.

Thus in both cases we have
E(S2| F1)(w) = (pu+ qd)S1(w), Yw € Q.
A similar argument one time step later shows that
(55 F2) (@) = (pu + qd) Sz (w).

We leave the verification of this equality as an exercise. We can verify the Tower Property, for
instance, from the previous equations we have

EE(Ss|F2)|F1] = El(pu+ qd)S2|Fs]
= (pu+ qd)IE(5:]F1) (linearity)
= (pu+ qd)*S;.

This final expression i€2(53|F1).
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2.4 Martingales

The ingredients are:

¢ A probability spacd€, F, IP).

e A sequence of-algebrasrFy, Fq,...,F,, with the property thatt, C 71 C ... C F,, C
F. Such a sequence ofalgebras is called fitration.

e A sequence of random variablé,, My, ... , M,. Thisis called atochastic process
Conditions for a martingale:

1. EachMy is Fi-measurable. If you know the information i, then you know the value of
M. We say that the proce$d/;, } is adaptedo the filtration{ 7 }.

2. Foreachk, IF(My41|Fr) = M. Martingales tend to go neither up nor down.

A supermartingaléends to galown i.e. the second condition above is r@péd bylF (My41|Fr) <
My}; asubmartingaléends to gaup, i.e. I (Mj41|Fr) > M.

Example 2.3 (Example from the binomial model.) Fork = 1, 2 we already showed that
E(S}H_l |~7:k) = (pu + qd)Sk

Fork = 0, we setF, = {¢,}, the “trivial c-algebra”. Thiss-algebra contains no information, and any
Fy-measurable random variable must be constant (nonrandom). Therefore, by defiitfinF,) is that
constant which satisfies the averaging property

/E(Sl|}"o)dﬂ3:/ S1diP.
Q Q

The right hand side i#.S; = (pu + ¢d)So, and so we have
FE(S1|Fo) = (pu+ qd)So.
In conclusion,

o If (pu+ qd) = 1then{Sy, Fr; k =0,1,2,3}is a martingale.
o If (pu+ qd) > 1then{Sy, Fr; k =0,1,2,3}is a submartingale.
o If (pu+ qd) < 1then{Sy, Fr; k =0,1,2,3}is a supermartingale.



Chapter 3

Arbitrage Pricing

3.1 Binomial Pricing

Return to the binomial pricing model

Please see:

e Cox, Ross and Rubinsteid, Financial Economics/(1979), 229-263, and

e Cox and Rubinstein (1985Qptions Markets, Prentice-Hall.

Example 3.1 (Pricing a Call Option) Suppose: = 2,d = 0.5,» = 25%(interest rate)Sy; = 50. (In this
and all examples, the interest rate quoted is per unit time, and the stock fyicas . . . are indexed by the
same time periods). We know that

i) = { 25w =T

Find the valueat time zeroof a call option to buy one share of stock at time 1 for $50 (i.e.sthi&e priceis
$50).

The value of the call at time 1 is

= s B =

Suppose the option sells for $20 at time 0. Let us construct a portfolio:

1. Sell 3 options for $20 each. Cash outlay-i$60.
2. Buy 2 shares of stock for $50 each. Cash outl&Ai30.
3. Borrow $40. Cash outlay is$40.
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This portfolio thus requires no initial investment. For this portfolio, the cash outlay at time 1 is:

wle wlzT

Pay off option $150 $0
Sell stock —$200 —$50
Pay off debt $50 $50
$0 $0
Thearbitrage pricing theory (APTYalue of the option at time 0 ig, = 20. ]

Assumptions underlying APT:

e Unlimited short selling of stock.

¢ Unlimited borrowing.

¢ No transaction costs.

e Agentis a “small investor”, i.e., his/her trading does not move the market.

Important Observation: The APT value of the option does not depend on the probabilitigs of
andT'.

3.2 General one-step APT

Suppose a derivative security pays off the amadngt time 1, wheré/; is an F{-measurable
random variable. (This measurability condition is important; this is why it does not make sense
to use some stock unrelated to the derivative security in valuing it, at least in the straightforward
method described below).

e Sell the security fok at time 0. {4 is to be determined later).
e Buy A shares of stock at time 0A( is also to be determined later)

e InvestVy — ApSp in the money market, at risk-free interest rate(V, — Ag.So might be
negative).

e Thenwealth attime 1is

>

X1 = AgSi+ (1 + T‘) (VO - AOSO)
= (1—|—T‘)V0—|—A0(Sl—(1—|—7‘)50)

e \We want to choos&j; and/A so that
X1 =V

regardless of whether the stock goes up or down.
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The last condition above can be expressedvryequations (which is fortunate since there twe
unknowns):

(1—|—T‘)V0—|—A0(51(H) - (1—|—7‘)50) :V1(H) (21)

(1—|—T‘)V0—|—A0(51(T) - (1—|—7‘)50) = Vl(T) (22)

Note that this is where we use the fact that the derivative security ¥alus a function of Sy,
i.e., whenSy is known for a givenw, Vj, is known (and therefore non-random) at thaas well.
Subtracting the second equation above from the first gives

_WH) - W)

Bo = Sy(H) — S((T)

(2.3)

Plug the formula (2.3) for\ into (2.1):

(1—|—T‘)V0 = Vl(H)—Ao(Sl(H)—(1+T‘)So)
Vi(H) — Vi (T)
(u—d)So
= (= AVACH) — (Vi(H) = V(1)) (= 1 = )]

14+r—d w—1—r
u—d

= Vi(H) - (u—1-7r)S

Vi(T).

We have already assumed> d > 0. We now also assumé< 1 + r < u (otherwise there would
be an arbitrage opportunity). Define

él—l—r—d

éu—l—r
u—d -

uw—d

Thenp > 0 andg > 0. Sincep+ ¢ = 1, we have) < p < 1 andg = 1 — p. Thus,p, g are like
probabilities. We will return to this later. Thus the price of the call at time O is given by

p q

3.3 Risk-Neutral Probability Measure

Let 2 be the set of possible outcomes francoin tosses. Construct a probability measiiten
by the formula
Plwr,ws, ... wy,) 2 ptlwi=H) g#{iw;=T)

P is called theisk-neutral probability measuréMVe denote b@ the expectation undep. Equa-

tion 2.4 says
— /1
=F .
Yo (1 + rvl)
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Theorem 3.11 Under P, the discounted stock price procegs+r) "k Sy, Fr}r_, is amartingale.

Proof:

E[(1+ )~ 0554 [ Fy]
= (1+ )" (u + §d) Sy
= (14 )" (+D (u(l +r—d) N d(u—1- r)) 5

uw—d uw—d
_ (1+r)_(k+1)u—|—ur—ud—|—du—d—drsk
uw—d
= (1—|-r)_(k+1)—(u_ d)(l—l_r)Sk
uw—d

= (1 + T‘)_ksk.

3.3.1 Portfolio Process

The portfolio process i& = (Ag, Ay, ..., A1), Where

e A} is the number of shares of stock held between titnadk + 1.

e EachAj is Fi-measurable. (No insider trading).

3.3.2 Self-financing Value of a Portfolio Procesa

e Start with nonrandom initial wealtKy, which need not be 0.

e Define recursively

Xeg1 = AkSkH + (1 + T‘) (Xk — AkSk) (31)
= (1—|—T‘)Xk—|—Ak(Sk+1 — (1—|—T‘)Sk) (32)

e Then eachX}, is F-measurable.

Theorem 3.12 Under P, the discounted self-financing portfolio process vallied r)* Xy, Frir_,
is a martingale.

Proof: We have

(L)~ X = (14 7) 7R X+ Ay ((1 + )G — (14 r)_kSk) )
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Therefore,

E[(1+ )~ DX | Fy

= FE[(1+r) "X, |Fx)
FIE[(1+ )~ F DAL Sk | Fi
—ﬁ[(l + T‘)_kAkSku:k]

= (1+r)"* X, (requirement (b) of conditional exp.)
FALE[(14 r)~ D8, |FL]  (taking out what is known)
—(1+7r)7*ARSk  (property (b))

= (1+r)7*X; (Theorem 3.11)

3.4 Simple European Derivative Securities

Definition 3.1 () A simple European derivative secunityth expiration timen is anF ,,,-measurable
random variabld’,,,. (Here,m is less than or equal te, the number of periods/coin-tosses in the
model).

Definition 3.2 () A simple European derivative security, is said to benedgeablef there exists
a constantX, and a portfolio proces& = (Ao, ...,A,,_1) such that the self-financing value
processXy, X, ..., X, given by (3.2) satisfies

Xp(w) =Viy(w), Ywel
In this case, fok = 0,1, ..., m, we call.X;, the APT value at timé of V,,,.

Theorem 4.13 (Corollary to Theorem 3.12)If a simple European security,, is hedgeable, then
foreachk =0,1,...,m,the APT value at timé of V,,, is

Vi 2 (14 1) E[(L+ )" Vi | Fil. (4.1)

Proof: We first observe that i{ My, Fir;k = 0,1,...,m} is a martingale, i.e., satisfies the
martingale property

F[Mpy1|Fr] = M,

foreachk =0,1,...,m — 1, then we also have

E[M,|Fi] = My, k=0,1,...,m— 1. (4.2)
Whenk = m — 1, the equation (4.2) follows directly from the martingale property. &er m — 2,
we use the tower property to write

ﬁ[Mme—z] = ﬁ[ﬁ[Mmu:m—l”]:m—?]

E[Mm—1|]:m—2]
= M, _,.
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We can continue by induction to obtain (4.2).

If the simple European securitly,, is hedgeable, then there is a portfolio process whose self-
financing value procesk,, Xy, ..., X,, satisfiesX,, = V,,,. By definition, X}, is the APT value
at timek of V,,,. Theorem 3.12 says that

Xoy (147" Xy, ..o, (1+7)"™X,,
is a martingale, and so for eaéh
(L4 )% Xy = E[(1+ )" X | Fi] = E[(1+ 1)V, | Fil.

Therefore, .
Xy = (1+ ) E[(1+ 7)™V, | Frl.

3.5 The Binomial Model is Complete

Can a simple European derivative security always be hedged? It depends on the model. If the answer
is “yes”, the model is said to beompletelf the answer is “no”, the model is callédcomplete.

Theorem 5.14 The binomial model is complete. In particular, i€}, be a simple European deriva-
tive security, and set

Vilwis - wp) = (L4 )P E[(1+ 7)™ Vo | Fil (w1 - - - wp), (5.1)

- Vk+1(w1,... 7Wk7H) —Vk+1(w1,... 7Wk7T)

= . 5.2
Sk+1(wl7...7Wk7H)—Sk+1(wl7...7Wk7T) ( )

Ap(wy, ... wg)

Starting with initial wealthV, = 7E[(1 + r)~™V,,], the self-financing value of the portfolio process
Ag, Ay, ..., A, isthe proces$y, Vi, ..., V.

Proof: LetVp,...,V,,_1andAg,..., A, be defined by (5.1) and (5.2). S& = 1} and
define the self-financing value of the portfolio process . . . , A,,_1 by the recursive formula 3.2:

Xit1 = ApSi1 + (14 7) (X — ApSk).
We need to show that
X =V, Vke {0,1,... ,m}. (53)

We proceed by induction. Fdr = 0, (5.3) holds by definition of{,. Assume that (5.3) holds for
some value ok, i.e., for each fixedw;, . .. ,wy), we have

Xk(wh s 7wk) = Vk(wh s 7wk)‘
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We need to show that
Xk—l—l(wlv o ,Wk,H) = Vk—l—l(wlv o 7wk7H)7

Xk_|_1(w1, e 7Wk7T) = Vk+1(w1, e 7Wk7T).

We prove the first equality; the second can be shown similarly. Note first that

E[(1+r)" V| Fi] = EE[(L+ )" Vil Fra]| Fi]
= E[(1+7)"Vu| Fy]
= (1—|—T‘)_ka

In other words{ (1 + r)~*V}}7_, is a martingale undelP. In particular,

Vilwr,..oowr) = E[1+7) """V Frl@r, ... wi)

1 . -
= o Ve @ ) 4 Ve (o T))
Since(wr, . .. ,wy) will be fixed for the rest of the proof, we simplify notation by suppressing these
symbols. For example, we write the last equation as
1 . -
Vi= T (PVit1 (H) + ¢V (1) -
We compute
X1 (H)

= AkSk+1(H)+ (1—|—T‘)(Xk—AkSk)

= Ay (Sk+1(H)— (1—|—T‘)Sk)—|—(1—|—7‘)vk

Ve (H) = Vi (7) (14

— T Sk - (14 S
Vg1 (H) + GViq 1 (1)

- VHI?(LZZ = Z;ZI(T) (wSk = (147)5k)

FPVis1(H) + Vi (T)
= Wi () = Vira (D) () o BV () + Vi (1)

= (Vi1 (H) = Vit (1)) G+ pViyr (H) + Vi1 (T)
= Vi (1),
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Chapter 4

The Markov Property

4.1 Binomial Model Pricing and Hedging

Recall thatV,,, is the given simple European derivative security, and the value and portfolio pro-
cesses are given by:

Vi = (14 ) E[(1+7r)""Vy,|F, k=0,1,...,m— L

_ Vk+1(w1,... 7Wk7H) — Vk+1(w1,... 7Wk7T)
Sk+1(wl7... 7Wk7H) — Sk+1(wl7... 7Wk7T)7

Ap(wy, ... wg) E=0,1,...,m— 1.

Example 4.1 (Lookback Option) u = 2,d = 0.5,r = 0.25, Sy = 4,p = 1+:ld =05,¢=1-—p=0.5.

u

Consider a simple European derivative security with expiration 2, with payoff given by (See Fig. 4.1):

Va = max (Sx —5)T.
0<k<2
Notice that
Vo(HH) = 11, Vo(HT) =3 £ Va(TH) =0, Va(TT) = 0.
The payoff is thus “path dependent”. Working backward in time, we have:
1 4
V() = r[ﬁVZ(HH) + ¢V (HT)] = 3[0.5 x 114+ 0.5 x 3] = 5.60,
T

1

Vi(T) = £05% 0+ 0.5 % 0] =0,

_ 4

Vo 5 0.5 x 5.604 0.5 x 0] = 2.24.

Using these values, we can now compute:

Vi(H) —Vi(T) _
Bo = Sy(H) — S(T) ~ 093,
_ Vo(HH) = Va(HT) _
AuH) = Sy(HH) — So(HT) — 067,
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S =1

Figure 4.1:Stock price underlying the lookback option.

Working forward in time, we can check that
Xl(H) = A()Sl(H) + (1 + T)(Xo — AOSO) = 559, Vl(H) = 560,
Xl(T) = AoSl(T) + (1 + T)(Xo — AOSO) = 001, Vl(T) = 0,
Xy (HH) = Ay(H)S (HH) 4 (14 7) (X1 (H) — A (H)Sy(H)) = 11.01; Vi(HH) = 11,
etc.
|

Example 4.2 (European Call) Letu = 2,d = %, 7= i, So =
with expiration time 2 and payoff function

e
3

p=q= % and consider a European call

Vy = (S — 5)7.

Note that
Vo(HH) =11, Vo(HT) = Vo(TH) = 0, Vo(TT) = 0,

4
Vi(H) = 5[%.11+ £.0] =4.40
4
Vi(T) = 3[%.0+ £.01=0

4
Vo= l3 x 440+ 3 x 0] = 176,
Definew, () to be the value of the call at timewhenS;, = x. Then
va(z) = (& —5)*
[3v2(22) + 5v2(2/2)],

vi(z) =

vo(x) =

O W= O

[1v1(22) + Lv1(2/2)].
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In particular,
v5(16) = 11, vy(4) = 0, v2(1) = 0,

4 1 1
111+ 1.0) = 4.40,

ui(8) = £1

e

vi(2) = 3[%.0 +£.0] =0,

4
v = (3 x 440+ 5 x 0] = L.T6.

Let d; («) be the number of shares in the hedging portfolio at tkmeéhensS; = z. Then

Ik (z) = vk“(@ - Zk/;l(xm)’ k=0,1.

4.2 Computational Issues

For a model withn periods (coin tosses)) has2” elements. For period, we must solve*
equations of the form

1 .
Vielwr, .o wi) = ——[pVipr (w1, -+ wiy H) + ¢Viga (w1, - ., wi, T
1+r

For example, a three-month option has 66 trading days. If each day is taken to be one period, then
n = 66 and2% ~ 7 x 107

There are three possible ways to deal with this problem:

1. Simulation. We have, for example, that
Vo= (1+r)"EV,,

and so we could compute, by simulation. More specifically, we could simulatecoin

tossesv = (wy,...,w,) under the risk-neutral probability measure. We could store the
value ofV,,(w). We could repeat this several times and take the average valig & an
approximation tal'V,.

2. Approximate a many-period model by a continuous-time model. Then we can use calculus
and partial differential equations. We'll get to that.

3. Look for Markov structure. Example 4.2 has this. In period 2, the option in Example 4.2 has
three possible values (16), v5(4), vo(1), rather than four possible valu€s( H H ), Vo(HT), Vo(T H), Vo (T'T).
If there were 66 periods, then in period 66 there would be 67 possible stock price values (since
the final price depends only on thamberof up-ticks of the stock price —i.e., heads — so far)
and hence only 67 possible option values, rather én- 7 x 10'°.
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4.3 Markov Processes

Technical condition always present:We consider only functions oR bnd subsets d® which are
Borel-measurable, i.e., we only consider subgetd R that are in5 and functiongy : IR— IR such
thatg~! is a function3—5.

Definition 4.1 () Let (2, 7, P) be a probability spce. Let{F};_, be a filtration underF. Let
{X1}7_, be a stochastic process @, 7, P). This process is said to Bédarkovif:

e The stochastic procegs(;.} is adapted to the filtratiofi7 }, and

e (The Markov Property)For eachk = 0,1,...,n — 1, the distribution ofX;,; conditioned
on Fy is the same as the distribution &, ; conditioned onXy.

4.3.1 Different ways to write the Markov property

(@) (Agreement of distributions). For every ¢ B = B(IR), we have

P(Xk_H € A|.7:k) = E[IA(Xk+1)|]:k]
ETTA(Xpg1)| X4]
= P[Xp41 € AIXG].

(b) (Agreement of expectations of all functions). For every (Borel-measurable) furkctid®— IR
for which IE|h(Xj41)| < oo, we have

ETh(Xp41)|Fr] = B[ Xpq1) [ X3]-
(c) (Agreement of Laplace transforms.) For everg IR for which Fe'Xk+1 < 0o, we have

b/ [e“X’“‘H

}"k] - [e“Xk‘H

Xk] :

(If we fix v and definé:(z) = ¢**, then the equations in (b) and (c) are the same. However in

(b) we have a condition which holds feveryfunction’, and in (c) we assume this condition

only for functionsh of the forma(z) = ¢"”. A main resultin the theory of Laplace transforms

is that if the equation holds for evefyof this special form, then it holds for evefy i.e., (c)
implies (b).)

(d) (Agreement of characteristic functions) For everg IR, we have
E [eiuX]H_l |]:k} - FE [eiuX]H—l |Xk} ,

wherei = /—1. (Since|e’™”| = | cosz +sin z| < 1 we don’'t need to assume thilit|e'“*| <
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Remark 4.1 In every case of the Markov properties whetg. . .| X;] appears, we could just as
well write ¢ (X ) for some functiory. For example, form (a) of the Markov property can be restated
as:

For everyA € B, we have
P(Xi1 € AlFy) = 9(Xk),
wherey is a function that depends on the set

Conditions (a)-(d) are equivalent. The Markov property as stated in (a)-(d) involves the process at
a “current” timek and one future timé& + 1. Conditions (a)-(d) are also equivalent to ciiwhs
involving the process at time and multiple future times. We write these apparently stronger but
actually equivalent conditions below.

Consequences of the Markov propertylet j be a positive integer.

(A) ForeveryAyi; C IR,... , Axy; C R,

P[Xkt1 € Akgry oo s Xigj € Ak Fr] = P[Xky1 € Appr, oo Xy € Ak [ X

(A) ForeveryA € IR/,

P[(Xk+17 . 7Xk+j) - A|.7:k] = P[(Xk-l—h . 7Xk+j) € A|Xk]

(B) For every functiorh : IR/ — IR for which IF|h(X 11, - - . , Xx1;)| < oo, we have

E[h(Xk-I-h . e 7Xk_|_])|.7:k] — E[h(Xk-I-h . e 7Xk+])|Xk]

(C) Foreveryu = (upy1, ..., upy;) € IR? for which [|ets+1Xmt1++ut; Xty | < o0, we have

E[euk+1Xk+1+~~~+uk+] KXitj |fk] — E[euk+1Xk+1+~~~+'U«k+] KXigy |Xk]

(D) For everyu = (ugy1, ... ,ur;) € IR we have

E[ei(ukHXkH+~~~+uk+JXk+J)|}‘k] - E[ei(uk+1Xk+1+~~+uk+gXk+;)|Xk]'

Once again, every expression of the folfi(. . .| X) can also be written ag(X}), where the
functiong depends on the random variable represented byn this expression.

Remark. All these Markov properties have analogues for vector-valued processes.
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Proof that (b) = (A). (with j = 2 in (A)) Assume (b). Then (a) also holds (take= 1,).
Consider
P[Xpy1 € Apgr, Xpy2 € Apgo| Fil
= Ela,,  (Xep) g, (Xeg2)[Fi
(Definition of conditional probability)
= B A, (Xep) T4, (Xe2) [P ]| F]
(Tower property)
= By, (Xepr) By, (X)) 73]
(Taking out what is known)
= Ela,, (Xppr) By, (X2 [ X ][ 7]
(Markov property, form (a).)
= B, (Xe1)-9(Xea) | F]
(Remark 4.1)
= B, (Xen)-9(Xea) [ X
(Markov property, form (b).)

Now take conditional expectation on both sides of the above equation, conditiorgdain and
use the tower property on the left, to obtain

PXkt1 € Apprs Xppo € Appal Xo] = B[4, (Xer1) g (Xiga) [ X 3.1)
Since both
PP[Xk+1 € Akt1, Xpyo € Apyo| Fi

and
P[Xkt1 € Apyr, Xpgo € Apyo| Xi]

are equal to the RHS of (3.1)), they are equal to each other, and this is property (A)wizh =

Example 4.3 It is intuitively clear that the stock price process in the binomial model is a Markov process.
We will formally prove this later. If we want to estimate the distributiortigf.; based on the information in
Fr, the only relevant piece of information is the valueSaf For example,

E[Ses1|Fi] = (pu+ §d) Sk = (1+1)Sk (3.2)

is a function ofS;. Note however that form (b) of the Markov property is stronger then (3.2); the Markov
property requires that fanyfunctionh, B
ETh(Sk41)|F k]

is a function ofSy. Equation (3.2) is the case bfz) = =.
Consider a model with 66 periods and a simple European derivative security whose payoff at time 66 is

1
Ves = 3(564 + Ses + Ses).
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The value of this security at time 50 is

Vso = (147)E[(14 r) "% Ve | Fs0]
= (1+7°)_16E[V66|550]a

because the stock price process is Markov. (We are using form (B) of the Markov property here). In other
words, thel's;-measurable random variablg, can be written as

Vio(wi, ..., ws0) = 9(Sso(wi, ... ,ws0))

for some functiory, which we can determine with a bit of work. ]

4.4 Showing that a process is Markov

Definition 4.2 (Independence)Let (2, 7, P) be a probability spce, and let; andH be sube-
algebras ofF. We say that; and?{ areindependenif for every A € G andB € #, we have

P(AN B) = IP(A)IP(B).

We say that a random variablé is independent of a-algebrag if o(.X), thec-algebra generated
by X, isindependent of .

Example 4.4 Consider the two-period binomial model. Recall thiat is the o-algebra of sets determined
by the first toss, i.ef; contains the four sets

Ap & {HH, HTY, Ar 2 (TH,TT}, ¢, Q.
Let # be thes-algebra of sets determined by the second toss#.eqgntains the four sets
{HH,TH},{HT,TT},$, <.

ThenF, and# are independent. For example, if we take= {H H, HT'} fromF, andB = {HH,TH }
from 7, thenlP(A N B) = IP(HH) = p* and

P(A)P(B) = (9 +p9)(0° +pa) =P’ (p +0)° = p°.
Note thatF; and S, are not independent (unless= 1 orp = 0). For example, one of the setsdiiS2) is
{w; So(w) = u?Sp} = {HH}. IfwetakeA = {HH,HT} from F; and B = {H H} from ¢(55), then
P(ANB) = IP(HH) = p?, but

P(A)IP(B) = (0” + po)p” =p°(p + ¢) =p°.

The following lemma will be very useful in showing that a process is Markov:

Lemma 4.15 (Independence Lemma).et X andY be random variables on a probability space
(Q, F,P). LetG be a subs-algebra of 7. Assume
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e X isindependent of;
e Y isG-measurable.

Let f(z, y) be a function of two variables, and define

a(y) £ Ef(X,y).
Then
E[f(X,Y)[G] = g(Y).

Remark. In this lemma and the following discussion, capital letters denote random variables and
lower case letters denote nonrandom variables.

Example 4.5 (Showing the stock price process is MarkoviConsider am-period binomial model. Fix a
time k and defineX 2 Sg—;’l andg 2 Fr. ThenX = wifwyyr = HandX = dif wgy =T, SinceX

depends only on thg: + 1)st toss,X is independent of . DefineY’ 2 Sk, so thatY” is G-measurable. Lét
be any function and sgi(x, y) 2 h(zy). Then
FAN
9(y) = Ef(X,y) = Eh(Xy) = ph(uy) + gh(dy).

The Independence Lemma asserts that

Eh(Sks1)|Fr] = Elh (ngl.sk) | 7]

= E[f(X,Y)|d]
= g(Y)
= ph(uSk) + q¢h(dSk).

This shows the stock price is Markov. Indeed, if we condition both sides of the above equati@ti.orand
use the tower property on the left and the fact that the right hand sid&jg-measurable, we obtain

ThusE[h(Sk+1)|Fi] andE[h(Sk+1)| Xi] are equal and form (b) of the Markov property is proved.

Not only have we shown that the stock price process is Markov, but we have also obtained a formula for
FE[h(Sk+1)|Fx] as a function of5;,. This is a special case of Remark 4.1.

4.5 Application to Exotic Options

Consider am-period binomial model. Define thirenning maximunof the stock price to be

A
M, = max S;.
1<j<k

Consider a simple European derivative security with payoff at inév,,(S,,, M,,).
Examples:
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e v,(S,, M,) = (M, — K)* (Lookback option);
o v, (S, M) = Ing,>B(Sn — K)* (Knock-in Barrier option).

Lemma 5.16 The two-dimensional proce$§S;, My) }7_, is Markov. (Here we are working under
the risk-neutral measurg, lalthough that does not matter).

Proof: Fix k. We have
Mps1 = MV Siqa,

whereV indicates the maximum of two quantities. LBt2 %:—1 SO

P(Z=u)=p, P(Z=d)=4,
andZ is independent of ;.. Let h(z, y) be a function of two variables. We have

h(Sk+1, Mg+1) = h(Sks1, MV Skt1)
h(ZSk, M Vv (ZSk))

Define

>

Eh(Zz,yV (Zz))
= ph(uz,yV (uz))+ gh(dz,y Vv (dz)).

9(z,y)

The Independence Lemma implies
Eh(Sk1, Mit1)|Fi] = g(Sk, Mi) = ph(uS, My, V (uSk)) + Gh(dSi, M),

the second equality being a consequence of the factihat dS;, = M. Since the RHS is a
function of (Sj, M}), we have proved the Markov property (form (b)) for this two-dimensional
process. [

Continuing with the exotic option of the previous Lemma... Ugtlenote the value of the derivative
security at timek. Since(1 + r)~*V}, is a martingale undef’, we have

1 ~—
Vk 147 [Vk+1|]:k]7 y Ly y T

At the final time, we have
Vi = v, (Sp, My).

Stepping back one step, we can compute

1 —
Vi = —Fv, Snan Fne
1 1+7r [U ( )| 1]
1
= —1 T [ﬁvn(USn—h USn_l vV Mn—l) + (jvn (dsn—h Mn—l)] .
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This leads us to define

oumt(e,9) & o o, uz V y) + o, (d, )]
so that
Vn—l = Un—l(Sn—h Mn—l)-

The general algorithm is

1T N
vp(2,Y) = —— | PUrg1 (uz, uz V y) + Gurgr (de, y) |,

1+r
and the value of the option at tinieis vy (S, My). Since this is a simple European option, the
hedging portfolio is given by the usual formula, which in this case is

Vk4+1 (uSk, (uSk) vV Mk) — Uk41 (dSk, Mk)

A =
g (u—d)Sk




Chapter 5

Stopping Times and American Options

5.1 American Pricing

Let us first review théeuropean pricing formula in a Markov model. Consider the Binomial
model withn periods. LetV,, = ¢(S,,) be the payoff of a derivative security. Define by backward
recursion:

va(2) = gla)
0(e) = i (us) + G (do))

Thenw,(Sy) is the value of the option at time and the hedging portfolio is given by

Vg1 (wSk) — Vg1 (dSk)
Ay = k=0,1,2,... — 1.
k (u—d)Sk 3 07 3 4 y T

Now consider an American option. Again a functigns specified. In any period, the holder
of the derivative security can “exercise” and receive payng¢ft). Thus, the hedging portfolio
should create a wealth process which satisfies

Xk > g(Sk),Vk, almost surely.

This is because the value of the derivative security at finseat leasy (.Sy), and the wealth process
value at that time must equal the value of the derivative security.

American algorithm.

vn(z) = g(x)

vp(z) = max{ !

1+r

(Poies (02) + Qo (d), 0(2)
Thenuy(Sk) is the value of the option at time

77



78

S,(HH) = 16 12(10) =0

SHT) =4
v2(4) =1

S(TH) =4
§M=2

VAN

S(M=1 w@) =4

Figure 5.1:Stock price and final value of an American put option with strike price 5.

Example5.1 See Fig. 5.15; =4,u=2,d=1,r=%,p=¢= 3,n = 2. Setvs(2) = g(z) = (5 — z) 7.
Then

v1(8) = max

5!
]
)

Lo+11] (5—8)+}

g

(S g ] OTI»-B

= 040

il

21+ 14] (5—2)+}

v1(2) = max

= mmax

= 3.00
vo(4) = max{% [£.(0.4)+ £.(3.0)], (5 — 4)"'}

= max{1.36,1}
= 1.36

Let us now construct the hedging portfolio for this option. Begin with initial wealth= 1.36. Compute
Ay as follows:

040 = v (Si(H))
= S (H)Ap+ (14 7)(Xo — AoSo)
= 8A¢+ 5(1 36 — 4A,)
= 3A¢+ 1.70 — Ay = —0.43
3.00 = v (S (T))
= 51 (T)Aq+ (1+ r)(Xo — ApSp)
= 2+ 5(1 36 — 4A,)
= —3A¢+1.70 => Ag = —0.43
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UsingAg = —0.43 results in

Xl(H) = 1)1(51 (H)) = 040, Xl(T) = Ul(Sl(T)) = 3.00

Now let us compute\; (Recall thatS; (7') = 2):

1 (25} (4)

= So(TH)A(T) 4 (L +r)(X1(T) = A(1)S1(T))

= 4A(T)+ 2(3 —2A4(T))
= 15A(T)4+3.75 = Ay (T) = —1.83
4 = w1
= So(TT)AUT) + (1 +7)(Xi(T) = As(T)5:(T))

5
= AYT) +3(3-224(T))
= —15A(T) +3.75 = Ay (T) = —0.16
We get different answers fak, (7')! If we had X (7") = 2, the value of thé&europeanput, we would have
1=15A(T) 425 = A (T) = -1,

4=—15A(T) + 2.5 = A(T) = —1,

5.2 Value of Portfolio Hedging an American Option

Xit1 = ApSpyr+ (14 7)(Xe — Cr — ApSk)
= (1 + T‘)Xk + Ak(SkH — (1 + T‘)Sk) — (1 + T‘)Ck

Here,(', is the amount “consumed” at tirie

e The discounted value of the portfolio isapermartingale
e The value satisfieX', > ¢(Sk),k=0,1,...,n.
e The value process is the smallest process with these properties.

When do you consume? If
B+ )~ D (Segn) | FR] < (14 1) " op(Sk),

or, equivalently,
1

E
(1—|—r

Vk41 (Sk4+1)|Fr) < vk (Sk)
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and the holder of the American option does not exercise, then the seller of the option can consume
to close the gap. By doing this, he can ensure tat= v, (Sy) for all k&, wherew;, is the value
defined by the American algorithm in Section 5.1.

In the previous exampley (S1(7)) = 3, v2(S2(TH)) = 1 andvy(S2(1T1)) = 4. Therefore,

1
1+r

El——ua(S)|F)(T) = 5[50+ 54]

| Ot

Il
—
N | Ot
—

Il
wdwm

vi(S1(T)) =

so there is a gap of size 1. If the owner of the option does not exercise it at time one in the state
wy = T, then the seller can consume 1 at time 1. Thereafter, he uses the usual hedging portfolio

Ukt1 (wSk) — vpg1(dSk)
(u—d)Sk

A =

In the example, we hawvg (51(7')) = ¢(51(1)). Itis optimal for the owner of the American option
to exercise whenever its valug(S;) agrees with its intrinsic valug(Sy) .

Definition 5.1 (Stopping Time) Let (Q2, 7, P) be a probability space and [&F}7_, be a filtra-
tion. A stopping timas a random variable : Q—{0,1,2,...,n} U {oo} with the property that:

{weQr(w)=k} e Fr, VE=0,1,...,n,00.

Example 5.2 Consider the binomial model with = 2,5y = 4,u = 2,d = $,r = 1,505 = § = 3. Let
v, v1, v2 be the value functions defined for the American put with strike price 5. Define

7(w) = min{k; vg(Sk) = (5 — Sk) T}

The stopping time- corresponds to “stopping the first time the value of the option agrees with its intrinsic
value”. Itis an optimal exercise time. We note that

. 1 if we Ap
W) =9 9 ifwe Ay

We verify thatr is indeed a stopping time:

{wiTlw) =0} = ¢€Fy
fwitlw =1} = Arer
fwitlw) =2} = AmerFy

Example 5.3 (A random time which is not a stopping time) In the same binomial model as in the previous
example, define
p(w) = min{k; Sy (w) = ma(w)},
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wherem, 2 ming< ;<2 S;. In other wordsp stops when the stock price reaches its minimum value. This
random variable is given by
0 if we AH,
p(w):{ 1 fw=TH,

2 fw=T1T
We verify thatp is nota stopping time:

{w; p(w) = 0} An ¢ Fo
{wipw)=1} = {TH}EF,
{wiplw) =2} = {TT}eF:

5.3 Information up to a Stopping Time

Definition 5.2 Let 7 be a stopping time. We say that a setC €2 is determined by time provided
that
ANn{w;T(w) =k} € Fy, Vk.

The collection of sets determined byis as-algebra, which we denote 3% .
Example 5.4 In the binomial model considered earlier, let
7 = min{k; v (Sk) = (5 — Sk) T},
1 if we Ap

T(“):{ 2 ifwe Ay
The set{ HT'} is determined by time, but the se{ T H } is not. Indeed,

{HT}N{w;t(w) =0} = ¢ € Fy
{HTY{w;7(w) =1} = ¢&F,y
{HT}n{w;r(w) =2} = {HT}E€Fy

but
{TH} N {w;r(w) =1} ={TH} & F1.
The atoms ofF ;. are
{HT}, {HH}, Ap = {TH,TT}.
[ ]

Notation 5.1 (Value of Stochastic Process at a Stopping Timdj (2, 7, ") is a probability spce,
{Fr}i_, is afiltration undetF, { X} }}_, is a stochastic process adapted to this filtration,ars

a stopping time with respect to the same filtration, thenis an F.-measurable random variable
whose value at is given by
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Theorem 3.17 (Optional Sampling) Suppose thatYy, Fi }72, (or {Yx, Fr}i_,) is a submartin-
gale. Letr andp beboundedstopping times, i.e., there is a nonrandom numbsuch that

T <mn, p<mn, almostsurely.

If ~ < p almost surely, then
Y, < IE(Y,|F,).

Taking expectations, we obtafiy,; < I'Y,, andin particularYy, = IEYy < IEY,. If {Yy, Fr}72,
is a supermartingale, then < p impliesY, > IE(Y,|F;).
If {Y%, Fr}72, is a martingale, them < pimpliesY, = IE(Y,|F;).

Example 5.5 In the example 5.4 considered earlier, we defifie) = 2 for allw € 2. Under the risk-neutral
probability measure, the discounted stock price pro(:%)ss’“sk is a martingale. We compute

B[(2) sf]

The atoms ofF, are{H H}, {HT},andAr. Therefore,
~ | 74\?

FEl|l=-]) S

[(5) ’
~ | /4\?2

FEl|l=-]) S

[(5) ’

Sa(HH),

]—"T] (HH)

F. | (HT)

Sa(HT),

and forw € Ay,

]—"T] @ = 1 (g)zsz(m) Ty (%)ZSQ(TT)

= £ x256+ % x0.64
= 1.60

In every case we have gotten (see Fig. 5.2)

[0 s () st
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/116/25) S)(HH) = 10.24
(4/5) Sl(H) = 6.40

\(16/25) S)(HT) = 256
%" /(16/25) S,(TH) = 256

5§ m = 1-6\

Figure 5.2:lllustrating the optional sampling theorem.

(16/25)S,(TT) = 0.64
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Chapter 6

Properties of American Derivative
Securities

6.1 The properties

Definition 6.1 An American derivative securitis a sequence of non-negative random variables
{G}}_, such that eacly’;, is F,-measurable. The owner of an American derivative security can
exercise at any timg, and if he does, he receives the paymépt

(&) The valueV}, of the security at timé is
Vi = max (14 )P IE[(1 4 r)77G | Fil,
where the maximum is over all stopping timesatisfyingr > &k almost surely.
(b) The discounted value proce§d + r) =¥V, }7_, is the smallest supermartingale which satisfies

Vi > G, Vk, almost surely.

(c) Any stopping timer which satisfies
Vo= E[(1+71)77G,]
is an optimal exercise time. In particular
r2 min{k; Vj = G}
is an optimal exercise time.
(d) The hedging portfolio is given by

_ Vk+1(w1,... 7Wk7H) —Vk+1(w1,... 7Wk7T)
Sk+1(wl7... 7Wk7H) — Sk+1(wl7... 7Wk7T)

Ap(wy, ... wg) k=0,1,...,n—1.

85
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(e) Suppose for some andw, we havel, (w) = G (w). Then the owner of the derivative security
should exercise it. If he does not, then the seller of the security can immediately consume

Velw) = 1 FlVet 7))

and still maintain the hedge.

6.2 Proofs of the Properties

Let {G'x}7_, be a sequence of non-negative random variables such that&gast¥ ,-measurable.
DefineT} to be the set of all stopping timessatisfyingk < 7 < n almost surely. Define also

Vi 2 (14 7)) max B [(1+r) 7G| Fy.

TETk

Lemma 2.18 V;. > G, for everyk.

Proof: Taker € T} to be the constarit. ]

Lemma 2.19 The proces§(1 + r) %V, }7_, is a supermartingale.
Proof: Let7* attain the maximum in the definition &f. 4, i.e.,

1470V, = [(1 i r)_T*GT*|]:k-I—1i| '
Because* is also inT},, we have

El147) V| ] = B [E[(1+ )77 Goe| Pyl 4]

E[(1+1r)77 G e | Fy]
max I [(1+r)" 7G| Fi]

TETk

(1 + T‘)_ka.

IA

Lemma 2.20 If {Y}}}_, is another process satisfying
Y, > G, k=0,1,...,n, as.,
and{(1 4 r)~*Y,}7_, is a supermartingale, then

Y > Vi, k=0,1,...,n, as.
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Proof: The optional sampling theorem for the supermartindgélet r)~*Y}, }7_, implies
E[(14r) Y| Fr) < (14 1)7FY,, ¥ € Ty
Therefore,

Vi = (14 max E[(1+r)"G,|Fx]

TETk

< (L4 r)F max E[(1+r)7TY | Fy]
T k
< (L+n)TFL )Y
= Y.
n
Lemma 2.21 Define

1 ~—

Cr = Vk—l_l_—rE[VkHVk]

= L) = B )V F)

Since{(1 + r)~*V,.}7_, is a supermartingale,’; must be non-negative almost surely. Define

. Vk+1(w1,... 7Wk7H) —Vk+1(w1,... 7Wk7T)

A = )
k(wh 7<.Uk) Sk+1(w17...7Wk7H)_Sk-|—1(w17"'7wk7T)

SetX, = Vy and define recursively
Xig1 = ApSpqr + (1 4+ 7)(Xp — Cp — ApSik).

Then
X, =V, Vk.

Proof: We proceed by induction oh. The induction hypothesis is thaf, = Vj for some
ke{0,1,...,n— 1}, i.e., foreach fixedws, ... ,w;) we have

Xk(wh s 7wk) = Vk(wh s 7wk)‘
We need to show that
Xk—l—l(wlv o ,Wk,H) = Vk—l—l(wlv o 7wk7H)7

Xk_|_1(w1, e 7Wk7T) = Vk+1(w1, e 7Wk7T).
We prove the first equality; the proof of the second is similar. Note first that

Vk(wh s 7wk) - Ck(wh s 7wk)
1 —~
= —F
1+r [Vk+1|]:k](w17 7wk)
1

= —(ﬁvk-l-l(wlv"' 7wk7H)+(ij+1(w17"- 7wk7T))'
14r
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Since(wy, ... ,wg) Will be fixed for the rest of the proof, we will suppress these symbols. For
example, the last equation can be written simply as

1 N -
Vk — Ck = m (ka+1(H) + qVk-I-l(T)) .

We compute

Xk-|—1(H) = Aksk+1(H)—|—(1—|—T‘)(Xk—0k—AkSk)
_ Vi (H) = Vi (T)
= S (E)Sen() S~ 1408
+(+ ) (Vi = Ck)
= VkH((Z)_—d)‘gc:l(T) (wSk — (14 7)S)
+pVir1 (H) + ¢Viy1 (T)
= (Vi1 (H) = Vit (1)) G + pVig1 (H) + ¢Vir (T)

= Vit (H).

6.3 Compound European Derivative Securities

In order to derive the optimal stopping time for an American derivative security, it will be useful to
study compound European derivative securities, which are also interesting in their own right.

A compound European derivative security consiste gf 1 different simple European derivative
securities (with the same underlying stock) expiring at tifhels . .. , n; the security that expires

at timej has payoftC';. Thus a compound European derivative security is specified by the process
{C;}}=0, Where eaclC; is F;-measurable, i.e., the proce§s;}”_, is adapted to the filtration
{fk}zzo-

Hedging a short position (one payment) Here is how we can hedge a short position in ftie
European derivative security. The value of European derivative seguaitiimek is given by

V9 = (14 mFE[(1L+ 1) Fe), k=0,... ],
and the hedging portfolio for that security is given by

Vk(j) (wiyeoywi, H) — ) (wiyeooywi, 1)

Ag)(wl,...,wk): +1 ktl k=0,...,5—1.
S,(g]_gl(wl, ey wi, H) — S,(g]_gl(wl, ceywi, 1)
Thus, starting with wealthfo(j), and using the portfolic@Aéj), e ,Agj_)l), we can ensure that at

time ;7 we have wealtid’;.

Hedging a short position (all payments).Superpose the hedges for the individual payments. In

other words, start with wealth, = >~7_, VO(]). At each time: € {0,1,...,n — 1}, first make the
paymentC and then use the portfolio

A = Ak(k+1) + Ak(k+2) +...+ Ak(n)
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corresponding to all future payments. At the final timeafter making the final payment,,, we
will have exactly zero wealth.

Suppose you own a compound European derivative se¢dfjt_,. Compute

Vo=V =F [Z (1+7)79C;

i=0

and the hedging portfolio ifA; }7Z;. You can borrow/, and consume it immediately. This leaves
you with wealth.X, = —V;. In each period:;, receivethe payment’; and then use the portfolio
—Ay. Atthe final timen, after receiving the last paymeft,, your wealth will reach zero, i.e., you
will no longer have a debt.

6.4 Optimal Exercise of American Derivative Security

In this section we derive the optimal exercise time for the owner of an American derivative security.
Let {G'x}7_, be an American derivative security. Letbe the stopping time the owner plans to
use. (We assume that eaGh is non-negative, so we may assume without loss of generality that the
owner stops at expiration — time- if not before). Using the stopping time in period; the owner
will receive the payment

Cj = 1=G-

In other words, once he chooses a stopping time, the owner has effectively converted the American
derivative security into a compound European derivative security, whose value is

vi) = F (1+r)7iC;

=

R
Il
=]

= F

=

(1 + r)_jI{T:j}Gj

o

= E[(1+r)7"G,).

The owner of the American derivative security can borrow this amount of money immediately, if
he chooses, and invest in the market so as to exaclty pay off his debt as the pajmefits are

received. Thus, his optimal behavior is to use a stopping tinvlich maximizesVO(T).
Lemma 4.22 VO(T) is maximized by the stopping time
™ = min{k; Vi, = Gi}.

Proof: Recall the defiition

A 5 -7 — (7)
Yo = m LA Te = o
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Let7’ be a stopping time which maximizé’é”, e Vo=IF [(1 + r)—T'GT/} .Becausd (1 +r)~*Vi 17,
is a supermartingale, we have from the optional sampling theorem and the inefjyatity;, the
following:

Vo

v

I [(14 7)™V Fo
= E[1+n)7V]
> ﬁ[(Hr)—T’GT,}
= W

Therefore, -
Vo= [(1+1)"Vo| = B [(14+ 7)o,

and
V=G, as.

We have just shown that i’ attains the maximum in the formula

Vo = max IE[(1+r)"7G,], (4.1)
T€T,
then
VT/ = Gq-/7 a.s.

But we have defined
™ = min{k; Vi = G},

and so we must have® < 7’ < n almost surely. The optional sampling theorem implies
1+ G = (14+7)7 Vo
> E[(14r) 7 Vol F
= B[(1+r)7CoF].
Taking expectations on both sides, we obtain
E(147)7"Gre | > B [(141)77G] = Vo,

It follows that7* also attains the maximum in (4.1), and is therefore an optimal exercise time for
the American derivative security. [



Chapter 7

Jensen’s Inequality

7.1 Jensen’s Inequality for Conditional Expectations

Lemma 1.23 If ¢ : IR— IR is convex andl/|o(X )| < oo, then
Ep(X)|9] = p(IE[X]4]).
For instance, ilG = {¢, Q}, p(z) = 2%

EX*> (EX)2

Proof: Sincey is convex we can express it as follows (See Fig. 7.1):

p(z) = max h(z).
h<e
h is linear

Now leth(z) = ax + b lie below¢. Then,

Elp(X)|G] > ElaX + /7]
= aB[X|G] +b
= h(E[X]|G])

This implies

Elp(X)g] > max  h(E[X]G])
ris linear

= »E[X]|9).

91
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Figure 7.1:Expressing a convex function as a max over linear functions.

Theorem 1.24 If {Y}}7_, is a martingale and is convex thed¢(Y}) }7_, is @ submartingale.

Proof:

Ele(Yes)|Fe] = @(EYig1|F])
= (V).

7.2 Optimal Exercise of an American Call

This follows from Jensen’s inequality.

Corollary 2.25 Given a convex function : [0, c0)—IR whereg(0) = 0. For instanceg(z) =

(x — K)™ is the payoff function for an American call. Assume that 0. Consider the American
derivative security with payoff(.S) in periodk. The value of this security is the same as the value
of the simple European derivative security with final payoff,, ), i.e.,

B (14 r)7g(5,)] = max B [(1+ r)"g(S.)].

where the LHS is the European value and the RHS is the American value. In particdlaris an
optimal exercise time.

Proof: Becauseg is convex, for all\ € [0, 1] we have (see Fig. 7.2):
g(he) = g(Aa+(1-1).0)
< Ag(z)+ (1= 2).9(0)
= Ag(x).
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(x9(x)
(AxA g(x)

\ X
(A, g( AX))

Figure 7.2:Proof of Cor. 2.25

Therefore,
g (1 j_ r5k+1) < $9(5k+1)
and
E [+ tgSl7] = (140)7E | g(Sun)l ]
o e ()i
> (147)~ ( [ Sk+1|fk)
— (14 Fg(s0),

So{(1+r)"*g(Sk)}7_, is a submartingale. Let be a stopping time satisfyigy< r < n. The
optional sampling theorem implies

(L4 7)779(S7) < E[(1+1r)"g(Sn)| F5].

Taking expectations, we obtain

E[1+)7g(5)] < E(E[1+7r)"g(S)|7])
= E[1+7)7"g(Sa)].
Therefore, the value of the American derivative security is
max B [(1+)"7g(S)] < B [(1+1)""g(5,)],

and this last expression is the value of the European derivative security. Of course, the LHS cannot
be strictly less than the RHS above, since stopping at tinealways allowed, and we conclude
that . .

max I [(147)77g(S:)] = E[(147)7"g(5.)].
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/ S,(HH) = 16
§H=8

\ S(HT) =4

9= / S,(TH) = 4
§M =2

S =1

Figure 7.3:A three period binomial model.

7.3 Stopped Martingales

Let {Yx}7_, be a stochastic process and tebe a stopping time. We denote BY:n,}7_, the
stopped process
Yirr@y(w), k=0,1,...,n
Example 7.1 (Stopped Process)igure 7.3 shows our familiar 3-period binomial example.
Define

_ 1 if W, = T,
W= i w =H
Then
SZ(HH)_IG if w=HH,
2(H ) if w=HT,
SZ/\T(W)((")) = Sy (T) = if w=TH,
S1(T) = if w=1TT.

Theorem 3.26 A stopped martingale (or submartingale, or supermartingale) is still a martingale
(or submartingale, or supermartingale respectively).

Proof: Let{Y}}7_, be a martingale, and be a stopping time. Choose some= {0,1,...,n}.
Theset{r < k}isin F;, sothese{r > k+ 1} = {r < k}°isalso inF;. We compute
B Vs Fr| = B [IpanyVr + Lrsigny Vst [ 7]
= e Yr + Lopp ) EYi1 | Fi]

= l<Yr + Lok
= Yiar
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Chapter 8

Random Walks

8.1 First Passage Time

Toss a coin infinitely many times. Then the sample sgade the set of all infinite sequences
w = (w1,ws, ...) of H andT'. Assume the tosses are independent, and on each toss, theilityobab
of H is §, as is the probability of". Define

)1 if w;=H,
YJ(“)—{ 1w =T,

MO — 07
k

My = > Y, k=1,2,...
J=1

The process My} 72, is asymmetric random walfsee Fig. 8.1) Its analogue in continuous time is
Brownian motion

Define
7 =min{k > 0; M = 1}.

If My nevergetstol (e.gy = (I'TTT...)), thent = oco. The random variable is called the
first passage time to. 1t is the first time the number of heads exceeds by one the number of tails.

8.2 7 is almost surely finite

It is shown in a Homework Problem thad/; } 22, and{ N}, where

[ -4
N, = exp{OMk—klog (6 —;e )}

= €€Mk ( 2 )k
el + e 0

97
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Figure 8.1:The random walk proces¥;,

H 56 2
2 8, 50
1 1
0 e 0

Figure 8.2:lllustrating two functions o#

are martingales. (Tak&f;, = —.S; in part (i) of the Homework Problem and take= —o¢ in part
(v).) SinceNy = 1 and a stopped martingale is a martingale, we have
kNnT
_ _ oMpnr 2

for every fixedd € IR (See Fig. 8.2 for an illustration of the various functions involved). We want
to letk—o0 in (2.1), but we have to worry a bit that for some sequences(?, 7(w) = co.

p
) <
( 9 )’f“_}{(ﬁy if < oo,

el + et 0 if =00

We consider fixed > 0, so

As k—o0,

Furthermore M., < 1, because we stop this martingale when it reaches 1, so

0 < ?Mrnr < (6
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and

In addition,

0 if 7=oc.

lim efMinr ( 2 )k/w = { e’ (eeﬂl—%) if 7 < oo,

Recall Equation (2.1):

kAT
| Minr 2 My
66’ _I_e—é’ ] -

Letting k—o0, and using the Bounded Convergence Theorem, we obtain

2 T ]
6 _
F [6 (69 i 6_0) I{T<OO}- =1. (22)
For allé € (0, 1], we have
2 T
6
0<e (m) Iircooy <6
so we can le# |0 in (2.2), using the Bounded Convergence Theorem again, to conclude
E [I{T < oo}} =1

ie.,
P{r < oo} =1.

We know there are paths of the symmetric random walk; } 72, which never reach level 1. We
have just shown that these pattdalectivelyhave no probability. (In our infinite sample spdee
each pathindividually has zero probability). We therefore do not need the indic%tpr< ool in

(2.2), and we rewrite that equation as

E [(eu%)] =e?, (2.3)

8.3 The moment generating function forr

Leta € (0,1) be given. We want to find > 0 so that
2
o = 769 i 6_9 .

Oeee—l—oee_e—QIO

Solution:

04(6_9)2 —2¢ 1 a=0
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s 1EV1-a?
eV = —— —
o

We want? > 0, so we must have=? < 1. Now0 < a < 1, so

0<(l-a)<(l-a)<l-a?

l—a<V1-a?

1-V1-a?<a,

1—+vV1—a?

— <1

(8
We take the negative square root:

s 1=V1-a?

" .

Recall Equation (2.3):

2 N\,

With o € (0,1) andé > 0 related by

_o 1—+1—=a2
€ = -
o b
2
“ = e +e-0)’
this becomes
1-vV1-a?
Fa=—"—Y""% gca<l.
(0%

We have computed theoment generating functidar the first passage time to 1.

8.4 Expectation ofr

Recall that
1-vVI—a?
Fa™ = Y 0<a<l,
o
SO
d
%EO(T = FE(ra™™h
_d [(1-V1- o’
T da «
1—+v1—a?

a?V/1— a2’

(3.1)
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Using the Monotone Convergence Theorem, we cantétin the equation

1 1—+vV1-a?
FE(ra™) = ————,
a1 — a?
to obtain
Fr=oc

Thus in summary:
r2 min{k; My = 1},

P{r <0} =1,

Fr = 0.

8.5 The Strong Markov Property

The random walk proceqs\/; }72, is a Markov process, i.e.,

IF' [ random variable depending only oy 11, M2, ..

= J’'[ same random variablg ] .

In discrete time, this Markov property implies tB&rong Markov property

IF | random variable depending only o/, M, 4o, ..
= I’ same random variablg M.,].

for any almost surely finite stopping time

8.6 General First Passage Times

Define
Tim émin{kz 0 Mp=m}, m=1,2,...

101

| Tl

| F5]

Thenr, — 7 is the number of periods between the first arrival at level 1 and the first arrival at level

2. The distribution of» — 7 is the same as the distributiongf (see Fig. 8.3), i.e.,

1-vVI—a?
Ea™ ™ = % a € (0,1).
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To-1
Figure 8.3:General first passage times.

Fora € (0,1),
FEla™|F,] = Flama™ | F,]

= o Fa™ T F,]

(taking out what is known)
= o IFa™ M ]

(strong Markov property)
= o F[a™

(M;, =1, notrandom)

o (1 - m)

[a%

Take expectations of both sides to get

Ea? — [Ean. [LZY1—o?
(87
B (1—\/1—042)2
(87

In general,
(1 —V1—a?
Fom=| ——W—

[a%

)m, a € (0,1).

8.7 Example: Perpetual American Put

Consider the binomial model, with= 2,d = },r = %, and payoff functior(5 — S;)*. The risk
neutral probabilities arg = 1, ¢ = , and thus

Sy, = SouMr,
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where M}, is a symmetric random walk under the risk-neutral measure, denotdid. b$uppose
So = 4. Here are some possible exercise rules:

Rule 0: Stop immediatelyry = 0, V{) = 1.
Rule 1: Stop as soon as stock price fallsto 2, i.e., at time
T_1 = min{k; My = —1}.
Rule 2: Stop as soon as stock price fallsto 1, i.e., at time
T_o 2 min{k; My = —2}.
Because the random walk is symmetric unﬁrr_m has the same distribution und#t as the

stopping timer,, in the previous section. This observation leads to the following computations of
value.Value of Rule 1:

V(1)

E[(1+r)7(6-5_,)*]
= G-t E|[H)™]

1P

4
5

Value of Rule 2:
v = (5= )R [(3)7]
= 4(3)?

This suggests that the optimal rule is Rule 1, i.e., stop (exercise the put) as soon as the stock price
falls to 2, and the value of the putisif S, = 4.

Suppose instead we start with = 8, and stop the first time the price falls to 2. This requires 2
down steps, so the value of this rule with this initial stock price is

G- B[] =3 =1

In general, ifS, = 27 for some;j > 1, and we stop when the stock price falls to 2, thien 1 down
steps will be required and the value of the option is

(-2 ()=o) = 3.5

1
2

We define
N

v(2) =337 j=1,2,3,...



104

If Sy = 27 for somej < 1, then the initial price is at or below 2. In this case, we exercise
immediately, and the value of the putis

v(@) 2597, j=1,0,-1,-2,...

Proposed exercise rule:Exercise the put whenever the stock price is at or below 2. The value of
this rule is given byv(27) as we just defined it. Since the put is perpetual, the initial time is no
different from any other time. This leads us to make the following:

Conjecture 1 The value of the perpetual put at tirhés v(S).

How do we recognize the value of an American derivative security when we see it?
There are three parts to the proof of the conjecture. We must show:
@) v(Sg) > (5— Sk)* Vk,
é k o0 - .
(b) {(5) v(Sk)}kZO is a supermartingale,

(€) {v(Sk)}72, is the smallest process with properties (a) and (b).

Note: To simplify matters, we shall only consider initial stock prices of the foigm= 27,505} is
always of the forme’, with a possibly differeng.

Proof: (a). Just check that
v(2) £33 > (5-2)T for j> 1,
v(2) 25 -2 > (5-27) for j < 1.
This is straightforward. [
Proof: (b). We must show that

v(Sk)

v

I [$0(Sk)| 7]
5:20(25%) + 5-50(35%).

By assumptionS;, = 27 for some;j. We must show that

v(27) > 2u(20+h) 4 2o(2071).
If j > 2, thenv(27) = 3.(3)’~! and

%v(Qj‘H) + %v(Qj_l)
(

= 2+ R

1 -
= 3 pgrd
- 3. )j—?
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If j = 1, thenv(27) = v(2) = 3 and

Zo(27F) 4 2u(207)
= Zv(4)+ 2v(1)
= 231+2%4

3/5+8/5

= 2l <v(2)=3

There is a gap of siz.
If j <0,thenv(27) =5 — 2/ and

(5- 2% 4 2(5- 27

= 4-2 <u(2)=5-2,

There is a gap of size 1. This concludes the proof of (b). [
Proof: (c). Suppos€ Y} };_, is some other process satisfying:
@) Yr > (5—Sp)* V&,
0) {($)*Vi}2, is a supermartingale.
We must show that

i, > v(Sk) Vk. (7.1)
Actually, since the put is perpetual, every tifmés like every other time, so it will suffice to show

Yo > v(So), (7.2)

provided we lefS, in (7.2) be any number of the forgd. With appropriate (but messy) conditioning
on F, the proof we give of (7.2) can be modified to prove (7.1).

Fory <1, 4 4
v(2) =5-2" = (5-2)*,

so if Sy = 27 for somej < 1, then (a’) implies
YO Z (5 - 2])+ = U(So).
Suppose now thaf, = 27 for somej > 2, i.e.,5, > 4. Let

T = min{k; Sy =2}
= min{k; My =7 — 1}.
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Then

Becausg| (2)"Y;}32, is a supermartingale
Yo > E[(2)Y:] > B [(2)(5 - $-)t] = v(S0).
|

Comment on the proof of (c): If the candidate value process is the actual value of a particular
exercise rule, then (c) will be automatically satisfied. In this case, we construstethatv(.Sy) is

the value of the put at timeif the stock price at timé is S; andif we exercise the put the first time
(%, or later) that the stock price is 2 or lesk such a situation, we need only verify properties (a)
and (b).

8.8 Difference Equation

If we imagine stock prices which can fall at any poin{ i oc), not just at points of the forr& for
integersj, then we can imagine the functierz), defined for allz > 0, which gives the value of
the perpetual American put when the stock price.i3 his function should satisfy the conditions:

@) v(z) > (K —a)*, Va,

(b) v(z) > 1_}_7, [pv(uz) + qu(dz)], Ve,

(c) At eachz, either (a) or (b) holds with equality.

In the example we worked out, we have
For j > 1:0(2)) =3.(3)"' = —;

For j <1:v(2)=5-2.

This suggests the formula

We then have (see Fig. 8.4):
(@) v(z) > (5 - )3 Ve,

(b) v(z) > % [%U(Qx) + %v(%)} for everyz except for2 < x < 4.
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V(X)

Figure 8.4:Graph ofv(z).

Check of condition (c):

e If 0 < z < 3, then (@) holds with equality.

e If 2 > 6, then (b) holds with equality:

—_

[N
[N

2]_6
x| oz

e If 3 < 2 < 40r4 < z < 6, then both (a) and (b) are strict. This is an artifact of the
discreteness of the binomial model. This artifact will disappear in the continuous model, in
which an analogue of (a) or (b) holds with equality at every point.

x 6
e+ 23] = 1+

8.9 Distribution of First Passage Times
Let { M} }72 , be a symetric random walk under a probability meaghravith A, = 0. Defining
7 =min{k > 0; M =1},

we recall that

1-vV1-aZ
Fa=-—Y""% gca<l.
(0%

We will use this moment generating function to obtain the distribution.oiVe first obtain the
Taylor series expasion df o™ as follows:
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fl@) = 1-vI—a, f(0)=
1
f) = S0-a)77, fo)=14
1 1 —§ 1 1
J'@) = f0=0)7 ) =
3 5 " 3
M@ = S-a)TE ) =3
1x3 .. 27 —3 25—1
f(])($) — X9 X 2j>< ( J )(1 _ $) T,
. 1x3x... 27 —3
90 = X9 X QjX(J )
o Ix3x...x(2§-3) 2x4x...x (2] —-2)
N 27 ' 20-1(5 — 1)!
() (252!
= () (= 1!
The Taylor series expansion ¢fz) is given by
fle) = 1-V1l-2
— i%f(j)(O)xf
i=0 7
_ 5 1\%! (25 -2)! ;
- S
_ S @t 1 2) =2\ ;
- 520 (")
So we have
Eom — 1—+v1—a?
(8
= S
_oag (a1 (-2
a 2+]«§<2) (1—1)( j )
But also,

Fao™ = Zazj_lﬂ?{r =2j—1}.
J=1
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Figure 8.5:Reflection principle.

Figure 8.6:Example withy = 2.

Therefore,

P{r=1} = 1
NNt 1 2j — 2
P{r=2j-1} = (5) . (‘7. ) J=23...

8.10 The Reflection Principle

To count how many paths reach level 1 by tidye— 1, count all those for whictdZ,;_; = 1 and
double count all those for whichl,;_; > 3. (See Figures 8.5, 8.6.)
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In other words,
P{r <2j -1} = P{Myj_1 =1} +2P{M;_; > 3}
= IP{Myj_y =1} + IP{M3;_y > 3} + IP{My;_, < -3}
= 1—IP{My;—y = —1}.
Forjy > 2,
P{r=2j-1} = P{r<2j-1}-IP{r<2j-3}

= [1—=IP{Mzj—1=—-1}] - [1 = IP{Mzj_3 = —1}]
= P{ng_g = —1} — P{sz_l = —1}

- O - O

= ()7 e - e
= (O e -2 - e e -
- (0"

- (%)2]_1 (]il) (2]3'_2)



Chapter 9

Pricing in terms of Market Probabilities:
The Radon-Nikodym Theorem.

9.1 Radon-Nikodym Theorem

Theorem 1.27 (Radon-Nikodym) Let P and /P be two probability measures on a space, F).
Assume that for everyt € F satisfyinglP(A4) = 0, we also haveP(A) = 0. Then we say that
Pis absolutely continuousith respect td™ Under this assumption, there is a nonegative random
variable 7 such that

PA) = /A ZdIP, VA € T, (1.1)

and 7 is called theRadon-Nikodym derivativef P with respect tcAl

Remark 9.1 Equation (1.1) implies the apparently stronger condition
EX = E[XZ]
for every random variabl&” for which IF| X 7| < .

Remark 9.2 If Pis absolutely continuous with respectRpdndR is absolutely continuous with
respect taP, we say thaPland/P areequivalentP and/P are equivalent if and only if

IP(A) =0 exactly whenlP(A) =0, YA € F.

If P and/P are equivalent and’ is the Radon-Nikodym derivative dP wrt. P, then% is the
Radon-Nikodym derivative d® w.r.t. P,ie.,

EX = E[XZ] VX, (1.2)
EY = BY. %] vy, (1.3)

(Let X andY be related by the equatidn = X 7 to see that (1.2) and (1.3) are the same.)

111
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Example 9.1 (Radon-Nikodym Theorem)Let 2 = {HH, HT,TH,TT}, the set of coin toss sequences

of length 2. LetP correspond to probabilits}( for H and% for 7', and let? correspond to probabilitsjr for
P
H andi for T'. ThenZ(w) = ﬁ%}, so
Z(HH) = % Z(HT) = % Z(TH) = % 2(TT) =

9.2 Radon-Nikodym Martingales

Let 2 be the set of all sequencesotoin tosses. LePlbe the market probability measure and let
IP be the risk-neutral probability measure. Assume

P(w) >0, P(w) >0, Yw € Q,
so that? and/P are equivalent. The Radon-Nikodym derivativel@fwith respect tdl is

Plw
Z(w) = ﬁ
Define theR-martingale
7 2 ElZIF], k=0,1,...,n.
We can check that, is indeed a martingale:

E[Z1|Fr] = EE[Z|Fra]lFr]
= IE[Z|F]
= 7.

Lemma 2.28 If X is Fj-measurable, thel? X = IE[X Z;].

Proof:

EX = [E[XZ]
EE[XZ|T]]
X E[Z]F]]
= E[XZ)].

Note that Lemma 2.28 implies thatX is 7 ,-measurable, then for any € 7,

I, X] = E[Z;14X],

or equivalently,
/Xd?ﬁ:/ XZ.dIP.
A A
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Z,(HH) = 9/4
3

A

Z,(H) = 32

3 3
Zy(HT) = 9/8

o3 " Zy(TH) = 918
Z (T =3

3

Avi

Z,(TT) = 9/16

Figure 9.1:Showing theZ; values in the 2-period binomial model example. The probabilities shown
are for P, not/P.

Lemma 2.29 If X is F-measurable and < j < k, then

— 1
BIX|F,) = - EIX %7
J

Proof: Note first that%E[XZﬂfj] is F ;-measurable. So for any € F;, we have
J

1 —
/ — B[X 74| F})dP / E[XZ,|F;)dIP  (Lemma 2.28)
A Zj A
= /XdeP (Partial averaging)
A
= /Xaﬁl3 (Lemma 2.28)
A

Example 9.2 (Radon-Nikodym Theorem, continued)We show in Fig. 9.1 the values of the marting&le
We always haveZ, = 1, since

ZO:JEZ:/QZCIP:JTD(Q):L

9.3 The State Price Density Process

In order to express the value of a derivative security in terms of the market probabilities, it will be
useful to introduce the followingtate price density process

Ck:(1—|—r)—ka, k=0,...,n.



114

We then have the following pricing formulas: ForSample European derivative securitywith
payoff ' at timek,
Vo = IE[(147r)75]
= F [(1 + r)—kaCk} (Lemma 2.28)
= E[GC]

More generally foi0 < j < £,

Vi o= 1+ ) [(1+ )7 Cy 7
_ A4y E [(1 + r)—kzkcku‘j} (Lemma 2.29)
Zj
= %E[Ckcﬂfﬂ
J

Remark 9.3 {(;V;}%_, is a martingale unde®,las we can check below:

ECi+1VinlFj] = IEUE[GCLF ]| F]
E[CCrl F]
GV

Now for anAmerican derivative security {G'r. }7_,:

Vo = sup E[(1+7r)77G,]
T€TH

= sup E[(1+r)""Z;G;]
T€To

= sup B[GGo)
T€TH

More generally fob < j < n,

vV, = (1+ r)j sup E [(1+7r)77G|F]
TET)

4 1
= (14r)sup —E[(1+r)772.G;|F;]
reT; Zj

1
= —sup I[G.G,|F;].
C] 7Ty

Remark 9.4 Note that

(@) {¢;V;}7-o is a supermartingale under |

(b) Vs = ;G v,



CHAPTER 9. Pricing in terms of Market Probabilities 115

{y(HH) =144
S,(HH) = 16
13
{,(H)=120
Sl(H) =8
L (HT)=0.72
13 R S§(HT) =4
7N 2 S(TH) =4
2,=100 y
0 §M =2 & (TH) =072
4 (M)=06
23 1,(TT)=0.36
S(M =1

Figure 9.2:Showing the state price valués. The probabilities shown are fd®, Inot/P.

(©) {¢;V;})—, is the smallest process having properties (a) and (b).

We interpret;; by observing thaf, (w)IP(w) is the value at time zero of a contract which pays $1
at timek if w occurs.

Example 9.3 (Radon-NikodymTheorem, continued)We illustrate the use of the valuation formulas for
European and American derivative securities in terms of market probabiligesliRhaty = % q= % The
state price valueg, are shown in Fig. 9.2.

For aEuropean Call with strike price 5, expiration time 2, we have
Vo(HH) =11, G(HH)V2(HH) = 1.44 x 11 = 15.84.
TH) =V2(TT) =0.

1
Vo= g x5 x 15.84= 176,
Co(HH) 1.44

Va(HH) = ~= % 11 = 1.20 x 11 = 13.20
G P = 557 8

2

1
Vi(H) = 3 X 13.20 = 4.40
Compare with the risk-neutral pricing formulas:

Vi(H) = $Vi(HH) + 2Vi(HT) = 2 x 11 = 4.40,

-3
() = %Vl(TH) + %Vl(TT) =0,
Vo= 2Vi(H)+ 2Vi(T) = 2 x 4.40 = 1.76.
Now consider arAmerican put with strike price 5 and expiration time 2. Fig. 9.3 shows the values of
¢x (5 — Sk)™. We compute the value of the put under various stopping times
(0) Stop immediately: value is 1.

(1) f 7(HH) = 7(HT) = 2, 7(TH) = 7(T'T) = 1, the value is

x 2 x0.724 3 x 1.80 = 1.36.

| —
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(5-S(HH)'= 0

L4HH) (5- S(HH))'= 0
G-gH) =0 /
LH(E-SH) =0 .
(6-S(HT)'= 1
\ Z4HT) (5- %(H'I’))+= 0.72
U3 23

(5-80)"=1 (5-S(TH)'= 1
Lo(5-Sp)'=1 23 v3 L4TH) (5- S(TH)) "= 0.72

G-5M*=3
M (5-§M)* = 180 \
BN G- =4
44T (5-S(TT) "= 1.44

Figure 9.3:Showing the value$; (5 — S)T for an American put. The probabilities shown are for
P, not/P.

(2) If we stop at time 2, the value is

1
x%x0.72+%x§x0.72+%x%x1.44:0.96

Lol =

We see that (1) is optimal stopping rule. [ ]

9.4 Stochastic Volatility Binomial Model

LetQ2 be the set of sequencesofosses, and lét < dp < 1+r; < ug, where for each, dy., ur, ry
areF-measurable. Also let
ot —dy o up = (L4 )

Pk qk =

up — dy, up — dy,

Let /P be the risk-neutral probability measure:
ﬁ{wl = H} = ]307
ﬁ{wl = T} = (207

and for2 < k& < n,

Plwryr = H|Fi] = pr,

Plwgsr = T|Fr] = ar.

Let P be the market probability measure, and assifffe’} > 0 Vw € Q. ThenP and/P are
equivalent. Define

Z(w) :# o € Q,
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Zp = E[Z|Fy], k=0,1,...,n.

We define thenoney market price process follows:

M = (1 + rk—l)Mk—h k=1,...,n.
Note thatM,, is Fj,_;-measurable.
We then define thstate price proces® be

1
=—Z,, k=0,...,n.
Ck Mk ks ) y T

As before the portfolio process imk}z;é. The self-financing value process (wealth process)
consists ofX, the non-random initial wealth, and

Xk-l—l = AkSkH + (1 + T‘k)(Xk — AkSk), k=0,...,n—1.
Then the following processes are martingales udder
1 " 1 "
—5 } and {—X } ,
{Mk g k=0 Mk g k=0
and the following processes are martingales uider |
{CSktizo and {CXk}i—o-
We thus have the following pricing formulas:
Simple European derivative security with payoffC at timek:
— [Ck

Vi = M;le Efj]

= LEGCF)]
G

American derivative security {G}7_:

adl

T

Vi = M; supﬁ
TET)

1
= —sup B[GGIF).
C] 7Ty

The usual hedging portfolio formulas still work.
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9.5 Another Applicaton of the Radon-Nikodym Theorem

Let (22, F, Q) be a probability spce. LetG be a subs-algebra ofF, and letX be a non-negative
random variable withfy X dQ = 1. We construct the conditional expectation (unggrof X
giveng. Ong, define two probability measures

P(A)=Q(A) VAeg;

TP“(A):/AXdQ YA EG.

WhenevelY is ag-measurable random variable, we have

/QYdP:/QYdQ;

if Y =1, for someA € G, this is just the definition of”, and the rest follows from the “standard
machine”. IfA € G andiP(A) = 0, then)(A) = 0, solP(A) = 0. In other words, the measufe

is absolutely continuous with respect to the meadtirehe Radon-Nikodym theorem implies that
there exists &-measurable random variabtesuch that

P(A)é/AZdJP VA €,

/AXdQ:/AZdP VA EG.

This shows tha# has the “partial averaging” property, and siri¢és G-measurable, it is the con-
ditional expectation (under the probability meas@jeof X givenG. The existence of conditional
expectations is a consequence of the Radon-Nikodym theorem.



Chapter 10

Capital Asset Pricing

10.1 An Optimization Problem

Consider an agent who has initial wealtlj and wants to invest in the stock and money markets so
as to maximize
Flog X ,,.

Remark 10.1 Regardless of the portfolio used by the ag¢qt.X . } 22 , is a martingale unde?,Iso
F¢.X, = Xo (BC)
Here, (BC) stands for “Budget Constraint”.
Remark 10.2 If £ is any random variable satisfying (BC), i.e.,
IE¢,.E = Xo,

then there is a portfolio which starts with initial wealk and produces(,, = ¢ at timen. To see
this, just regard as a simple European derivative security paying off at tim&hen.Xj is its value
at time 0, and starting from this value, there is a hedging portfolio which prodXiges &.

Remarks 10.1 and 10.2 show that the optin¥al for the capital asset pricing problem can be
obtained by solving the following

Constrained Optimization Problem:
Find a random variablé which solves:

Maximize IF'logé

Subjectto F (& = Xo.

Equivalently, we wish to
Maximize Y (log&(w)) IP(w)
wef2
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Subjectto Y (p(w)é(w)P(w) — Xo=0.
wef)
There are” sequences in 2. Call themw;, ws, ... ,wen. Adopt the notation
1 :f(wl), Ty = f(a@), ceey Tgn = f(WQn).
We can thus restate the problem as:
277,
Maximize »(logax)IP(wy)
k=1
277,
Subjectto Y Cu(wr)zplP(wr) — X, = 0.

k=1

In order to solve this problem we use:
Theorem 1.30 (Lagrange Multiplier) If (27, ..., },) solve the problem
Maxmize f(z1,...,%m)

Subjectto g(z1,...,2,) =0,
then there is a numbey such that
8 * * 8 * *
a—xkf(xl,... L x) :Aa—mg(xl,... v, k=1,...,m,
and

g(a3,...,a5)=0.

For our problem, (1.1) and (1.2) become

1
yc_*P(wk) = A (wp) P(wg), k=1,...,2",
k
271
Y Calwr)aiP(wr) = Xo. (1.2))
k=1
Equation (1.1") implies
. 1
T NG ()
Plugging this into (1.2") we get
1 & 1

(1.1)

(1.1)

(1.2)
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Therefore,
Xo

Cn(wk) 7

Thus we have shown thatdf solves the problem

= k=1,...,2".

Maximize  IFlog¢
Subjectto  IF((,&) = Xo,

then

_ %o

G

Theorem 1.311If £* is given by (1.4), the&” solves the problem (1.3).

g*

Proof: Fix Z > 0 and define
flz)=loga —aZ.

We maximizef overz > 0:

1 1
!

g _
f(z) " 0 <= =z 7

1

f(z)=—-= <0, Vo € R.
x
1

The functionf is maximized at:* — Z i.e.,

1
loga — a2 < f(2¥) :logg -1, Vo >0,VZ > 0.
Let ¢ be any random variable satisfying

and let
_Xo
G

() e (2)

Taking expectations, we have

g*

From (1.5) we have

Blog¢ - 1 IB(G,6) < Flog¢ — 1

and so
Flogé¢ < IFlog&™.

121

(1.3)

(1.4)

(1.5)
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In summary, capital asset pricing works as follows: Consider an agent who has initial iigalth
and wants to invest in the stock and money market so as to maximize

Flog X ,,.

The optimalX,, is X,, = 22, i.e.,
Can = XO-

Since{(x X1 }7_, is a martingale unde?,lwe have

Cka = E[Can|]:k] :X07 k= 07 y Ty

SO X
X, =22,
Ck
and the optimal portfolio is given by
Xo _ Xo
Chet1 Wiy oo WeH)  Crp1 (@1, - - WiT)

A = )
k(wh 7<.Uk) Sk+1(w17...7Wk7H)_Sk-|—1(w17"'7wk7T)



Chapter 11

General Random Variables

11.1 Law of a Random Variable

Thus far we have considered only random variables whose domain and range are discrete. We now
consider a general random varialbie: Q2— IR defined on the probability spa¢e, 7, ). Recall
that:

e F is ac-algebra of subsets 6f.
¢ P is a probability measure dh, i.e., IP(A) is defined for every € F.

A function X : Q—IR is a random variable if and only if for evely € B(IR) (the o-algebra of
Borel subsets dR), the set

(X eBY2XY(B)2 {w;X(w) € B} € F,

i.e., X : QIR is a random variable if and only ik ! is a function fromB(IR) to F(See Fig.
11.1)

Thus any random variabl& induces a measuney on the measurable spat#, 5(IR)) defined

by
px(B) =P (X7Y(B)) VB € B(R),

where the probabiliy on the right is defined sin€e!(B) € F. ux is often called thé.aw of X —
in Williams’ book this is denoted by x .

11.2 Density of a Random Variable
Thedensity ofX (if it exists) is a functionfx : IR—[0, co) such that
iy (B) = / fx(z) de VB e B(IR).
B
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{Xe B} Q

Figure 11.1:llustrating a real-valued random variablé& .

We then write
dpx (z) = fx (z)dz,
where the integral is with respect to the Lebesgue measure 6an Is the Radon-Nikodym deriva-
tive of ux with respect to the Lebesgue measure. Thudas a density if and only if:x is
absolutely continuous with respect to Lebesgue measure, which means that whgrevefiR)
has Lebesgue measure zero, then
P{X € B} =0.

11.3 Expectation

Theorem 3.32 (Expectation of a function ofX') Letk : IR— IR be given. Then
EhX) & /Q (X (@) dIP(w)
| nte) dux(a)
R
/ h(z) fx (z) do.
R

Proof: (Sketch). Ifh(z) = 1g(z) for someB C IR, then these equations are

Flp(X) 2 P{X e B}
px (B)

= /fX(x) dz,
B

which are true by definition. Now use the “standard machine” to get the equations for general
[ ]
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(X.Y)

{ (X.\V)e C} Q

Figure 11.2:Two real-valued random variables, Y.

11.4 Two random variables

Let X, Y be two random variable@— IR defined on the spad&?, 7,P). ThenX,Y induce a
measure o8(R?) (see Fig. 11.2) called theint law of (X, Y), defined by

pxy(C) & P{(X,Y) € C} YC € B(IRY).
Thejoint density of( X, Y) is a function
ny : BQ%[O, OO)

that satisfies

pxy(C) = // Ixy(z,y) dedy VC € B(IR?).
C

[x.y is the Radon-Nikodym derivative pfy y with respect to the Lebesgue measure (areajén
We compute the expectation of a function®fY in a manner analogous to the univariate case:

(>

ELXY) & [ KX @)Y (@) dP)

= /kwyduxywy)

Ny
e
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11.5 Marginal Density

Supposé X, Y) has joint density 'y y. Let B C IR be given. Then

py(B) = IP{Y € B}
= JP{(XY)eleB}

where

Y) 2 /B Ixy(z,y) de

Therefore,fy (y) is the (marginal) density for".

11.6 Conditional Expectation

Supposg X, Y) has joint densityfxy. Leth : IR—IR be given. Recall that’[h(X)|Y] 2
IETh(X)|o(Y)] depends o through’, i.e., there is a function(y) (¢ depending ork) such that

ERX)[Y](w) = g(Y(w)).

How do we determing?

We can characterize¢ usingpartial averaging:Recall thatd € o(Y )<=A = {Y € B} for some
B € B(IR). Then the following are equivalent characterizationg:of

/g(Y) P _/ AP YA€ oY), (6.1)
A

/QlB(Y)g(Y) P = / 15(Y)A(X) dIP VB € B(IR), 6.2)
| 1swgtnr(dy) = // 15(y)h(x) duxy(e,y) VB € B(R), 6.3)
R

/ y) fy(y) dy = / / ) fxy(z,y) dedy VB € B(IR). (6.4)
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11.7 Conditional Density

Afunction fxy (z]y) : IR*—[0, o) is called aconditional densityor X givenY provided that for
any functionh : IR— IR:

9() = [ 1@ Fry Goly) da. 1)

(Herey is the function satisfying
Eh(X)[Y]=g(Y),

andg depends o, but fx |- does not.)

Theorem 7.33If (X, Y) has a joint densityx y, then

fxy(z,y)
frly)

Proof: Just verify thay defined by (7.1) satisfies (6.4): Fé&r € B(IR),

|| n@) eyl de sy dy = [ ] h@) fx(e,y) dady.

9(y)

Ixpy (zly) = (7.2)

Notation 11.1 Let ¢ be the function satisfying
ERX)Y]=g(Y).
The functiong is often written as
9(y) = ER(X)]Y = y],
and (7.1) becomes
BRI = 3] = [ () fxy (aly) do

In conclusion, to determing’[2(.X)|Y] (a function ofw), first compute

9) = [ 1@ Fxy (aly) de
and then replace the dummy varialplby the random variabl¥:

ERX)[Y](w) = g(Y(w)).

Example 11.1 (Jointly normal random variables) Given parameterss; > 0,09 > 0, —1 < p < 1. Let
(X,Y) have the joint density

1 1 z? r vy y?
f YT, Y) = 76)(}){—7 [—_2 -2 4+ 4 )
xy (@) 2ro1094/1 — p? 2(1—p?) Lo? p0'1 oy 02
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The exponent is

N S O /AN s
2(1 — p?) o2 o2 202

We can compute thiglarginal density ofy” as follows

[N

Irly) =

ly
1 o _u? -4
= e~ 7 due 29

2moy

: Lo 1 _ ou .
using the substitution = V=, (x - y) ,du = =y
1 2
V2T oy
ThusY is normal with mean 0 and varianeg.
Conditional density. From the expressions
1 -k e (- 2)” — 1L
Sy (,y) = e ) il
2ro10a/ 1 — p?
1 iy
= —¢ 7z,
Iy (y) NG
we have
Ixy(x,y)
Ixiy(ely) = ===
v («]y) (o)
2
1 1 g1
- ! L ok (2 %) .

—_— =
V2m oy /1 — p?
In thez-variable,fxy (x|y) is a normal density with meaff*y and variance1 — p*)o?. Therefore,

EX]Y =] =/ xfxpy (xly) de = Py,

— oo a2

[l
P
2 8
TN

=

|

)
8‘3
Red
N

[S%)

&h
>
b d
®
=
=,
=
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From the above two formulas we have the formulas

_ P
a2

E[X|Y] Y, (7.3)

2
E KX - @Y) ‘Y = (1—p%)o2. (7.4)
a2
Taking expectations in (7.3) and (7.4) yields
Ex =" gy =, (7.5)
a2
o 2
E l(x - p_ly) = (1—p?)ol. (7.6)
a2

Based or’, the best estimator of is £2-Y". This estimator is unbiased (has expected error zero) and the
expected square error(is — p?)o?. No other estimator based dhcan have a smaller expected square error
(Homework problem 2.1). ]

11.8 Multivariate Normal Distribution

Please see Oksendal Appendix A.

Let X denote the column vector of random variall&s, Xo, . .. ,Xn)T, andx the corresponding
column vector of valuetz, 23, . . . ,xn)T. X has a multivariate normal distribution if and only if
the random variables have the joint density
vdet A 1 T
fx(x) = (22 P {—§(X —p) A(X - N)} :

Here,

A A
w= (s ) = EX 2 (EXy, ..., EX,)T,

andA is ann x n nonsingular matrixA~"! is the covariance matrix
AT = B (X - p) (X = )]

i.e. the(i, j)thelement ofA~! is IF (X, — u;) (X; — ;). The random variables iK are independent
if and only if A~! is diagonal, i.e.,
A™Y = diag(o?, 03, ... ,0%),

rUn

wheres? = IE(X; — pu;)* is the variance of ;.
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11.9 Bivariate normal distribution

Taken = 2 in the above definitions, and let

o (X — ) (X — pa)
P= 0109 '

Thus,
Al — [ ot pPo102 ]

2
pPO102 g5

1 _ P
A= _Uf(l—ppz’) Cf1€f21(1—02) :
o102(1—p?) crg(l—p2)
1
vdet A = ————,
o102/ 1 — p?

and we have the formula from Example 11.1, adjusted to account for the possibly non-zero expec-
tations:

1 1 (21— p1)®  2p(21 — pu) (w2 — p2) L (22 — p2)”
2770—10-2 U% 0109 0‘% )

T1,29) = ex —
le,XQ( 1 2) 1_p2 p{ 2(1_p2)

11.10 MGF of jointly normal random variables

Letu = (uy,us,...,u,)’ denote a column vector with componentsiity and letX have a
multivariate normal distribution with covariance matrdx ! and mean vectoz. Then the moment
generating function is given by
T 00 oo T
el X _ /_m“‘/_ooeu ‘XfX17X27--- 7Xn($17x27_,, 7$n) dzy...dzx,
= exp {%uTA_lu + uT,u} .
If any n random variables(y, X, ..., X,, have this moment generating function, then they are

jointly normal, and we can read out the means and covariances. The random variables are jointly
normaland independerit and only if for any real column vectai = (uy, ..., u,)"

T A n n
Ee" X2 IF exp {Z Uij} = exp {Z[%U?u? —I—Uj,u]‘]} .
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Semi-Continuous Models

12.1 Discrete-time Brownian Motion

Let{Y;}7_, be a collection of independent, standard normal random variables defiti@d.snP),
whereR is themarket measureAs before we denote the column vectdf, ..., Y,)? by Y. We
therefore have for any real colum vecior= (uy, ..., u,)?

T n n
EeuY:Eexp{Zu]‘Yj}:eXp{ %U?}
1

Jj=1 J

Define thediscrete-time Brownian motiofsee Fig. 12.1):
BO - 07

k
B, = Y Y, k=1,...,n
j=1
Ifwe knowYy, Y, ..., Vi, thenwe knowBy, By, ..., Bx. Conversely, ifwe knowsy, Bs, ..., B,
then we know; = By, Y, = By — By, ...,Y, = By — Bi_,. Define the filtration

fO = {¢7Q}7
.7:k = O'(YhYQ,...7Yk)IO'(B17B27...7Bk>,kIL...,n.

Theorem 1.34 { B, }7_, is a martingale (undeP).

Proof:

E[Biy|Fr] = IE[Yit1 + Bil|Fr
EYypi + By
= B;.
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Figure 12.1:Discrete-time Brownian motion.

Theorem 1.35 { B;.}}_, is a Markov process.

Proof: Note that
IETh(Bry1)| Fr] = IE[h(Yiy1 + Br)| Fr]-

Use the Independence Lemma. Define

g(b) = IEh(Yiq1 +0) (y+b)e -3 dy.

==L

Then
IETh(Yiy1 + Be)|Fr] = 9(Bg),

which is a function ofB;, alone.

12.2 The Stock Price Process

Given parameters:

e 1 € IR, themean rate of return.
e o > 0, thevolatility.
e Sy > 0, the initial stock price.

Thestock price procesis then given by
Sk = Soexp{UBk—l— (e — %O‘z)k}7 k=0,...,n.

Note that
Skt1 = Spexp {UYk-I—l + (1 — %02)}7



CHAPTER 12. Semi-Continuous Models 133

E[Spst|Fr] = SpE[CYR1|F, 27
= Ske%UZ)e“_%UZ)
= "5,
Thus
1= log 7E[52—;|}-k] = log I/ [S;—:l fk] ,
and

var | lo Skt =var (oY, + ,u—laz = o2,
g Sy + 2

12.3 Remainder of the Market

The other processes in the market are defined as follows.

Money market process:
My,=¢* k=0,1,...,n.

Portfolio process:

4 AOv Ah s 7An—17
e EachAy is Fi-measurable.

Wealth process:

e X, given, nonrandom.

Xpt1 = ApSpir + € (Xi — ApSk)
= Ap(Spy1 — € Sk) + " Xy,

e EachXj; is Fr-measurable.

Discounted wealth process:

Nt _ p, ( Skt - Sp ) Xg
M1 My My My~

12.4 Risk-Neutral Measure

Definition 12.1 Let /P be a probability measure am, F), equivalent to the market measwrelf

A%—’;}k is a martingale undelP?, we say thatP is arisk-neutral measure.
=0
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Theorem 4.36 If IP is a risk-neutral measure, then every discounted wealth pro%%}k_o is

a martingale underP, regardless of the portfolio process used to generate it.

Proof:

7 | Xit1 _ Sk1 i) Xi ]
= [Mk-H fk] = B [Ak (Mk-H My ) T, F
_ TR Sk-|—1 Sk Xk
. ¢
= i

12.5 Risk-Neutral Pricing

Let V,, be the payoff at time:, and say it isF,,-measurable. Note th&, may be path-dependent.
Hedging a short position:

e Sell the simple European derivative secukity
e ReceiveXj at time 0.
e Construct a portfolio processy, . . . , A,,_1 which starts withX; and ends withX,, = V.

o If there is a risk-neutral measufe‘, then
. ~Xn . — ‘7n
Xop = E—Mn = E—Mn'

Remark 12.1 Hedging in this “semi-continuous” model is usually not possible because there are
not enough trading dates. This difficulty will disappear when we go to the fully continuous model.

12.6 Arbitrage

Definition 12.2 An arbitrageis a portfolio which starts wittX, = 0 and ends withX,, satisfying
P(X,>0)=1, P(X, >0)>0.

(P here is the market measure).

Theorem 6.37 (Fundamental Theorem of Asset Pricing: Easy part)fthere is a risk-neutral mea-
sure, then there is no arbitrage.
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Proof: Let IP be a risk-neutral measure, &, = 0, and letX,, be the final wealth corresponding
. X . . —
fol ) k | ,
to any portfolio process Slnc{em}kzo is a martingale undef

/)

Z)\% - E& =0 (6.1)
SupposeP (X, > 0) = 1. We have

P(X,>0)=1= P(X, <0)=0= P(X, <0)=0= IP(X, >0)=1.

(6.2)

(6.1) and (6.2) impl@(Xn =0) = 1. We have

P(X,=0)=1= P(X, >0)=0= P(X, >0)=0.

This is not an arbitrage. u

12.7 Stalking the Risk-Neutral Measure

Recall that

e V1. Y, ... Y, are independent, standard normal random variables on some probability space
(Q, F,P).

e S, = Spexp {O‘Bk + (e — %02)16}.
[ ]
Sir1 = Soexp{o (Bt Vi) + (u— bo?)(k+ 1)}
= Spexp {O‘Yk_H + (p— %02)}.

Therefore,

Sk+1 _ S 152
W—M-QXP{UYk+1+(H_r_ 20 )}7

Skt1
Jp | 2+l
[Mk-H

]:k] = A%—’Z.E[exp{ayk+1}|fk]-exp{:u_r_%02}

= ]\%—kk-exp{%az},eXp{,u —r = %02}

P
p—r Dk
€ M

If © = r, the market measure is risk neutralulf£ r, we must seek further.
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Sk _ Sk 1,2
Migr Mk-eXP{UYk-I-l + (,u r—s50 )}
= A%—kk.exp{a(Y;H_l + £5) - %02}
Sk

= Mk.exp{(ﬂ}kﬂ - %02},

where
Yip1 = Y + “U;r

The quantity*= is denoted and is called thenarket price of risk

We want a probability measur® under Whichffl, .. ,Yn are independent, standard normal ran-
dom variables. Then we would have
7= | Skt 5, 7 Y 1.2
E [m Frl| = ME {exp{UYkHH}'k} .exp{—50°}
= A%—kk.exp{%az}.exp{—%az}
_ Sk
=

Cameron-Martin-Girsanov’s Idea: Define the random variable
7 = exp [Z(_OYJ — %02)] .
J=1

Properties of7:

o /> 0.

EZ = FEexp {Zn;(—eyj)} .exp{_gQQ}

= exp{%@Q} .exp{—%@Q} =1.

P(A):/ZdP YA € F.
A

Define

ThenlP(A) > 0 forall A € F and
PQ)=IEZ=1.

In other words /P is a probability measure.



CHAPTER 12. Semi-Continuous Models 137

We show thatP is a risk-neutral measure. For this, it suffices to show that
Y=Y, +6,....Y, =Y, +6

are independent, standard normal unter

Verification:
e V1, Y, ... Y, Independent, standard normal unéeahd
IF exp [Zn: u;Y; | = exp [ ” %u?] .
j=1 j=1
e Y=Y, +60,....Y, =Y, +6.

Z > 0 almost surely.

7 = exp [Ty (—0Y; — 567)]
ﬁ(A):/ ZdP VYA€ F,
A

EX = IE(X Z) for every random variabl& .

Compute the moment generating function(f, . .. , Y,,) underiP:

= Fexp | Y u;(Y;+0)+> (—0Y; — %02)]
L=t

F exp [Z u]f/j

i=1

n

71=1

= exp Z T(uj — 0)?

= exp Z ((%u? —u;f + %02) + (u;0 — %02))]

_n
- | S0
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12.8 Pricing a European Call

Stock price at time: is

Sn = Spexp {O‘Bn + (pn— %0'2)71}

= Spexp {UZY} + (p— %02)71}

i=1

= Spexp {UZ”:(Y] + M;T) —(p=rn+ (p— %UQ)TL}

— Soexp{UZYj + (r-— %UQ)n}.

=1
Payoff at timen is (S, — K)T. Price at time zero is

, . +
ﬁi(snz\}fﬁ = F [e"’” (Soexp {UZY/J + (r- %UQ)n} —~ K) ]

i=1

_ /_O:o o= (So exp {o‘b—|— (r— %g2)n} — I()+ \/2177_”

since)"7_; Y; is normal with mean 0, varianeg under/P.

b2
e 222 db

This is theBlack-Scholegrice. It does not depend ¢n
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Brownian Motion

13.1 Symmetric Random Walk

Toss a fair coin infinitely many times. Define

Set
MO =0

k
Mp=> X;,  k>1

i=1

13.2 The Law of Large Numbers

We will use the method of moment generating functions to derive the Law of Large Numbers:

Theorem 2.38 (Law of Large Numbers:)

1
EMk—>0 almost surely, as k—oc.

139
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Proof:

X]‘ (Def. of Mk)

k
= H IF exp {%X]} (Independence of th&;’s)

which implies,
_ 1 % 1 =%
log i (u) = klog (56k + g€ k)

Letz = 1. Then

Jim log o (u) = lim

—0 T
U ux U, —ur
o267 T 5¢ ‘Honital’
= lim 1T 1 = (LHOpItaISRUle)
r—>0 5euav + ie—ux

Therefore,

li = =
Jimpp(u) =€ =1,

which is the m.g.f. for the constant O.

13.3 Central Limit Theorem

We use the method of moment generating functions to prove the Central Limit Theorem.

Theorem 3.39 (Central Limit Theorem)

1
—M,— Standard normal, as k—oc.

Vi

Proof:
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so that,

Sk

log i (u) = klog (%e% + e ) .

Letz = . Then

k

S

kli_r}rloo log v (u) = lim

‘ 1 Your _ Uo—uw
= lim 5 T 2 2
z—0 SEUT + Semur z—0 2z
U ur U, —ur
= lim 2° 2°
z—0 2x
ﬁeux _ ﬁe—ul’
= lim -2 2
z—0 2
_ 1U2.

Therefore,

. 12
kh—r>noo wk(U) =2 ’

which is the m.g.f. for a standard normal random variable.

13.4 Brownian Motion as a Limit of Random Walks
Letn be a positive integer. if > 0 is of the form%, then set

1 1
B (t) = %Mm = %Mk-

If ¢ > 0is not of the form%, then defineB (") (t) by linear interpolation (See Fig. 13.1).

Here are some properties Bf 190 (¢):

(L'Hopital's Rule)

141

(L'Hopital's Rule)
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Kin (k+1)/n

Figure 13.1Linear Interpolation to defind3 (") ().

Properties of B(1%0)(1) :

1 100
(100) _ - ] :
B (1) 10 ]Z:; X; (Approximately normal)
( | 1 100
100 L _
EBI) (1) = h ; EX;
1 100
var(BA9 (1)) = — 3 var(X;) = 1
100 =
Properties of B(1%0)(2)
( ) 1 200
100 _ , ;
B (2) = 10 ]Z:; X; (Approximately normal)
EB1%(2) =0
var(BU10)(2)) = 2

Also note that:

o BUO)(1) and B (2) — B(190)(1) are independent.
o BU%) (4} is a continuous function af

To get Brownian motion, let—oc in B (¢), ¢ > 0.

13.5 Brownian Motion

(Please refer to Oksendal, Chapter 2.)
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B(t) = B(tw)

A

o |
w W A

(Q,F,P)
Figure 13.2:Continuous-time Brownian Motion.

A random variableB(¢) (see Fig. 13.2) is called a Brownian Motion if it satisfies the following
properties:
1. B(0) =0,
2. B(t) is a continuous function df,
3. B has independent, normally distributed increments: If
O=to<t) <tz <...<t,
and
Y1 = B(t1) — B(to), Y2=B(tz) — B(t1), ... Y,=B(t,)— B(t,-1),
then

e Y1,Y5,...,Y, are independent,
e EY; =0 Vj,
o var(Y;) =1¢; —t;1 Vj.

13.6 Covariance of Brownian Motion

Let0 < s < ¢ be given. ThenB(s) and B(t) — B(s) are independent, sB(s) and B(t) =

(B(t) — B(s)) + B(s) are jointly normal. Moreover,
IEB(s) =0, var(B(s)
EB(t) =0, var(B(t)

EB(s)B(t) = EB(s)[(B(t) - B(s)) + B(s)]
— EB(s)(B() - B(s)) + EB(5)
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Thus for anys > 0,¢ > 0 (not necessarily < t), we have

EB(s)B(t) = s At.

13.7 Finite-Dimensional Distributions of Brownian Motion

Let
O<ti <ty <... <y,

be given. Then
(B(t1), B(ta),...,B(t,))

is jointly normal with covariance matrix

EB%*(ty)  FB(t1)B(t2) ... IEB(t1)B(t,)
Co EB(ty)B(ty)  IEB*(ty) ... IEB(ty)B(t,)
]EB (tn)B(t 1) EB(tn)B(tQ) ......... 1EB2(tn) ..
[t t
_ |l 2 to
t1t2 ....... tn

13.8 Filtration generated by a Brownian Motion

{F ()} iz0

Required properties:

e For each, B(t) is F(t)-measurable,

e Foreach and fort < t; < ty < --- < t,, the Brownian motion increments

B(t1) — B(t), B(t2) — B(t1), ..., B(tn) — B(tn-1)
areindependent of (t).
Here is one way to construgi(t). First fixt. Lets € [0,¢] andC' € B(IR) be given. Put the set
{B(s) € C} ={w: B(s,w) € C}

in F(¢). Do this for all possible numbers € [0,¢] andC' € B(IR). Then put in every other set
required by ther-algebra properties.

This F(t) contains exactly the information learned by observing the Brownian motion upta.time
{F(t)}¢>0 is called thdiltration generated by the Brownian motion.
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13.9 Martingale Property

Theorem 9.40 Brownian motion is a martingale.

Proof: Let0 < s <t be given. Then

E[B(t)|F(s)] = E[(B(t) — B(s)) + B(s)| 7 (s)]
= E[B(t) — B(s)] + B(s)
= B(s)
n
Theorem 9.41 Let# € IR be given. Then
Z(t) = exp {~0B(t) - 16°t}
is a martingale.
Proof: Let0 < s < ¢ be given. Then
E[Z(1)|F(s)] = IE [exp{—O(B(t) — B(s) + B(s)) — 36°((t — 5) + s)}‘f(s)]
- B [Z(S) exp{—6(B(t) — B(s)) — 16%(t — s)}‘}'(s)]
= Z(s)IF [exp{-0(B(t) — B(s)) — 16*(t — 5)}]
= Z(s) exp { 1(~0)* var(B(t) — B(s)) — 16%(t — )}
= 7Z(s).
n

13.10 The Limit of a Binomial Model

Consider the’th Binomial model with the following parameters:

o u, =1+ % “Up” factor. (o > 0).
o d,=1- %. “Down” factor.

o r=20.

N
® Pn = 4,=d, — 20/n
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Letfx(H) denote the number df in the firstk tosses, and I, (7") denote the number &f in the
first k tosses. Then

ik (H) + 8 (T) = k,
fr(H) — 4x(T') = M,
which implies,
2e(H) = g(k + M)
0e(T) = 5(k — My)

In then’th model, taker steps per unit time. Sé;i}()”) = 1. Lett = % for somek, and let

1

(nt+Mn:) 5 (nt=My)
(n) 7y — L)2 ( B L)2
SY(t) <1+ N 1 N .

Under P, the price process(™ is a martingale.
Theorem 10.42 Asn— o0, the distribution of5 (") (¢) converges to the distribution of
exp{oB(t) — 1o°t},

where B is a Brownian motion. Note that the correctier%a% is necessary in order to have a
martingale.

Proof: Recall that from the Taylor series we have

log(1+2) =2 — 1a% + O(2?),

SO
log S () = L(nt + My) log(1 + %) + L(nt — M) log(1 — %)
= nt (% log(1 4+ %) + Llog(1 - %))
+ My ($lox(1+ 7o)~ Llow(1 - )

As n—oo, the distribution ofog S (¢) approaches the distribution of3(¢) — Lo n
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B(t) = B(tw)

7,

] v (WAl

Q,F, PN

Figure 13.3:Continuous-time Brownian Motion, starting at 0.
13.11 Starting at Points Other Than O

(The remaining sections in this chapter were taught Dec 7.)
For a Brownian motiorB(¢) that starts at 0, we have:

P(B(0) = 0) = 1.

For a Brownian motiorB(¢) that starts at, denote the corresponding probability measurdisy
(See Fig. 13.3), and for such a Brownian motion we have:

P*(B(0)=2)=1.
Note that:

e If 2 #£ 0, then/P* puts all its probability on a completely different set fré |
e The distribution ofB(¢) underlP” is the same as the distribution.of+ B(¢) underp.

13.12 Markov Property for Brownian Motion

We prove that

Theorem 12.43 Brownian motion has the Markov property.

Proof:
Lets > 0, ¢ > 0be given (See Fig. 13.4).

E[h(B(s—H))‘}'(s)] = Eh(B(s+1) = Bls)+  Bls) )|F(s)

IndependentofF (s) F(s)-measurable
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39 |, -
Woos o L skt

/

restart

Figure 13.4:Markov Property of Brownian Motion.

Use the Independence Lemma. Define

g9(x) = ETh(B(s +1) — B(s) + )]

= IE |h(z+ B(t) )
N~
same distribution a8 (s + t) — B(s)
= E*h(B(t)).

Then

E [ (B +0)|F(s)] = a(B(2)
= EBGIn(B(1)).

In fact Brownian motion has th&trong Markov property.

Example 13.1 (Strong Markov Property) See Fig. 13.5. Fix > 0 and define
r=min{t >0; B() ==z}.

Then we have:

15+ 0) 7] = a5 = 050,
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LSNVA
VAP S A

/

restart

Figure 13.5:Strong Markov Property of Brownian Motion.

13.13 Transition Density

Let p(t, =, y) be the probability that the Brownian motion changes value framy in time ¢, and
let  be defined as in the previous section.

1 _w=a)?
p(t,x,y):\/ﬁe ED
9(e) = E*h(B) = [ hw)p(t.a.9) dy.
I |n(B(s+ 0)|F(0)] = 9(B(s) = [ hwnte, Bs)) dy.

B [+ 0)|70)] = [ koo,

— 00

13.14 First Passage Time

Fix z > 0. Define
T=min{t >0; B(t)==z}.

Fix # > 0. Then
102
exp {OB(t/\ T) — 507 (t A T)}

is a martingale, and

IE exp {OB(t/\ T) — 207 (t A T)} =1.
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We have
“3PT i r <
lim exp{—L10*(tAT)} = ¢ 700 (14.1)
t—ro0 { i )} {0 if 7 = oo,
0 <exp{0B(tAT)—L16%(tAT)} < e
Lett— oo in (14.1), using the Bounded Convergence Theorem, to get
FE {exp{@x - %027}1{T<00}} =1.
Let6|0 to getiF1 .y = 1,0
P{r <0} =1,
Fexp{-16°r} = e 0", (14.2)
Leto = $62. We have the m.g.f.:
Fe=o™ = ¢~oV20 4 5. (14.3)
Differentiation of (14.3) w.r.to yields
—IE [re™®7] = ——Z_Oée_l’m
Letting «|0, we obtain

Conclusion. Brownian motion reaches levelwith probability 1. The expected time teach level
x is infinite.

We use the Reflection Principle below (see Fig. 13.6).

P{r <t, B(t) <z}=1IP{B(t) >z}
P{r <t} =IP{r <t,B(t) <a}+ IP{r <t,B(t) > z}
= IP{B(t) > 2} + IP{B(t) > «}
=2P{B(t) > z}

9 7 2
e 2t
V27t Y
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shadow path

\Brownian motion

Figure 13.6:Reflection Principle in Brownian Motion.

Using the substitution = L dz = 7 we get

2 T 2
P <t:—/ ~Fd.
{r <t} \/ﬂme z
vt
Density:
8 X 22
()= =IP{r <t} = e 2,
Jo(t) = g PAr <1} = ——

which follows from the fact that if

then

Laplace transform formula:

Fe™o7 = /e_ath(t)dt = V20,
0
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Chapter 14

The 1t0 Integral

The following chapters deal witBtochastic Differential Equations in Finandeeferences:

1. B. OksendalStochastic Differential EquationSpringer-Verlag,1995
2. J. Hull,Options, Futures and other Derivative Securitisgntice Hall, 1993.

14.1 Brownian Motion

(See Fig. 13.3.)92, F, ) is given, always in the background, even when not explicitly mentioned.
Brownian motion, B(t,w) : [0, 00) x Q— IR, has the following properties:

1. B(0) = 0; Technically,lP{w; B(0,w) =0} =1,
2. B(t) is a continuous function df,

3. f0=1ty <t <...<t,,then the increments
B(t1) — B(to), ..., B(ty) — B(tn-1)

areindependent,normaind

14.2 First Variation

Quadratic variation is a measure of volatility. First we will consitiest variation, 'V (f), of a
function f(t).

153
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f(t)

Figure 14.1:Example functiory (¢).

For the function pictured in Fig. 14.1, the first variation over the intefal’] is given by:

FVior(f) = [f(tr) = F(0)] = [f(t2) — F(t)]+ [F(T) — f(t2)]

to T
= [rwyde+ [=rwya+ [ 1o

Thus, first variation measures the total amount of up and down motion of the path.
The general definition of first variation is as follows:

Definition 14.1 (First Variation) LetIl = {to,?1,...,t,} be apartitionof [0, 7], i.e.,
O=to<t; <...<t,=T.
Themeshof the partition is defined to be

II|| = t —tr).
| T1]] kzéf.l.?fé_l(’““ k)

We then define B
FVioy(f) = lim > |f(tea) = f(tw)]-

=0 =

Suppos¢ is differentiable. Then the Mean Value Theorem implies that in each subinfenval ],
there is a point}, such that

flteyr) = f(tr) = f1{5) (trr — ti).-
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Then . .
Do) = Ft) = D0 1 ) (thgr — ti),
k=0 k=0

and

n—1

Foa(f) = fim, 52 170010 = 0

T
= [17/ @) .

14.3 Quadratic Variation

Definition 14.2 (Quadratic Variation) Thequadratic variatiorof a functionf on an interval0, 7']
is

n—1

(M) = lim Zlf (tre1) = F(tR) [

[ —0 ;=

Remark 14.1 (Quadratic Variation of Differentiable Functions) If f is differentiable, thetif)(T") =
0, because

n—1
Do f (k) - Z |F )P (thgr — tr)?
k=0
< [T Z |F () (thar — ti)
and

(HT) < lim |[H]]. lim Z|f ) P (trgr — tr)

[T —0 [T —0 =

= lim H/ "(6))? dt

||H||_mll | [ 1f ()]
0

=0.

Theorem 3.44

or more precisely,
P{w € O (B(,w))(T) =T} = 1.

In particular, the paths of Brownian motion are not differentiable.
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Proof: (Outline) Letll = {¢o,t,...,t,} be a partition of0, 7']. To simplify notation, seD;, =
B(tg4+1) — B(tx). Define thesample quadratic variation

n—1
Qu =Y Di.

k=0
Then

n—1

Qu—T = _[D} — (trg1 — tr)].

k=0
We want to show that

I Ty = 0.
(@ = 1)

Consider an individual summand

D = (tesr — t) = [B(tes1) — Bto)]) = (g — i)
This has expectation 0, so

n—1

EQu-T)=1IEY_[Dji- (taq1 — t)] = 0.

k=0

Forj # k, the terms
D]2 — (tj-l-l — t]‘) and Dz — (tk-l—l — tk)

are independent, so

n—1

var(Qn — 1) = Z var[D7 — (the1 — tr)]
k=0
n—1
=Y E[D} = 2(tppr — te) DF + (trgr — t)°]
k=0

= Z (thrr — t6)% = 2(tkgr — t6) + (tesr — tr)?]

(|f X is normal with mean 0 and varianeg, then2( X *) = 34*)

n—1
=2 (tep1 — t)?
k=0
n—1

<2|T]| D (b — te)
k=0

— 9||1m)| 7.

Thus we have

E@Qn-T)=0,
var(Qm — 1) < 2||I1]].T.
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As ||1||=0, var(Qn — 17')—0, so

e (@n = 1) =10

Remark 14.2 (Differential Representation) We know that
E[(B(ty+1) = B(tk))? = (ther — tr)] = 0.
We showed above that
var[(B(ty+1) — B(tr))? = (ther — tr)] = 2(thsr — t)™.
When(tgyy — t1) is small,(tg1 — t1)? is verysmall, and we have the approximate equation
(B(tet1) — B(te))? =~ tegr — t,

which we can write informally as
dB(t) dB(t) = dt.

14.4 Quadratic Variation as Absolute Volatility

On any time intervalTy, T3], we can sample the Brownian motion at times
T'=to<t1 <...<t, =15

and compute thequared sample absolute volatility

1 n—1

Ty 2 (Bl) = Bl

This is approximately equal to

! 1, -1
7o (BN (T) = (B) ()] = 7 =

As we increase the number of sample points, this approximation becomes exact. In other words,
Brownian motion hasbsolute volatility 1.

Furthermore, consider the equation
T
(B)(T) = T:/l dt, YT >0.
0

This says that quadratic variation for Brownian motion accumulates at rateall times along
almost every path
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14.5 Construction of the It Integral

The integrator is Brownian motionB(¢),¢ > 0, with associated filtratiotF (¢),¢ > 0, and the
following properties:

1. s < t= every setinF(s) is also inF(t),
2. B(t) is F(t)-measurableyt,

3. Fort <t; <...<t,, theincrementd(¢;) — B(t), B(ty) — B(t1),...,B(t,) — B(t,-1)
are independent of (¢).

Theintegrand isé(t),t > 0, where

1. 6(¢) is F(t)-measurabl&t (i.e., s is adapted)

2. J is square-integrable:
T

E/cs?(t) dt < oo,  VT.
0

We want to define th& 6 Integral:
t
I(t):/ 5(u) dB(u), > 0.
0

Remark 14.3 (Integral w.r.t. a differentiable function) If f(¢) is a differentiable function, then
we can define

] 5) df() = [ 5 '(w) .

This won't work when the integrator is Brownian motion, because the paths of Brownian motion
are not differentiable.

14.6 It0 integral of an elementary integrand

LetIl = {¢to,?1,...,t,} be apartition of0, 7], i.e.,
0=to<t; <...<t,=T.

Assume thab(¢) is constant on each subinterjal, ¢,11] (see Fig. 14.2). We call suchdaan
elementary process

The functionsB(t) andé(t;) can be interpreted as follows:

e Think of B(t) as theprice per unit sharef an asset at time
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3(t)=35
A sy
5(t):6(t0) O
e O
-ty 1 t2 t3  Y=T
3(t) =9(t,)

Figure 14.2:An elementary functiof

e Thinkofty,?y,...,t, as thetrading datedor the asset.

e Think of §(¢x) as thenumber of shares of the asset acquiggdrading date;, and held until
trading date ;.

Then the Ib'integrall (¢) can be interpreted as tigain from tradingat timet; this gain is given by:

S(t)[B(t) — Blto) ], 0<t<t

14.7 Properties of the 1D integral of an elementary process

AdaptednessFor eacht, (t) is F(t)-measurable.

Linearity If

then



160

&%
®—

I t|+1 ..... tk tk+1

Figure 14.3:Showings andt in different partitions.

and

£
CI(t) = / c5(u)dB(u).
0
Martingale I(t) is a martingale.

We prove the martingale property for the elementary process case.

Theorem 7.45 (Martingale Property)
I(t) =) 8(t)[B(tjs1) = Bt)] + 8()[B(t) = B(tx)],  th <t <tenr

is a martingale.

Proof: Let0 < s < t be given. We treat the more difficult case tkatindt are in different
subintervals, i.e., there are partition pointsindt;, such thats € [ty t,11] andt € [tr, tr11] (See
Fig. 14.3).

Write
-1
I(t) = Z&@)[B(tm) = B(t;)] + 6(te)[Blteya) — B(to)]
k—1
+ D St)[B(ti4) = Bt)] + 3(tx)[B(t) — B(ty)]
j=t+1

We compute conditional expectations:

-1

=3 8(t))(B(tj41) — B(t))).

=0

{—1
I [Z 5(t5) (Bt 41) - B(tj))‘f(s)

I |5t (Bltes) = B(e0)|F(s)] = b00) (ELB(tesn) |F(5)) - Bleo)
= 8(t0)[B() - B(t0)
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These first two terms add up @s). We show that the third and fourth terms are zero.

k—1

k—1 -
r [ > BBl - BU)|F| = X 8 [B[506) (Bl - Be)|Fe)] |70
j=t+1 j=t+1
k-1
= Y B |5(0) (BBl (1) - Be) |
7=0l+1 -0

=0
[ ]
Theorem 7.46 (1 Isometry)
t
EP() = / 52 (u) du.
0
Proof: To simplify notation, assume= ¢, SO
k
I(t) = Y 8(t)[B(tj+1) — B(t))]
=0 D,
EachD; has expectation 0, and differelt; are independent.
& 2
I*(t) = (Z 5(%)@)
7=0
k
= Z 52(t]‘)D]2 + 2 Z(S(tz)(S(t])DzD]
7=0 1<j
Since the cross terms have expectation zero,
k
BI*(t) =) E[5*(t;)D]]
7=0
k
= Y B [0 B | (Bltin) - B )]
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th of
pathof 5, ) 0

VanY | | |
v 1 1 1

0=ty ty to ta th=T

Figure 14.4:Approximating a general process by an elementary proégssver[0, 77.

14.8 It0 integral of a general integrand

Fix T" > 0. Let$ be a process (not necessarily an elementary process) such that
e J(t) is F(t)-measurableyt € [0, 7],
o IE [T 8%(t) dt < oo.

Theorem 8.47 There is a sequence of elementary proce$égs> , such that

T
nli_r}nooE/O 16,(1) — 6(1)]? dt = 0.

Proof: Fig. 14.4 shows the main idea.

In the last section we have defined
T
.(T) = / 5. (1) dB(1)
0

for everyn. We now define



CHAPTER 14. The b’Integral 163

The only difficulty with this approach is that we need to make sure the above limit exists. Suppose
n andm are large positive integers. Then

T

var(Ly(T) — I, (T)) = IE ( /0 [6,(1) — 6, (¢)] dB(t))
T
(Itd Isometry:)= I /0 [6.(t) — 6,.(1)]2 dt
= [ 113u00) = 501 4 150~ 5,01 P i
T T
(a+D)? < 2%+ 207 3) < QE/O 16.(1) — (1) di + QE/O 16,0 (1) — 5(¢)| dt,

which is small. This guarantees that the sequergé€l’) }o2, has a limit.

14.9 Properties of the (general) Ib integral

t
I() = / 5(u) dB(u).
0
Hered is any adapted, square-integrable process.

Adaptedness. For eachy, () is F(t)-measurable.

Linearity. If
I(t):/&(u) dB(u),  J(0) :/'y(u) dB(u)
then t
10+ (1) = [ (6u) &5 ()) dB(w
and

Martingale. [(t) is a martingale.
Continuity. /(¢) is a continuous function of the upper limit of integration
Itd Isometry. IE1%(t) = IE f; 6*(u) du.

Example 14.1 () Consider the tintegral

/OT B(u) dB(u).

We approximate the integrand as shown in Fig. 14.5



164

T/4 T/4 3T/4 T

ﬂ\/ - : . |

Figure 14.5:Approximating the integrané () with 6., over[0, T'].

B(0)=0 if 0<u<T/n;
B(T/n) if T/n<u<2T/n;

B (M) it ©eoUT <y
By definition,

/OT B(u) dB(u) = 13100!;3 (’%T) [B (@) B (’%T)] .

To simplify notation, we denote

n
SO
T n—1
/ B(u) dB(u) = lim ZBk (Bry1 — By).
0
We compute
n—1 n—1 n—1 n—1
N (Brg1 — Be)?=1%> Bl — > BiBepi+3 Y BP
k=0 k=0 k=0 k=0

n—1
=iB.+%> Bj- ZBkBk+1 +1 ZBk
=0
n—Jl n—1
=1iB2+> Bi—> BiBip
k=0 k=0

n—1
=1B2 - Bi(Biy1 — By).
k=0
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Therefore,
n—1
> Bi(Brg1 — Be) = $B2 — 3> (Brg1 — By)?,
k=0
or equivalently
n—1 n—1 2
kT (k+1)T 3 ETN] e o (k+1)T k
Yo (5 [ (5) - ()] = e - 2 s (555) ()]

Let n—o0 and use the definition of quadratic variation to get

/OT B(u) dB(u) = $B*(T) — iT.

Remark 14.4 (Reason for thel 7" term) If f is differentiable withf (0) = 0, then

[ s ast = [ ) du

In contrast, for Brownian motion, we have

T
/0 B(u)dB(u) = LBX(T) — LT.

The extra terni T’ comes from the nonzero quadratic variation of Brownian motion. It has to be
there, because

T
E/ B(u) dB(u) =0 (Itd integral is a martingale)
0

but

ip.

FiB*(T)=1

14.10 Quadratic variation of an Itd integral
Theorem 10.48 (Quadratic variation of It0 integral) Let

() = /Ot(sw) dB(u).

Then
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This holds even ib is not an elementary process. The quadratic variation formula says that at each
time u, the instantaneous absolute volatilif 7 is §%(u). This is the absolute volatility of the
Brownian motion scaled by the size of the position (8.&.)) in the Brownian motion. Informally,

we can write the quadratic variation formula in differential form as follows:

dI(t) dI(t) = §*(t) dt.
Compare this with
dB(t) dB(t) = dt.
Proof: (For an elementary procesy Letll = {to,t1,...,t,} be the partition fow, i.e.,s(t) =
d(tx) for t, <t < tx41. To simplify notation, assume= ¢,,. We have

n—1

(D) =Y LD (tker) = (D) ()]

k=0
Let us computé!) (tx+1) — (I)(tx). Let= = {so, s1, ..., s, } be a partition
p =80 <81 <o <8y =g

Then

SO

It follows that

DY) = 3 800 (e — 1)
k=0
= 5 5 (u) du

k=0 th

t
I1TT||—0 / 52(u) du.
% 0



Chapter 15

It 0’'s Formula

15.1 It0’s formula for one Brownian motion

We want a rule to “differentiate” expressions of the fofifB(¢)), wheref(z) is a differentiable
function. If B(t) were also differentiable, then the ordinatyain rulewould give

d 4 !
o/ (BO) = F(B)B(1),

which could be written in differential notation as

However,B(t) is not differentiable, and in particular has nonzero quadratic variation, so the correct
formula has an extra term, namely,

df (B(t)) = f(B(t)) dB(t) + 3f"(B(t)) dt
dB(t) dB(t)

This isltd’s formula in differential formIntegrating this, we obtailid’s formulain integral form:

1B0) - fBO) = [ 7B dBe + 1 [ 1(B) du.
f(0)

Remark 15.1 (Differential vs. Integral Forms) The mathematically meaningful form obit for-
mulais I©’s formula in integral form:

1B0) = 1BO) = [ 7B dBe + 1 [ 1(B) du.
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This is because we have solid ddfions for both integrals appearing on the right-hand side. The
first,

[ 7B s

is anltd integral defined in the previous chapter. The second,

[ ) an

is aRiemann integralthe type used in freshman calculus.

For paper and pencil computations, the more convenient fornosfriife isltd’s formulain differ-
ential form:

df (B(t)) = f'(B(t)) dB(t) + 3.f"(B(1)) dt.

There is an intuitive meaning but no solid definition for the tetf\@3(¢)), d B(t) anddt appearing
in this formula. This formula becomes mathematically respectable only after we integrate it.

15.2 Derivation of Itd’s formula
Considerf(z) = 127, sothat
f@)y=2z, f'(z)=1.

Let 2y, 214+1 be numbers. Taylor’s formula implies

f@ep) = f(xr) = @rpr — 20) f1(20) + 5 (@rgr — 20)2f" ().

In this case, Taylor's formula to second ordeei@ctbecause is aquadratic function

In the general case, the above equation is only approximate, and the error is of the ¢rder of
z1)2. The total error will have limit zero in the last step of the following argument.

Fix T > 0 and letll = {to,t,...,t,} be a partition of0, 7]. Using Taylor’s formula, we write:

FB(D) = F(B(0)
= 4BY(1) - §B2(0)

S U (Bllas)) - F(BU)
k=0
" Bltags) = B (B + 13 [Bltwss) = B 1(B(t)

= Y Bt [Bltir) - B+ Y [Bltes) — Bl
k=0
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We let||11]||—0 to obtain

T ! T
:/0 F(B(w)) dB(u)—l—%/O F(B(u)) du.

This is 1t6’s formula in integral form for the special case

15.3 Geometric Brownian motion

Definition 15.1 (Geometric Brownian Motion) Geometric Brownian motion is
S(t) = S(0) exp {UB(t) + (,u — %02) t} ,

wherep ando > 0 are constant.

Define
f(t,z) = S(0) exp{aw 1 (u - 502) t} :
SO
S(t) = f(t, B(t)).
Then

fo=(n-10%)f, fo=0f, frr=0.
According to 10’s formula,

dS(t) = df (t, B(t))

dt

=(p—3c*)fdt+ofdB+ic’fdt
= pS(t)dt + oS (t) dB(t)

Thus,Geometric Brownian motion in differential foris
dS(t) = pS(t)dt + oS(t) dB(t),

andGeometric Brownian motion in integral foris

S(t) = S(O)—I—/Ot,uS(u) du—l—/OtUS(u) dB(u).
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15.4 Quadratic variation of geometric Brownian motion
In the integral form of Geometric Brownian motion,

t t
S(t) = 5(0) —I—/ wS (u) du—l—/ oS (u) dB(u),
0 0
the Riemann integral
t
Ft) = / 15 () du
0
is differentiable withF” () = ;.5(t). This term has zero quadratic variation. Theiflfegral
t
G(t) = / 05 (u) dB(u)
0
is not differentiable. It has quadratic variation
t
(G)(1) = / 0252 (u) du.
0
Thus the quadratic variation ¢f is given by the quadratic variation 6f. In differential notation,
we write
dS(t) dS(t) = (uS(t)dt + o S(1)dB(t))* = o2S%(t) dt
15.5 Volatility of Geometric Brownian motion

Fix0 < Ty < Ty. Letll = {to,...,t,} be a partition of T, T;]. Thesquared absolute sample
volatility of S on [Ty, T3] is

1>
1 = 5 1
St — S(t ~ /0252 u) du
o B0 S0 = g T [ %500
1
~ o2 5*(Ty)

As T, | Ty, the above approximation becomes exact. In other wordsn#tantaneous relative
volatility of S is 2. This is usually called simply theolatility of S.

15.6 First derivation of the Black-Scholes formula

Wealth of an investor. An investor begins with nonrandom initial wealfty, and at each time,
holdsA(t) shares of stock. Stock is modelled by a geometric Brownian motion:

dS(t) = uS(t)dt + oS(t)dB(t).
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A(t) can be random, but must be adapted. The investor finances his investing by borrowing or
lending at interest rate

Let X (¢) denote the wealth of the investor at timeThen
dX (t) = A®)dS(t) +r[X(t) — A(t)S(t)]dt
=A@ [SO)dt + oS (t)dB(t)] 4+ r [X(t) — A(t)S(t)]dt
=rX()dt + A@)S({t) (u—r) dt + A@)S(t)odB(t).
N——’
Risk premium
Value of an option. Consider an European option which pgys' (7)) attime?'. Letwv(t, #) denote
the value of this option at timeif the stock price isS(¢t) = z. In other words, the value of the
option at each time € [0, T is
v(t, S(1)).
The differential of this value is
dv(t, S(t)) = vidt + v,dS + Fv,.dS dS
= vpdt + v, [uS dt + 0S dB] + %vmazsz dt
= {vt + pSv, + 50252%4 dt + o Sv,dB

A hedging portfolio starts with some initial wealfti, and invests so that the weali(¢) at each
time tracksv(t, S(¢)). We saw above that

dX(t)=[rX +A(p—r)S] dt + cSAdB.

To ensure thak (t) = v(¢, S(¢)) for all ¢, we equate coefficients in their differentials. Equating the
d B coefficients, we obtain tha-hedging rule

Al) = va(t, S(1).
Equating thelt coefficients, we obtain:
v + pSvy + %aQS%m =rX+A(p—r)S.
But we have sef = v,, and we are seeking to causeto agree withy. Making these substitutions,
we obtain
v + pSv,y + %O‘QSQUMU =rv+ vy (p—r)S,
(wherev = v(t, S(t)) andS = S(t)) which simplifies to
vy + rSv, + %aQS%m = ru.
In conclusion, we should let be the solution to th8lack-Scholes partial differential equation
vi(t, @) + rave(t, @) + 0% 0., (¢, @) = ro(t, 2)
satisfying the terminal condition
v(T,z) = g(z).
If an investor starts wittk, = v(0,.5(0)) and uses the hedg®(t) = v, (¢, S(t)), then he will have
X (t) =w(t,S(t)) forall ¢, and in particularX (1) = ¢(S(1)).
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15.7 Mean and variance of the Cox-Ingersoll-Ross process

TheCox-Ingersoll-Rosmodel for interest rates is

dr(t) = a(b — er(t))dt + o\ /r(t) dB(D),

wherea, b, ¢, o andr(0) are positive constants. In integral form, this equation is

r(t):r(O)—l—a/(b—cr du—l—a/ FdB

We apply I’s formula to computér?(¢). Thisisdf(r(t)), wheref(z) = 2%. We obtain
rA(t ) = df (r(t))
F'(r () dr(t) + 5" (r(t)) dr(t) dr(?)
= 2r(t) |a(b - er(t)) di + 0\/r(t) dB(t)] n [a(b —er(t)) dt + oy/r (1) dB(t)]
= 2abr(t) dt — 2acr?(t) dt + 2073 (t) dB(t) + o2r(t) dt
= (2ab+ 0)r(t) dt — 2acr®(t) dt + 20v3 (t) dB(t)

The mean ofr(¢). The integral form of the CIR equation is

r(t):r(O)—l—a/(b—cr du—l—a/ FdB

Taking expectations and remembering that the expectation obamtéjral is zero, we obtain

Er(t) = r(0) + a/ot(b — cEr(u) du.

Differentiation yields

d
%Er( )=a(b—clEr(t)) = ab— aclEr(t),

which implies that

d act _ act d :|_ act
7 {e Er(t)} = [acEr( )+ thr(t) = e"“ab.

Integration yields
t b
“Er(t) — r(0) = ab/ e du = = (" — 1).
0 C

We solve forlEr(t):
FEr(t) = é—|— et (r(O) - é) .

C C

If r(0) = 2, thenir(t) =  for everyt. If r(0) # 2, thenr(t) exhibitsmean reversion

lim FEr(t) = é
t—roo

c
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Variance of r(¢). The integral form of the equation derived earlier fof (¢) is
F2(1) = #2(0) + (2ab + 0?) /Otr(u) du — 2ac/0t r2(u) du + 20 /Otr%(u) dB(u).
Taking expectations, we obtain
Er2(t) = r2(0) + (2ab + 0?) /0 "B (u) du — 2ac /0 "B () du,

Differentiation yields
%ErQ(t) = (2ab+ o?)IEr(t) — 2aclEr(t),
which implies that
d 2act 2 _ 2act [ 2 d 2 :|
e Er-(t)=ce 2aclEr*(t) + thr (t)
= 2" (2ab 4 o) IEr ().

Using the formula already derived fdf'r(¢) and integrating the last equation, after considerable

algebra we obtain

bo? b2 b\ [a* 20\ ..
B = g+ o+ (0= ) (_ § ?) o

C ac

2 2 2
+ (T‘(O) _ é) U_e—Qact + U_ (; _ T‘(O)) e—2act‘

C ac ac

varr(t) = IEr?(t) — (IEr(t))?
b02 b 0-2 —act 0-2 b —2act
= 5.7 + (r(O) — E) e + g <% — r(O)) e .

15.8 Multidimensional Brownian Motion

Definition 15.2 (d-dimensional Brownian Motion) A d-dimensional Brownian Motiors a pro-
cess

B(t) = (By(t),...,By(t))
with the following properties:
e EachB(t) is a one-dimensional Brownian motion;
e If ¢ # j, then the processds; (¢) and B, (¢) are independent.

Associated with a-dimensional Brownian motion, we have a filtrati (¢) } such that

e For each, the random vectoB(t) is F(t)-measurable;
e Foreach <i¢; < ...<t,, the vector increments
B(ty) — B(t),...,B(t,) — B(t,-1)
are independent of (¢).
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15.9 Cross-variations of Brownian motions

Because each componéhitis a one-dimensional Brownian motion, we have the informal equation
dB; (t) dB; (t) = dt.
However, we have:

Theorem 9.491f : #£ j,
dB; (t) dB]‘ (t) =0

Proof: Letll = {to,...,t,} be a partition of0, 7. For: # j, define thesample cross variation
of B; andB; on|0, T'] to be

n—1

Crni= ) [Biltis1) — Bi(te)] [Bj(tr1) — Bj(te)]-
k=0

The increments appearing on the right-hand side of the above equation are all independent of one
another and all have mean zero. Therefore,

FECh=0.
We computerar(Cy). First note that
Ch = nz_: [Bi(tk-l—l) - Bz’(tk)] [Bj (tet1) — Bj(tr)
k=0
+2 Z i(tep1) = Bi(to)][Bj(tegr) — Bj(te)] - [Bi(trer) — Bitr)] [Bj(trtr) — Bj(t)]
<k

All the increments appearing in the sum of cross terms are independent of one another and have
mean zero. Therefore,

var(Crr) = EC’%

=IF Z i(te1) — Bi(tp)]” [Bj(trar) — B (te)]? -

But [B;(try1) — Bi(tr)]* and[B;(tr11) — B;(tx)]* are independent of one another, and each has
expectation(ty41 — tx). It foIIows that

n—1 n—1
var(Cr) = ) (trpr = t1)* <Y (e — ) = |17
k=0 k=0

As ||11||—=0, we havevar(C1)—0, soCt; converges to the constaitC; = 0. ]
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15.10 Multi-dimensional Ito formula

To keep the notation as simple as possible, we write théolthula fortwo processes driven by a
two-dimensional Brownian motion. The formula generalizearntyg numbenf processes driven by
a Brownian motion oiny numbeKnot necessarily the same number) of dimensions.

Let X andY be processes of the form

-I-/ du—l—/ S11(u) dBy(u -I-/ 12(u) dBy(u),
-I-/ du—l—/ 621 (u) dBy (u -I-/ S22 (u) dBy(u).

Such processes, consisting of a nonrandom initial condition, plus a Riemann integral, plus one or
more |9 integrals, are calledemimartingalesThe integrandsy(u), 5(«), andé;;(u) can be any
adapted processes. The adaptedness of the integrands guarant&earitiat are also adapted. In
differential notation, we write

dX = o dt + 511 dB1 + 512 dB27
dY = ﬁ dt + 521 dB1 + 522 dB2

Given these two semimartingal&dsandY’, the quadratic and cross variations are:

dX dX = (Oé dt + 511 dB1 + 512 dB2)27
=63, dBy dB, +261,6y2 dB; dBy +5%,dB, dB,
N—— N—— N——
dt 0 dt
= (0f) + 81y)* dt,
dY dY = (B dt + 691 dBy + 899 dBy)?
= (03, +83,)* dt,
(Oé dt + 511 dB1 + 512 dBQ)(ﬁ dt + 521 dB1 + 522 dBQ)
= (611021 + 012022) dt
Let f(t, 2, y) be a function of three variables, and [é(¢) andY (¢) be semimartingales. Then we
have the correspondingolformula:
df(t,z,y) = fidt + fodX + fydY + L[fon dX dX +2f,, dX dY + f,, dY dY].

In integral form, withX andY” as decribed earlier and with all the variables filled in, this equation
is

dX dY =

Jt, X (1), Y(t) - f(0,X(0),Y(0))
t
= /0 [fi+ afe + Bfy + 2071 4 672) fow + (811021 4 812022) foy + 3 (631 + 632) ] du

t t
+ [ Busotons) diy + [ Bkt onf,] db,
wheref = f(u, X (u),Y(u), fore, 5 € {1,2},6;; = 6;;(w), andB; = B;(u).
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Chapter 16

Markov processes and the Kolmogorov
equations

16.1 Stochastic Differential Equations

Consider thestochastic differential equation
dX(t) =a(t, X(t)) dt + o(t, X (t)) dB(?). (SDE)

Herea(t, z) ando (¢, z) are given functions, usually assumed to be continuoys, in) and Lips-
chitz continuous irx,i.e., there is a constatsuch that

la(t,z) — a(t,y)| < Lz —yl, lo(t,z) —a(t,y)| < Llz — y

forallt, z,y.

Let (to, 2) be given. Asolutionto (SDE) with theinitial condition (zo, z) is a proces$ X (t) } >+,
satisfying

X(to) =,

X(t):X(to)—|—/a(s,X(s))ds—|—/a(s,X(s))dB(s), £t

to to
The solution procesgX () }>¢, will be adapted to the filtratiof.7 (¢) } 1~ generated by the Brow-
nian motion. If you know the path of the Brownian motion up to timéhen you can evaluate
X ().
Example 16.1 (Drifted Brownian motion) Let « be a constant ang = 1, so
dX(t) = a dt + dB(1).
If (t0, z) is given and we start with the initial condition

X(to) =,

177
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then

X(t) =z +a(t—to) + (B(t) — B(ty)), t>to.
To compute the differential w.r.t, treatt, andB(t,) as constants:

dX (1) = a dt + dB(1).

[ |
Example 16.2 (Geometric Brownian motion) Let » ands be constants. Consider
dX(t) =rX (@) dt+ o X(t) dB(1).
Given the initial condition
X(to) =,
the solutionis
X(t) = wexp {O'(B(t) — B(tg)) + (r — %UZ)(t - to)} :
Again, to compute the differential w.r, treatt, and B(¢y) as constants:
dX(t) = (r— 30))X(t) dt + 0 X (t) dB(t) + 307X (1) dt
=rX(t) dt+ o X(t) dB(t).
[ |

16.2 Markov Property

Let0 <ty < t; be given and lek(y) be a function. Denote by
E"h(X (1))

the expectation ok (X (¢1)), given thatX (¢o) = z. Now leté € IR be given, and start with initial
condition

X(0) =&

We have thévlarkov property
B [h<X<t1>>\f<to>] = X UIR(X (1)),

In other words, if you observe the path of the driving Brownian motion from time O to#jrend
based on this information, you want to estima{e (¢, )), the only relevant information is the value
of X (¢p). You imagine starting théSD L) at timet, at valueX (), and compute the expected
value of (X (¢1)).
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16.3 Transition density

Denote by
plto,t1; ©,y)

the density (in the variable) of X (¢1), conditioned onX (¢y) = z. In other words,

Eh(X (t1)) = /Rh(y)p(to, ts o, y) dy.

The Markov property says that for< ¢, < ¢; and for eveng,
o [h(X(tl))‘}'(to)] _ /Rh(y)p(to,tl; X (to), ) dy.

Example 16.3 (Drifted Brownian motion) Consider the SDE
dX(t) = a dit + dB(1).

Conditioned onX () = =z, the random variabl& (¢, ) is normal with mear: + a(¢; — t;) and variance

(tl — to), i.e.,
_ _ 2
ot 219 = e { -l ol ),
27T(t1 —to) Q(tl —to)
Note thatp depends om, and¢; only through their difference, — ;. This is always the case wheift, x)
ande (¢, z) don't depend on. [ |

Example 16.4 (Geometric Brownian motion) Recall that the solution to the SDE
dX(t) =rX (@) dt+oX(t) dB(1),
with initial condition X (¢y) = #, is Geometric Brownian motion:
X(t1) = wexp {o(B(t1) — B(to)) + (r — 50°)(t1 —to)} -

The random variabl&(t,) — B(ty) has density

1 b?
P{B(t;) — B(ty) € db} = —— ——— db,
(Bt = Bito) € db} = exp{ zm—to)}
and we are making the change of variable
y:xexp{ab—i—(r—%0’2)(151—150)}

or equivalently,
b=

Q| =

[1og% —(r— Lot - to)] .

The derivative is p J
v oy, or equivalently, db= Y
db oy
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Therefore,

plto.t1;z,y) dy = P {X(t1) € dy}
! 1 Y 192 2}

= ——F————expy 57—z |log= —(r—507)(t1 — ¢ du.

oyy/2m(t1 — to) p{ 2ty — to)o? & (r—307)(t 0)} y

Using the transition density and a fair amount of calculus, one can compute the expected payoff from a
European call:

EY(X(T) - K)* = /Ooo(y — K)*p(t, T;2,y) dy

1 x
_ r(T-t) -~ _ 1.2 _
—c xN(U T_t[logK—l—r(T 1)+ Lo¥(T t)D
- 1 x 1.2
— KN (U\/]Tt [log e +r(T—t)— 350 (T—t)})
where
1 O 1 0 1.0
N(n):?/ e 2 dx_?/ e” 2% dx
v/ o v/ —n
Therefore,

E%¢ |77 T=(X(T) — K)*

16.4 The Kolmogorov Backward Equation

Consider
dX (t)=a(t,X(t)) dt+o(t, X (1)) dB(t),
and letp(to, t1; 2, y) be the transition density. Then the Kolmogorov Backward Equation is:

2

9, 9, 9,
TS (to,t1; @,y) = a(toyw)a—wp(toytﬁ z,y) + %Uz(tow)@l?(toytl; T, y).
0 (KBE)

The variables, andz in (K BE) are called théackward variables

In the case that ando are functions of: alone,p(to, t1; «,y) depends om, andt; only through
their differencer = ¢, — to. We then writep(r; z,y) rather tharp(to,t1; z,y), and (K BE)
becomes

d . _ d . 1.2 82 . '
Ep(ﬂ T,y) = a(ﬂﬁ)a—xp(ﬂ T,y)+ 50 (96)@19(77 z,y). (KBE)
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Example 16.5 (Drifted Brownian motion)

dX (1) = a dt + dB(t)

V2T 2T
0 0 1 (y —x —ar)?
—p=p, = — ex —
an p or /21 b 2T

_ [_i_i_a(y—x—ar)_i_(y—x—ar)]p.

27 T 272
0 y—ax—ar
a_p =Pz = P
z T
* (0 y—x—ar +y—x—a7’
8l‘2p = Pzz = o - p - Pr
1 y—x — ar)?
L e
T T
Therefore,
1 B a(y—x—ar)_i (y —x —ar)?
=pr.
This is the Kolmogorov backward equation. ]

Example 16.6 (Geometric Brownian motion)

dX (1) = rX () dt + o X (1) dB(1).

(7i 20) = —— 7 [log = (0= 307]
p\T Yy _O_y\/ﬁexp 27_0_2 ng T 20’ T .
It is true but very tedious to verify thatsatisfies the KBE

1.2 2
Pr = TEPr + 507 Prg

16.5 Connection between stochastic calculus and KBE

Consider
dX (t) = a(X(t)) dt + o(X (1)) dB(2). (5.1)
Let ~(y) be a function, and define

v(t, ) = E*h(X(T)),
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where0 < ¢ < T. Then
vt z) = /h(y) p(T = t; @,y) dy,
—/h(y) p-(T' =t =,y) dy,
ve(t, ) = /h(y) pe(T = t; @,y) dy,
Upe(t, @) = /h(y) Pee(T = t; x,y) dy.
Therefore, the Kolmogorov backward equation implies

vt @) +a(@)v, ( )+ 1Uz(ﬂf)vm(fvﬂf):
/h —tix,y) +a(@)ps(T - t;2,y) + %02($)pxx(T—t;w7y)} dy =0

Let (0, &) be an initial condition for the SDE (5.1). We simplify notation by writifigrather than
B¢,

Theorem 5.50 Starting atX (0) = &, the process (¢, X (¢)) satisfies the martingale property:
FE [U(t,X(t))‘]:(s)] = v(s, X(s)), 0<s<t<T.
Proof: According to the Markov property,
I (X () |F(0)] = X O (D) = ot X (1),

SO

Itd’s formula implies

dv(t, X (1)) = vdt + v,dX + Jv,.dX dX
= vdt + avydt + ovdB + 3 Lo20,,dt.
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In integral form, we have
o(t, X (1)) = v(0, X (0))

+ / [, X () + X (@) vl X () £ 303X (1) ity X ()]
+/Ota(X(u))%(u,X(u)) dB(u).

We know thatv(t, X (¢)) is a martingale, so the integrﬂ {vt + avy + %azvm} du must be zero
for all t. This implies that the integrand is zero; hence

2

1
Ut + avy + 5070 = 0.

Thus by two different arguments, one based on the Kolmogorov backward equation, and the other
based on k's formula, we have come to the same conclusion.

Theorem 5.51 (Feynman-Kac)Define

o(t,z) = E"R(X(T)), 0<t<T,

where
dX (t) = a(X(t)) dt + o(X (1)) dB(2).
Then
vty @) + a(2)va(t, @) + 20 (@) ve(t,2) = 0 (FK)
and
(T, z) = h(z).

The Black-Scholes equation is a special case of this theorem, as we show in the next section.

Remark 16.1 (Derivation of KBE) We plunked down the Kolmogorov backward equation with-
out any justification. In fact, one can use’#formula to prove the Feynman-Kac Theorem, and use
the Feynman-Kac Theorem to derive the Kolmogorov backward equation.

16.6 Black-Scholes
Consider the SDE
dS(t) = rS(t) dt + oS(t) dB(t).

With initial condition
S(t) ==,

the solution is

S(u) = wexp{o(Bu) = B#t) + (r— o) (u—1)},  wu>t.
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Define
v(t,z) = IE""h(S(T))
= IFEh (x exp{U(B(T) — B(t)) + (r — 30°)(T - t)}) ’

whereh is a function to be specified later.

Recall thelndependence Lemm# G is ac-field, X is G-measurable, antl is independent of,
then

B |n(x.v)|o] = 2(x),
where
y(z) = IEh(2,Y).
With geometric Brownian motion, fdr < ¢ < T, we have
S(t) = S(0)exp{oB(t) + (r — SoH)t},

S(T)=5(0) exp{UB(T) + (r— %UQ)T}
= S0 exp{a(BI) - B®)+(r— LT -1}

~——
F(t)-measurable independentof- (t)
We thus have
S(T) = XY,

where

X =S(t)

Y =exp {O‘(B(T) = B(t)) + (r = 30*)(T - t)} :
Now

FEh(zY) =v(t,z).
The independence lemma implies

E |W(S()|F0)] = BBy Fe)

=ov(t, X)
=v(t,S(t)).
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We have shown that
olt, S(1)) = I [h(S(T))‘}'(t)] L 0<t<T.

Note that the random variable S (7")) whose conditional expectation is being computed does not
depend on. Because of this, the tower property implies thét S(¢)),0 < ¢t < 7', is a martingale:
For0 <s<t<T,

E [v(t,S(t))‘}'(s)] - E [E [h(S(T))‘}'(t)] ‘}'(s)]
—E [h(S(T))‘}'(s)]
= v(s, 9(s)).

This is a special case of Theorem 5.51.

Becausev(t, S(t)) is a martingale, the sum of th& terms indv(¢, S(t)) must be 0. By ks
formula,

dv(t, S(0) = [vi(t, S(1)) dt + rS(B)va(t, S (1) + S02 5% (1) va(t, S (1)) ] dt
+ aS(t)ve(t, S(t)) dB(t).
This leads us to the equation
vi(t, @) 4 rave(t, @) + So%2 v, (t, 2) = 0, 0<t<T, z>0.
This is a special case of Theorem 5.51 (Feynman-Kac).
Along with the above partial differential equation, we havet#reninal condition

(T, z) = h(z), z > 0.

Furthermore, ifS(¢) = 0 for somet € [0,77, then alsaS(7') = 0. This gives us thdoundary
condition
v(t,0) = h(0), 0<t<T.

Finally, we shall eventually see that the value at tinoé a contingent claim paying(S (7)) is
u(t,z) = e " T EHR(S(T))

=" T=Dp(t, 2)

attimet if S(t) = «. Therefore,
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(T-1)

Plugging these formulas into the partial differential equationif@nd cancelling the” ap-
pearing in every term, we obtain tidack-Scholes partial differential equation
—ru(t,z) + w(t, 2) + reug(t, @) + So%2 ug, (t, 2) = 0, 0<t<T, z>0.
(BS)

Compare this with the earlier derivation of the Black-Scholes PDE in Section 15.6.
In terms of the transition density

: _ 1 R S PO PR R
p(t,T; gc’y)_amieXp{_Q(T—t)ﬁ [1g$ (r—50)(T t)]}

for geometric Brownian motion (See Example 16.4), we have the “stochastic representation”

u(t, 2) = e TV R(S(T)) (SR)

=T /Oo h(y)pt,T; x,y) dy.
0

In the case of a call,
h(y) = (y — K)*
and

u(t,z) =a N (ffx/% [log % +r(T-1t)+ %UQ(T - t)])
— eI N (70\/% [log % +r(T —t)— 1*(T - t)D

Even if h(y) is some other function (e.gh(y) = (K — y)*, a put),u(t, =) is still given by and
satisfies the Black-Scholes PDE (BS) derived above.

16.7 Black-Scholes with price-dependent volatility

dS(t) = rS(t) dt + 5(S(t)) dB(1),
o(t, x) = e " TDELY(S(T) — K)¥.

The Feynman-Kac Theorem now implies that
—ro(t,z) + v(t, @) + ravy (t, @) + 187 (2)vee(t, 2) = 0, 0<t<T, z>0.
v also satisfies theerminal condition

o(T,z) = (v — K)T, x>0,
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and theboundary condition
v(t,0)=0, 0<t<T.

An example of such a process is the following from J.C. Q¢otes on options pricing I: Constant
elasticity of variance diffusion®yorking Paper, Stanford University, 1975:

dS(t) = rS(t) dt + oS°(t) dB(t),

where0 < § < 1. The “volatility” 5°~!(¢) decreases with increasing stock price. The corre-
sponding Black-Scholes equation is

—rv 4+ v + ravg + %sz%vm =0, 0<t<T z>0;
v(t,0) =0, 0<t<T
o(T,z) = (z — K)T, x> 0.



188



Chapter 17

Girsanov’s theorem and the risk-neutral
measure

(Please see Oksendal, 4th ed., pp 145-151.)

Theorem 0.52 (Girsanov, One-dimensional)let B(¢),0 < ¢ < T, be a Brownian motion on
a probability space(Q?, F,P). Let F(¢),0 < t < T, be the accompanying filtration, and let
6(t),0 <t < T, be aprocess adapted to this filtration. FoK ¢ < 7', define

B(t) = /Ot 6(u) du+ B(t),

2(t) = exp{—/OtH(u) dB(u) - %/Ot 62 (u) du},
and define a new probability measure by
P(A) = /AZ(T) dP, VA€ F.
Under /P, the process3(t),0 < ¢t < T', is a Brownian motion.

Caveat: This theorem requires a technical condition on the size ¢ff
T
IF exp %/ 0% (u) du p < oo,
0

We make the following remarks:

everything is OK.

Z(t) is a matingale. In fact,

dZ(t) = —0(t)Z(t) dB(t) + 10°(¢) Z(t) dB(t) dB(t) — 16 (t) Z(t) dt
= —0(t)Z(1) dB(1).
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IP is a probability measure. SinceZ(0) = 1, we havel£ Z (t) = 1 for everyt > 0. In particular
P(Q) = / Z(T) dP = EZ(T) = 1,
Q

solPisa probability measure.

I interms of . Let I/ denote expectation undé?. If X is a random variable, then
FEZ=IE[Z(T)X].
To see this, consider first the cake= 1 4, whered ¢ F. We have
EX = P(A) = /AZ(T) dIP = /QZ(T)lA dIP = IE[Z(T)X].

Now use Williams’ “standard machine”.

P and IP. The intuition behind the formula
P(A) = /A Z(T)dlP  VAeF

is that we want to have N
P(w) = Z(T,0) P(w),

but sincelP(w) = 0 andIP(w) = 0, this doesn't really tell us anything useful abdt Thus,
we consider subsets ©f, rather than individual elements Of

Distribution of B(T). If @ is constant, then
2(T) = exp {-0B(T) - 16°T}
B(T) = 0T + B(T).

Under/P, B(T) is normal with mean 0 and varian@e soB(T') is normal with mead T and

variancel . 5
b— 0T ~
exp {—g} db.

P(B(T) € db) =

1
VorT 2T

Removal of Drift from B(T'). The change of measure froift to /P removes the drift fronB (7).
To see this, we compute

EB(T) = E[Z(T)(#T + B(T))]

B[z
IE [exp {~0B(T) — 10*T} (07 + B(T))]

B 1 00 12 b2
= \/W 3 (0T—|—b)exp{ 0b — 560°T} exp{ o db
(b+06T)>
—— > db
m L6+ { o7

0 2
(y =0T +b) / Y exp { L } dy (Substitutey = 6T + b)

\/ 27T
=0.
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We can also see thﬁE(T) = 0 by arguing directly from the density formula

P{E(t) € dl;} = \/;T_Texp{—%} db.

Because
Z(T) = exp{—6B(T) — $6°T}
= exp{—0(B(T) - 0T) — 10°T}
= exp{—0B(T) + 16°T},
we have

P{B(T) € dby = P{B(T) € db} exp {05+ 16°T}

1 b—01) - .
- expl -2 gh 4 o2\ b,
2T { 2T 2
1

Under IP, B(T) is normal withmean zerand varianc&’. Under P, B(T) is normal with
meandl’ and variancd’.

Means change, variances don'tWhen we use the Girsanov Theorem to change the probability
measure, means change but variances do not. Martingales may be destroyed or created.
\olatilities, quadratic variations and cross variations are unaffected. Check:

dB dB = (8(t) dt + dB(t))? = dB.dB = dL.

17.1 Conditional expectations undedP

Lemma 1.53 Let0 < ¢t < T'. If X is F(t)-measurable, then

EX = E[X.Z(1)].

Proof:
EX = E[X.Z(T)] = E[ E[X.Z(T)|F(1)]]
= F[X E[Z(T)|F®)]]
= IF[X.Z(t)]

because/ (¢),0 <t < T, is a martingale undef. ]
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Lemma 1.54 (Baye’s Rule)lf X is F(t)-measurable and < s <t < T', then

E[X|F(s)] = ﬁE[XZ(t)U'(s)]. (1.1)

Proof: It is clear that%E[XZ(t)U‘(s)] is F(s)-measurable. We check the partial averaging
property. Ford € F(s), we have

/ —JE (X Z(0)|F(s)] dP = T |14 IE[X Z(1)|F(5)]

Z(s)
= I [1AIE[X Z(t)|F(s)]] (Lemma 1.53)
= W [IF[1AXZ(t)|F(s)]] (Taking in what is known)
= E[14XZ(1)]
= E[14X]  (Lemma 1.53 again)
= /A X dP.

Although we have proved Lemmas 1.53 and 1.54, we have not proved Girsanov’s Theorem. We
will not prove it completely, but here is the beginning of the proof.

Lemma 1.55 Using the notation of Girsanov’s Theorem, we have the martingale property

FE[B(t)|F(s)] = B(s), 0<s<t<T.

Proof: We first check thaB(t) Z(t) is a martingale undelP. Recall

dB(t) = 0(t) dt + dB(1),
dZ(t) = —0(t) Z(t) dB(t).
Therefore,
d(BZ)=B dZ+ % dB+ dB dZ
=—B0Z dB+ Z0 dt + Z dB — 0Z dt
= (-B8Z + 7) dB.

Next we use Bayes’ Rule. For< s <t < T,

EB(0)|F(5)) = 5 B0 Z()| 7()
1

= J B 2(s)

Z(s)
= B(s).



CHAPTER 17. Girsanov's theorem and the risk-neutral measure 193

Definition 17.1 (Equivalent measures)Two measures on the same probability space which have
the same measure-zero sets are said &xjoevalent.

The probability measurefi”> and IP of the Girsanov Theorem are equivalent. Recall thats
defined by

P(A) = /Z(T) iP, AeF.

If IP(A) =0,thenf, Z(T) dIP = 0. BecauseZ(T") > 0 for everyw, we can invert the definition
of /P to obtain

P(A):/A%dﬁ, AeF.

If IP(A) = 0,then, % dIP = 0.

17.2 Risk-neutral measure

As usual we are given thBrownian motion: B(t),0 < ¢t < 7', with filtration 7(¢),0 < ¢t < T,
defined on a probability spa¢e, 7, ’). We can then define the following.

Stock price:
dS(t) = p(t)S(t) dt + o(t)S(t) dB(t).

The processeg(t) ando(t) are adapted to the filtration. The stock price model is completely
general, subject only to the condition that the paths of the process are continuous.

Interest rate: r(¢),0 <t < 7T'. The process(t) is adapted.

Wealth of an agent, starting withX (0) = z. We can write the wealth process differential in
several ways:

AX(1) = A@)dS{t)  +r(t)[X () — A@)S(H)] dt
Capital gains from Stock Interest earnings
= ()X (1) dt + A@)[dS(t) — rS(t) di]
= ()X (1) dt + A(t) (u(t) — r(£)) S(t) dt + A(t)o(t)S(t) dB(t)

Risk premium

_ X @ d+Aanemse | MU= g ase

Market price of risk#(t)
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Discounted processes:

Notation:
_ efotr(u) du 1 — fotr(u) du
. 1Ly _ r(t)

The discounted formulas are

0 (35) = S rs 0 dt + s

0/ = B
_ ﬁ [((t) — r(£)S(t) dt + o (t)S(t) dB(t)]
= e DSW P di +dB()
(0 _ S(t)
a (T) = Al d (ﬁ(t))

Then

t(55) = Sisesio ab)

By~ B
XN _AQ@) =
d <W) S o WS B,

Under P, E ; and X(( )) are martingales.

Definition 17.2 (Risk-neutral measure) A risk-neutral measur¢sometimes called enartingale
measurgis any probability measure, equivalent to the market mea#yrevhich makes all dis-
counted asset prices martingales.
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For the market model considered here,

where

Z(t) :exp{—/OtO(u) dB(u) - %/Otom) du},

is the unique risk-neutral measure. Note that becé(ge= %, we must assume that?) #
0.

Risk-neutral valuation. Consider a contingent claim paying &1{7")-measurable random variable
V attimeT'.

Example 17.1
vV =(S(T) - K)*, European call
V= (K -S(T)*t, European put
e "
V= —/ Su)du—K| | Asian call
r 0

If there is a hedging portfolio, i.e., a processt), 0 < ¢ < T', whose corresponding wealth process
satisfiesX (7') = V, then
—[ V
X(0)=F [_] .
O =F 151
This is becaus%%})2 is a martingale undef, so

X0 = 55 = [y = F 5]



196



Chapter 18

Martingale Representation Theorem

18.1 Martingale Representation Theorem

See Oksendal, 4th ed., Theorem 4.11, p.50.

Theorem 1.56 Let B(t),0 < ¢t < T, be a Brownian motion o2, 7, P). LetF(¢),0 <t < T, be
the filtrationgenerated by this Brownian motiobet X (¢),0 < ¢ < 7', be a martingale (undel)
relative to this filtration. Then there is an adapted proc&g$, 0 < ¢t < 7', such that

t
X (t) :X(O)—|—/ 5(u) dB(u), 0<t<T.
0
In particular, the paths ofX" are continuous.

Remark 18.1 We already know that ifX (¢) is a process satisfying
dX (t) = 8(t) dB(t),

thenX (¢) is a martingale. Now we see thatf(¢) is a martingale adapted to the filtration generated
by the Brownian motiom(¢), i.e, the Brownian motion is the only source of randomness,ithen

dX (t) = 6(t) dB(t)

for somed(t).

18.2 A hedging application

Homework Problem 4.5. In the context of Girsanov’s Theorem, suppse that),0 <t < T’ is
the filtration generated by the Brownian motiBn(under/P). Suppose thaY™ is a IP-martingale.
Then there is an adapted process), 0 < ¢ < 7', such that
t -
Y (1) :Y(O)—l—/ v(u) dB(u), 0<t<T.
0

197
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dS(t) = u(t)S(t) dt + o(t)S(t) dB(1),

50 =exp { [ rw au},

o = M=)

B(r) = /Ote(u) du+ B(1),

Z(t) :exp{—/OtO(u) dB(u) - %/tGQ(u) du},

0
P(A) :/ Z(T)dlP, VA€ F.
A
Then

SN _ S@) =
d <W) = S B

Let A(t),0 <t < T, be aportfolio process. The corresponding wealth progegs satisfies

XN _ Ao S0 45
d(ﬁ(t)) = A(t)a(t) 0 dB(t),
i.e.,
X _ VR ()

Let V' be anF(7')-measurable random variable, representing the payoff of a contingent claim at
time 7. We want to choos& (0) andA(¢),0 < ¢ < T, so that

X(T)=V.

Define thelP-martingale

v
Y (¢t :E[—‘}'t], 0<t<T.
0 =T | 5570
According to Homework Problem 4.5, there is an adapted proggs$s) < ¢ < T, such that

Y (1) :Y(O)Jr/t»y(u) dB(u), 0<t<T.

SetX(0)=Y(0)=F [%} and choose\ () so that
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With this choice ofA(u),0 < u < T', we have

X vy o[
(t)_Y(t)_E[ﬁ(T)‘f(t)], 0<t<T
In particular,
XD _ml v -
5 = E [0 =
SO
X(T)=V.

The Martingale Representation Theorem guarantees the existence of a hedging portfolio, although
it does not tell us how to compute it. It also justifies the risk-neutral pricing formula

X(0) = B0 | 575|700

_ B L [Z(T)
= Z0" [ﬁ(T) V‘H”]
1
= [C(T)V‘}'(t)] L o0<t<T,
where
2

18.3 d-dimensional Girsanov Theorem

Theorem 3.57 ¢-dimensional Girsanov) e B(t) = (Bi(t),...,B4(t)),0 <t < T, ad-
dimensional Brownian motion off2, 7, P’);

e F(t),0 <t < T, the accompanying filtration, perhaps larger than the one generatdsi by
o 9(t) = (01(t),...,04(t)),0 <t <T,d-dimensional adapted process.
For0 <t <T,define

- 1
Bj(t):/o 0:(u) du+ By(t),  j=1,....d,

20) =exp{ = [ o). aBt) =3 [ o0l duf

PA) = /A Z(T) dIP.
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Then, undedP, the process

B(t) = (Bi(t), ..., Ba(t)), 0<t<T,

is ad-dimensional Brownian motion.

18.4 d-dimensional Martingale Representation Theorem

Theorem 4.58 e B(t) = (Bi(t),...,Bq(t)),0 <t < T, ad-dimensional Brownian motion
on(Q, F,P);

e F(t),0 <t < T,thefiltrationgenerated by the Brownian motidh

If X(¢),0 <t < T, is a martingale (undetP) relative to 7(¢),0 < t < T, then there is a
d-dimensional adpated proceé§) = (01(¢), ..., d4(t)), such that

0)—|—/0t5(u).dB(u), 0<t<T.

Corollary 4.59 If we have al-dimensional adapted proces§) = (6 (t), ..., 04(t)), thenwe can
defineB, 7 and [P as in Girsanov's Theorem. ¥ (¢),0 < ¢ < T, is a martingale undei relative
to F(t),0 <t < T, then there is al-dimensional adpated proces$t) = (71 (), ... ,v4(t)) such
that

0) —I—/t'y(u).dg(u), 0<t<T.

18.5 Multi-dimensional market model

Let B(t) = (Bq(t),...,Bq(t)), 0 <t < T, be ad-dimensional Brownian motion on some
(Q, F,P), and letF (¢ ) 0 < t < T, be thefiltration generated by3. Then we can define the
following:

Stocks

dS;(t) = pi(t)S;(t) dt + S;(t ZU” i=1,...,m

Accumulation factor

B(t) = exp {/Otr(u) du}.

Here,u;(t), o;;(t) andr(t) are adpated processes.
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Discounted stock prices

SiON _ . Si(t) S (1) o |

d(ﬂ(t)) _%ﬂ@ di+ 500 S 0i(t) dBy(t)

. d

ZZ((;)) 2 (D) [0 () + dB; (1)) (5.1)
- dB; (1)

[~

For 5.1 to be satisfied, we need to choésg), . .., 04(¢), so that
d
Y08 = ) —r(t),  i=1,...,m (MPR)
7=1

Market price of risk. The market price of risk is an adapted procégg = (6:(¢),...,04(t))
satisfying the system of equations (MPR) above. There are three cases to consider:

Case I: (Unique Solution). For Lebesgue-almost evergnd /P-almost everyw, (MPR) has a
unique solutior®(¢). Using#(t) in thed-dimensional Girsanov Theorem, we defingraque
risk-neutral probability measuré. Under P, every discounted stock price is a martingale.
Consequently, the discounted wealth process corresponding to any portfolio procds is a
martingale, and this implies that the market admits no arbitrage. Finally, the Martingale
Representation Theorem can be used to show that every contingent claim can be hedged; the
market is said to beomplete

Case II: (No solution.) If (MPR) has no solution, then theranisrisk-neutral probability measure
and the market admitrbitrage

Case lll: (Multiple solutions). If (MPR) has multiple solutions, then thererartdtiple risk-neutral
probability measuresThe market admitao arbitrage but there are contingent claims which
cannot be hedged; the market is said tarfmemplete.

Theorem 5.60 (Fundamental Theorem of Asset Pricing) Part I(Harrison and Pliska, Martin-
gales and Stochastic integrals in the theory of continuous trad@tarhastic Proc. and Applications
11(1981), pp 215-260.):

If a market has a risk-neutral probability measure, then it admits no arbitrage.

Partll. (Harrisonand Pliska, A stochastic calculus model of continuous trading: complete markets,
Stochastic Proc. and Applicatiofs (1983), pp 313-316):
The risk-neutral measure is unique if and only if every contingent claim can be hedged.
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Chapter 19

A two-dimensional market model

Let B(t) = (By(t), B2(t)),0 < t < T, be a two-dimensional Brownian motion ¢f2, 7, P’). Let

F(t),0 <t <T,be the filtration generated by.

In what follows, all processes can dependtaandw, but are adapted t&(¢),0 <t < 7. To

simplify notation, we omit the arguments whenever there is no ambiguity.
Stocks:

dSy = Sy [y dt + o1 dBq],

dSQISQ H2 dt—|—p0’2 dB1—|— 1—p2 g9 dB2:|

We assume; > 0, 05 > 0, —1 < p < 1. Note that

dS, dSy = S?o? dB, dB; = 015} dt,

dSy dSy = S3p*c3 dBy dBy + S3(1 — p*)o3 dBy dB;
= 0353 dt,

dSy dSy = S10153p05 dBy dBy = po10251.5; dt.

In other words,

ﬁ . .
* 3 has mstantaneousvarlarmh

@ . .
* 5 has mstantaneousvarlam%

ds,

* =

ds . .
and 5—22 have instantaneous covarianee o;.

ﬁ(t):exp{/otrdu}.

The market price of risk equations are

Accumulation factor:

o1y =p —r

po2bh +1\/1 = p*ogly =y —r

203
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The solution to these equations is

Olzlul_r
g1

9

o1(p2 — 1) — poa(p — 1)

o102/ 1 — p? '

0, =

provided—1 < p < 1.
Suppose-1 < p < 1. Then (MPR) has a unique solutiof , 6;); we define

Z(t) = exp{—/otol By — /Otoz B, — %/Ot(of +62) du},
P(A) = /A Z(T) dIP,  VAc F.
IP is theuniquerisk-neutral measure. Define
_ t
By (t) :/0 6, du + B (1),
Ba(t) = /Ot 6y du + By(t).
Then
s, = S, [r dt + o diél} :
dS; = S, [r dt + poy dBy + /1 — pzagdgg] .

We have changed the mean rates of return of the stock prices, but not the variances and covariances.
19.1 Hedgingwhen-1 < p<1

dX = Al dSl + AQ dSQ + T‘(X — A151 — AQSQ) dt

X 1
d(—) =—(dX —-rXdt
5) =3 )
1 1
= BAl(dSl - T‘Sl dt) + BAQ(dSQ - T‘SQ dt)
1 ~ 1 ~ ~
= EAISIUl dB1 + EAQSQ [pUQ dB1 + 1- p20'2 dB2:| .
LetV be F(T')-measurable. Define th&-martingale
Y({t)=IE [L‘}'(t)] 0<t<T
1] M A
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The Martingale Representation Corollary implies

t N t N
YO =Y+ [ ndBi+ [ 1 dbs.
0 0
We have

d (ﬁ) - (%Alsm 4 %Azszpffz) 4B,

1 -
+ BAQSZV 1 — p?03 dBy,

dY = Y1 dél + Y2 dEQ

We solve the equations

1 1
5A15101 + B

1
BAZSQV L= p?oy =7

for the hedging portfoligA;, Az). With this choice of A1, A3) and setting

AgSepoy = 1

— vV
X(0)=Y(0) =B

we haveX (t) = Y (¢), 0 <t < T, and in particular,
X(T)=V.

Every F(T")-measurable random variable can be hedged; the margetriplete

19.2 Hedging wherp =1

The case = —1 is analogous. Assume that= 1. Then

dSl = Sl[,ul dt + 01 dBl]
dSQ = SQ[,MQ dt + (] dBl]

The stocks are perfectly correlated.
The market price of risk equations are

o160y =p1—r (MPR)
o201 = pg — 1

The process; is free. There are two cases:
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Case l: £ # “&—. There is no solution to (MPR), and consequently, there is no risk-neutral
measure. This market admits arbitrage. Indeed

d (%) = %Al(dSl - T‘Sl dt) + %AQ(dSQ - T‘SQ dt)

1 1
= BAlSl[(,ul - T‘) dt—|— g1 dBl] + BAQSQ[(,UJQ - T‘) dt—|— g9 dBl]
Suppose— > £2=. Set
1 1
A= — Ay = — .
! 0'1517 2 0'252
Then
X 1 [pg—r 1 [pe—r
o(5) =2y an] - L an
) 8L o e '
:l[ﬂl—f‘_ﬂz—f‘]dt
B ! g2
Positive

Case ll: #— = 2= The market price of risk equations
1 2

o101 =1 — 1
o2t = pg — 1
have the solution

H1—T Ho — T
01: =
g1 g2

9

8, is free; there are infinitely many risk-neutral measures./Pdte one of them.

Hedging:
X 1 1
d (ﬁ) = BAlSl[(,ul - T‘) dt + g1 dBl] + BAQSQ[(,UJQ - T‘) dt + g9 dBl]
1 1
= BAlle'l[el dt + dBl] + BAQSQO—Q[Ol dt + dBl]
1 1 ~
= (BAISlUl + EAQSQO—Q) dB1

Notice thatB, does not appear.

LetV be anF(T')-measurable random variable Wfdepends o, then it can probably not
be hedged. For example, if

V = h(Sl (T)7 SZ(T))7

ando, or o5 depend omB,, then there is trouble.



CHAPTER 19. A two-dimensional market model

More precisely, we define thE’-martingale

—[V
Yt:E[—‘}'t], 0<t<T.
(1) 57
We can write
t - t -
YO =Y+ [ ndBi+ [ 92 dbe,
0 0
SO

dY = Y1 dEl + Y2 dEQ
To getd (%) to matchdY, we must have

7220.
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Chapter 20

Pricing Exotic Options

20.1 Reflection principle for Brownian motion

Without drift.
Define

= B(t).
Then we have:

P{M(T) > m,B(T) < b}
= IP{B(T) > 2m — b}

! /Oo v d >0, b<
= ex - z, m , m
v/ 27T Jom—b P 2T

So the joint density is

2 1 o0 2
P{M(T) € dm,B(T) € db} = —% (\/ﬁ /Zm_bexp{—g—T} dx) dm db

0 1 (2m — b)?
=5 (mexp{— 5T }) dm db,

_ — b2
:Mexp _M dm db, m > 0,b < m.
27T 2T

With drift. Let
B(t) = 6t + B(1),

209
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mb T | . shadow path

Brownian motion

Figure 20.1:Reflection Principle for Brownian motion without drift

m=b

(B(T), M(T)) liesin here

Figure 20.2:Possible values aB(7), M (T').
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whereB(t), 0 <t < T, is a Brownian motion (without drift) o2, 7, ?). Define

Z(T) = exp{—0B(T) — 10°T}
= exp{—0(B(T) + 6T) + £6°T}
= exp{—0B(t) + 16°T},

P(A) = /AZ(T) P, VA€ F.

SGM(T) = maXo<<T E(T)

Under P, B is a Brownian motion (without drift), so

. o - 2(2m = b) (2 — b)) . N _
P{M(T) € din, B(T) € db}y = =“———~ = Ydmdb, m>0,b< .
{M(T) € dm, B(T) € db} TVorT exp{ 5T

Let h(7, b) be a function of two variables. Then

= —h(M(T), B(T))
Z(T)
= [ (M(T), B(T)) exp{0B(T) — 16T} ]

] i, ) exp{fb — L0°T} IP{M(T) € din, B(T) € db}.
But also,
ER(V(T) / / b) P{M (T) € din, B(T) € db).
m=0 p=_oo

Sinceh is arbitrary, we conclude that

(MPR)

P{M(T) € dm, B(T) e db}
= exp{fb — L6°T} P{M(T) € din, B(T) € db}

_202m-b) (2 — b)? ey g g S
= ————2 % cexp{bb— 0T }dm db, m >0, b < m.
TRl p{ 2T P =301
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20.2 Up and out European call.

Let0 < K < L be given. The payoff at timé is

(S(T) — K) 1se(ry<r)s
where

S*T) = oA, S(t).

To simplify notation, assume th#t is already the risk-neutral measure, so the value at time zero of
the optioniis

0(0,8(0)) = eI [(S(T) = K) 1 se(ryery ] -
BecausdP is the risk-neutral measure,

dS(t) =rS(t) dt + oS(t) dB(t)
S(t) = Soexp{oB(t) + (r — 10%)t}

= Spexpl o | B(t) + (ﬁ — %)t
o
N —’

= Spexp{oB(t)},

-(-5).
o 2

B(t) = 6t + B(1).

where

Consequently,
S*(t) = Spexp{oM (1)},

where,

We compute,

0(0,5(0)) = e T I [(S(T) = K)* 1 se7yeny|

—rT AT
= | ($0) exploBT)} = K) L g0 < L}]
= e_rTE[ (S )exp{oB(T)} — K) 1. 1 K 1 I ]
{B(T)>;10g 5(0)’ M(T)<;log S(O)}
S—_— S—_—

b 7
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M(T)
% x=y
B
(B(T), M(T) liesin here
| X
5 B(T)

Figure 20.3:Possible values aB(T), M (T).

We consider only the case
SO0)< K<L, so 0<b< .

The other casdy < S(0) < L leads toh < 0 < 7 and the analysis is similar.
We computefy” [ ...dy dz:

v(0,5(0)) = _TT/ / 0) exp{oaz} — K) ;Qy/—) { %"‘% - %OZT} dy dz
= e_rT/g (5(0) exp{oa} — K) —217TT exp {_% + 6x — %OQT} yzm dx
T /gm (S(0) exp{oz} — K) \/2177—T [exp {_g_T + 6z — %02T}
— exp {—% 4+ 0z — —02 H dzx

1 7 m x? 9
= erS(O)/ expqor — — + 0 — L0°T 5 da
V27T b 2T ?

1 —rT /m ? 12
——e K exps —— +0x — z0°T 3 dx
27T b p{ 2T ?

1 e 2 — )2
— e_rTS(O)/ exp {Ux _(@m o) + 0z — %OQT} dx
b

\2rT 2T
L g [ @i—a)? .
+ e " K/ ex —7+0$——0 dz.
V2rT 3 p{ 2T

The standard method for all these integrals is to complete the square in the exponent and then
recognize a cumulative normal distribution. We carry out the details for the first integral and just
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give the result for the other three. The exponent in the first integrand is

v 1 6x — Le?T
axr 2T X 5

1
=——(—-0T- HT)2 + %O'QT—I— ofT

2T
1 rT  oT\?
__ﬁ<x_7_7) il

In the first integral we make the change of variable
y=(z—rT/oc—oT/2)/NT, dy=da/VT,

to obtain

e—rTs(O) m $2 5
7/5 exp Ux—ﬁ—l—Ox—%HT dz

V27T
1 m 1 rT  oT\?
_—QWTS(O)/E exp{—ﬁ (x—7—7) } dx
o _ /T _ONT
VT O 2
- Lso. [ ewt-Liay
- , -
2rT b ST OJT
Nl 2
7 T T b T T
s | (- -2 - (-2 - )|

m T oVT b T oVT
”(O’S(O)):S(O)lN(ﬁ_T_T)_N(ﬁ_T_ > )]
P )]

VT o T
(3] (B .0

—|—exp{—rT—|—2m<g—%)} [N (%+rf_ U\Q/T) —

N (2m — b) _I_r\/T_ o T ]7
VT o 2
where
- K 5 L
b = g m = log
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V(T,X) = (x- K)F

v(t,0) =0 T

Figure 20.4:nitial and boundary conditions.

If we let L—oo we obtain the classical Black-Scholes formula

b T — oJT
v(0,5(0)) = S(0) [1_N(ﬁ_T_ 5 )]

T 1 b rv 1T oT
—eTEK [1—N(ﬁ— —+— )]

e TKN ( ! S(0) , rVT Uﬁ) .

1
O'\/T 8 K + o 2

If we replacel” by T' — t and replaces (0) by z in the formula forv (0, .5(0)), we obtain a formula
for v(t, z), the value of the option at the timef S(¢) = 2. We have actually derived the formula
under the assumption < K < [, but a similar albeit longer formula can also be derived for
K < 2 < L. We consider the function

o(t,2) = B [ T(S(T) = K) L (swryery], 0<t<T,0<e <L
This function satisfies thierminal condition
vo(T,2)=(x— K)t, 0<z<L
and theboundary conditions
v(t,0)=0, 0<t<T,
v(t,[)=0, 0<t<T.
We show that satisfies the Black-Scholes equation

—rv 4+ v +ravg + %U%%m, 0<t<T, 0<z< L.
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Let S(0) > 0 be given and define tretopping time
T =min{t > 0; S(t) = L}.
Theorem 2.61 The process
eTT UMyt AT, S(EAT)), 0<t<T,
is a martingale.

Proof: First note that
ST T)< L= r1>T.

Letw € Q be given, and choosec [0, 7. If 7(w) < ¢, then

F €_TT(S(T) - I(Y)+1{S*(T)<L}

}'(t)] (@) = 0.
But whenr(w) < ¢, we have
VEAT(W), SEAT(W),w)) =v(tAT(w),L)=0,

SO we may write

F e_rT(S(T) — I(Y)+1{S*(T)<L}

}'(t)] (@) = @Dy (1A 7(w), S(EATw),w)).
On the other hand, if(w) > ¢, then the Markov property implies

/)

e T(S(T) = K) 1 pge(ryery| F (t)] ()
I
= e_rt?](t7 S(t7 W))

= eIy (t AT, S(EAT(W),W)).

In both cases, we have

eyt AT, SAEAT)) = IE

e (S(T) = K) 1s+(1)<1y

}'(t)] .

Suppos® < u <t <T. Then

E [e_r(t/w)v(t AT, S(tAT)) ‘J:(u)

:E[E

e (S(T) = K) 1s+(1)<1y

20150

=F f(u)]

e T(S(T) = K) 1 (s2(ry<ry

=Wy (un T, S(uAT)).
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For0o <t < T, we compute the differential
d ( ot S(t ))) = e " (=rv4 v + rSv, + 20°S%0,,) dt + e o Sv, dB.
Integrate fronD tot A 7:
ey (t AT, S(EAT)) = 0(0,5(0))

tAT
—I—/ —rv+ v +rSv, + 10252vm) du

tAT
+ / e "™oSv, dB.
0

A stopped martingale is still a martingale

Because~"(““Jy (t AT, S(t A 7)) is also a martingale, the Riemann integral

tAT
/ e "(=rv4 v+ rSv, + %UQS%M) du
0
is a martingale. Therefore,
—rv(u, S(w) + v (u, S () + 1S (w)ve(u, S(u) + 2025% (W) vee (u, S(u)) =0, 0<u<tAT

The PDE

—rv+ v+ raev, + 102x2vm:0, 0<t<T, 0<2< L,
then follows.
The Hedge

Let X (¢) be the wealth process corresponding to some portfvlig. Then
de™"' X (1)) = e ""A(t)aS(t) dB(1).
We should take
X(0) =v(0,5(0))

and
A(t) = v, (t,5(t)), 0<t<TAT.

Then
X(TAT)=v(TAT,S(TAT))

o(T,S(T)) = (S(T) — K)* ifr>1T
v(r,L)=10 if 7 <T.
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V(T, X)

0 K =L X
v(t, X)

6 VK =L gx

Figure 20.5:Practial issue.

20.3 A practical issue

Fort < T butt nearT’, v(t, z) has the form shown in the bottom part of Fig. 20.5.
In particular, the hedging portfolio
A(t) = ve(t, S (1))

can become very negative near the knockout boundary. The hedger is in an unstable situation. He
should take a large short position in the stock. If the stock does not cross the bhaineicovers

this short position with funds from the money market, pays off the option, and is left with zero. If
the stock moves across the barrier, he is now in a regiax(of = v,.(¢, S(¢)) near zero. He should

cover his short position with the money market. This is more expensive than beéwade the

stock price has risen, and consequently he is left with no money. However, the option has “knocked
out”, so no money is needed to pay it off.

Because a large short ptisn is being taken, a small error in hedging can create a significant effect.
Here is a possible resolution.

Rather than using the boundary condition
v(t,L)=0, 0<t<T,
solve the PDE with the boundary condition
v(t, L)+ alv,(t,L)=0, 0<t<T,

wherea is a “tolerance parameter”, sago. At the boundary/v,(t, L) is the dollar size of the
short position. The new boundary condition guarantees:

1. Lv,(t, L) remains bounded,

2. The value of the portfolio is always sufficient to cover a hedging errar tifnes the dollar
size of the short position.



Chapter 21

Asian Options

Stock:
dS(t) =rS(t) dt + aS(t) dB(t).

V:h(/TS(t) dt)

Payoff:

Value of the payoff at time zero:

X(0) = E [e"’Th (/TS(t) dt)] .

Introduce arauxiliary process’ () by specifying

With the initial conditions

we have the solutions
S(T) = wexp{a(B(T) = B(t)) + (r — o) (T = 1)},

T
Y(T) = y—l—/ S(u) du.
t
Define the undiscounted expected payoff
u(t,z,y) = EY"YR(Y(T)), 0<t<T,2>0,yclR.

219
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21.1 Feynman-Kac Theorem

The functionu satisfies the PDE

ut—l—rxuw—l—%azxzum—l—xuyzm 0<t<T, >0, y€lR,

the terminal condition
w(l,z,y)=h{y), >0,y€lR,

and the boundary condition
u(t,0,y) =h(y), 0<t<T, yelR.

One can solve this equation. Then
t
v (t, S(t),/ S(u) du)
0

v(t,z,y) = e_r(T_t)u(t, z,y).

is the option value at time where

The PDE forv is

—rv 4 v + rav, + %szzvm + zvy, =0,
o(T,z,y) = h(y),
v(t,0,y) = e_r(T_t)h(y).

One can solve this equation rather than the equation.for

21.2 Constructing the hedge

Start with the stock pricé (0). The differential of the valu& (¢) of a portfolioA(¢) is

dX = AdS+r(X — AS) dt

=AS(rdt+odB)+rX dt —rASdt

= AcS dB +rX dt.

We want to have

so that

(1.1)
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The differential of the value of the option is

t
dv (t, S(t),/ S (u) du) = vydt + v,dS + v,S dt + Lv,, dS dS
0

= (ve+rSvy + Svy + %UQS%M) dt + oSv, dB
=rv(t,S(t)) dt + vy(¢t, S(t)) o S(t) dB(t). (FromEq. 1.1)

Compare this with
dX(t) =rX(t) dt+ A(t) o S(t) dB(t).

TakeA(t) = v(t, S()). If X (0) = v(0,5(0),0), then

1
X(t) = v (t,S(t),/ S(u) du) C0<t<T
0
because both these processes satisfy the same stochastic differential equation, starting from the same

initial condition.

21.3 Partial average payoff Asian option

T
V:h(/ S(t)dt),
where0 < 7 < T. We compute

o(r,x,y) = ET"Ye~"T=) (Y (T))

Now suppose the payoff is

just as before. Fay < ¢ < 7, we compute next the value of a derivative security which pays off
v(r,5(7),0)

at timer. This value is
w(t,z) = EYe " y(r, S(r),0).
The functionw satisfies the Black-Scholes PDE

2wxx:07 0<t<7, 220,

—rw + wy +rew, + %0'2$

with terminal condition
w(r,z) =v(r,2,0), x>0,

and boundary condition



222

Remark 21.1 While no closed-form for the Asian option price is known, the Laplace transform (in
. 2 .

the variableZ- (T — t)) has been computed. See H. Geman and M. Bessel processes, Asian

options, and perpetuitiedath. Finance 3 (1993), 349-375.



Chapter 22

Summary of Arbitrage Pricing Theory

A simple European derivative securityakes a random payment at a time fixed in advance. The
value at time of such a security is the amount of wealth needed at timeorder to replicate the
security by trading in the market. Tihedging portfolids a specification of how to do this trading.

22.1 Binomial model, Hedging Portfolio

Let 2 be the set of all possible sequences:afoin-tosses. We haveo probabilitiesat this point.
Letr > 0, u >r+ 1, d = 1/ube given. (See Fig. 2.1)

Evolution of the value of a portfolio:
X1 = ApSigr + (14 7) (Xx — ArSk).

Given a simple European derivative seculityw,, w2), we want to start with a nonrandaivy, and
use a portfolio processes

Ao, A1(H), A(T)

so that

Xo(wr,w2) = V(w,w2) Vwi,ws. (four equations)

There are four unknownsX, Ag, A1 (H), A1(T). Solving the equations, we obtain:

223
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1 14+r—d 14
Xi(w1) = s — Xo(wr, H)+ ( dr) Xo(w, 1) |,
L V(wi,H) V(w1,T)
1 [1+r—d uw—(147r)
Xo_l—l—r_ uw—d Xa(H) uw—d X0
Xg(wl,H)—Xg(wl,T)
Al(wl) SQ(W17H)—SQ(WI7T)7
A ) = X(T)
° T S(H) = S,(T)

The probabilities of the stock price paths are irrelevaatduse we have a hedge which works on
every path.From a practical point of view, what matters is that the paths in the model include all
the possibilities. We want to find a description of the paths in the model. They all have the property

2
(g 5441~ log 51)* = (1og 2552 )

Sk
= (£logu)?
= (logu)*.

Leto = logu > 0. Then
n—1
Z(log Sk+1 — log Sk)2 = o2n.
k=0

The paths ofog S, accumulate quadratic variation at rateper unit time.

If we changeu, then we change, and the pricing and hedging formulas on the previous page will
give different results.

We reiterate that the probabilities are only introduced as an aid to understanding and computation.
Recall:
X1 = ApSpgr + (14 7) (X — ApSk).

Define
Br=(1+n)"
Then X g g
k+1 k+1 k
= A —|— — — Ay,
Br1 ﬁk+1 ﬁk " B
i.e.,

Xipr Xy _ A (Sk+1 B &)
Br+1 P Br+1 Br/)

In continuous time, we will have the analogous equation

d (%) — A() d (%) .
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If we introduce a probability measu® under Which% is a martingale, theﬁ% will also be a
martingale, regardless of the portfolio used. Indeed,

bl -e s (22 )
X
e (-3

=0

Suppose we want to havg, = V, whereV is someF,-measurable random variable. Then we
must have

1L1:% Mfﬂ;ﬂ;ﬂy
sl sy

To find the risk-neutral probability measute under Which% is a martingale, we denote =
P{wy = H}, § = P{w, = T}, and compute

Sk
Br+1

- - Sk
N 1—|— [Pu+q ]ﬁk'

Sk+1

7|

Sk
fk]:ﬁ —I—qd

Br+1 ﬁk+1

We need to choosgandg so that

pu+qgd=1+r,
p+i=1.

The solution of these equations is

. 1+4r—d uw—(147r)
P= T u—d

L]
ll

22.2 Setting up the continuous model

Now the stock priceS(¢),0 < t < T, is a continuous function of. We would like to hedge
along every possible path 6f(¢), but that is impossible. Using the binomial model as a guide, we
chooser > 0 and try to hedge along every patfit) for which the quadratic variation dbg .S (¢)
accumulates at rate® per unit time. These are the paths with volatility

To generate these paths, we use Brownian motion, rather than coin-tossing. To introduce Brownian
motion, we need a probability measure. However, the only thing about this probability measure
which ultimately matters is the set of paths to which it assigns probability zero.
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Let B(¢),0 < ¢t < T, be a Brownian motion defined on a probability spageF, ). For any
p € IR, the paths of

pt + o B(t)
accumulate quadratic variation at rateper unit time. We want to define
S(t) = S(0) exp{pt + aB(1)},

so that the paths of
log S(t) =log S(0) + pt + o B(t)

accumulate quadratic variation at rateper unittime. Surprisingly, the choice pfn this definition
is irrelevant. Roughly, the reason for this is the following: Chaose 2. Then, forp; € IR,

pit+oB(t,wy), 0<t<T,

is a continuous function of If we replacep, by p2, thenpst + 0 B(t,wy) is a different function.
However, there is aw, € €2 such that

pit + oB(t,w1) = pot + 0B(t,wy), 0<t<T.

In other words, regardless of whether we ps®@r p, in the definition ofS(¢), we will see the same
paths. The mathematically precise statement is the following:

If a set of stock price paths has a positive probability wHéf) is defined by
S(t) = S(0) exp{pit + o B(t))},

then this set of paths has positive probability wign) is defined by
S(t) = S(0) exp{pat + o B(t)}.

Since we are interested in hedging along every path, except possibly for a set of paths
which has probability zero, the choice @fs irrelevant.

The mostconvenienthoice ofp is

_ 1.2
p—T‘—§O'7

SO
S(t) = S(0) exp{rt + o B(t) — 10t},

and
e7"S(t) = S(0) exp{oB(t) — L%t}

is a martingale undef’. With this choice of,

dS(t) = rS(t) dt + oS(t) dB(1)
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and P is the risk-neutral measure. If a different choicepd$ made, we have
5(t) = S(0) exp{pt + o B(t)},
dS(t) = (p+ 30*) S(t) dt + oS(t) dB(1).
N ——
I

= rS(t) dt + o [LLdt + dB(t))] .

dB(t)

B has the same paths @ We can change to the risk-neutral measliteunder whichB is a
Brownian motion, and then proceed ag ifiad been chosen to be equatte %(72

22.3 Risk-neutral pricing and hedging

Let /P denote the risk-neutral measure. Then
dS(t) = rS(t) dt + oS(t) dB(t),

whereB is a Brownian motion undeP. Set

Then

so2W isa martingale undef.

8(0)

Evolution of the value of a portfolio:

dX (1) = A@)dS(t) +r(X(t) — A(t)S(t)) dt, (3.2)
which is equivalent to

X0\ _ S(t)

() -0 (52
_ Ao
Ao B0

Regardless of the portfolio us ((f)) is a martingale undef.

Now supposé’ is a givenF (1')-measurable random variable, the payoff of a simple European
derivative security. We want to find the portfolio procesgl’),0 < ¢ < 7', and initial portfolio
value X (0) so thatX (7)) = V. Because}% must be a martingale, we must have

X(t) — L
50 = F [gmme) ostest o9

This is therisk-neutral pricing formula. We have the following sequence:
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1. Visgiven,
2. DefineX (t),0 <t < T, by (3.3) (notby (3.1) or (3.2), because we do not yet hay8).

3. ConstructA(¢) so that (3.2) (or equivalently, (3.1)) is satisfied by tki¢t),0 < ¢ < T,
defined in step 2.

To carry out step 3, we first use the tower property to show%l(%tdefined by (3.3) is a martingale

underP. We next use the corollary to the Martingale Representation Theorem (Homework Problem
4.5) to show that
X (t)) ~
d (— =~(t) dB(t 34
S0 ) =70 B (3.4)
for some proecss. Comparing (3.4), which we know, and (3.2), which we want, we decide to
define

Ay =2 g?t(;)- (3.5)

Then (3.4) implies (3.2), which implies (3.1), which implies tBatt),0 < ¢ < 7, is the value of
the portfolio procesa\(¢),0 <t < 7.

From (3.3), the definition ok, we see that the hedging portfolio must begin with value

—~ T V
X0)=F [—] .
O =& |5
and it will end with value

V V
X(T) = TE[—‘}'T]: TY———=V.
(1) = BV | 55 |F(T)| = 5(T) 55
Remark 22.1 Although we have taken ando to be constant, the risk-neutral pricing formula is
still “valid” when r ando are processes adapted to the filtration generatefd.dfthey depend on
eitherB or on S, they are adapted to the filtration generatedhyr he “validity” of the risk-neutral
pricing formula means:

1. If you start with

X(0)= I [%}

then there is a hedging portfolid(¢),0 < ¢t < T', such thatX (T") = V;
2. Ateach time, the valueX (¢) of the hedging portfolio in 1 satisfies
X(t) — [ |4 ‘ ]
—= = |—|F()]| .
0 =Pl

Remark 22.2 In general, when there are multiple assets and/or multiple Brownian motions, the
risk-neutral pricing formula is valid provided there isigique risk-neutral measuré probability
measure is said to be risk-neutral provided
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¢ it has the same probability-zero sets as the original measure;

e it makes all the discounted asset prices be martingales.

To see if the risk-neutral measure is unique, compute the differential of all discounted asset prices
and check if there is more than one way to deflhao that all these differentials have only3
terms.

22.4 Implementation of risk-neutral pricing and hedging

To get a computable result from the general risk-neutral pricing formula
X)) [ V ‘ ]
o | ——|F )],
50 = " Ly

one uses the Markov property. We need to identify setate variableshe stock price and possibly
other variables, so that

v
X(0) = O | 5775 10
is a function of these variables.

Example 22.1 Assumer ands are constant, antl = ~(S(7")). We can take the stock price to be the state

variable. Define .

R [e—’“(T—t)h(S(T))} .

Then
X(t)=e'E [e""Th(S(T))‘}"(t)]
= o(t, (1)),
and)ﬁﬁ(%l = e~"ty(t, S(t)) is a martingale undeP. [

Example 22.2 Assumer ando are constant.

V:h(/OTS(u) du).

TakeS(t) andY (¢) = ft S(u) du to be the state variables. Define

0

~t,r,y

v(t,z,y) = IE {6_T(T_t)h(Y(T))} )

where
T
Y(T) = y—i—/ S(u) du.
t
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Then
Xt)=e"E [e"“Th(S(T))‘}"(t)]
=v(t,5(), Y (1))
and X(1)
30 = e "u(t, S(t),Y (1))
is a martingale undeP. [

Example 22.3 (Homework problem 4.2)
dS(t) = r(t, Y (t)) S(t)dt + o(t,Y (1)) S(t) dB(t),
dY (t) = a(t, Y (t)) dt + ~v(t,Y (1)) dB(1),
V = h(S(T)).

TakeS(t) andY (¢) to be the state variables. Define

ot e, y) = B exp{—/t r(u, Y (u) du}h(S(T))

I Ee
Then
_ i [RS(D)
x(0 = o0 | "G o)
=F [exp{—/t r(u, Y (u)) du}h(S(T))‘f(t)]
= o(t, S(1), Y (1)),
and
& = €eX — t?“ (7 (7 u,v
St = e [ vty o ote 0.7 )
is a martingale undef. [

In every case, we get an expression involvingp be a martingale. We take the differential and
set thedt term to zero. This gives us a partial differential equationfpand this equation must
hold wherever the state processes can be. dhderm in the differential of the equation is the
differential of a martingale, and since the martingale is

&— t uaS(u) B(u
i =X+ [ A S B

we can solve for\(¢). This is the argument which uses (3.4) to obtain (3.5).
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Example 22.4 (Continuation of Example 22.3)

% = exp {_/Ot r(u, Y (u)) du} v(t, S(1), Y (1))

1/8(¢)

is a martingale undeP. We have

X(t) = L —r v
d(m) - ﬁ(t)[ (t,Y ()u(t, SE),Y () dt

+ vedt + vedS + vy dY

+ %vwdS dS + vgydS dY + %vyde dy
= — [(—rv + v +rSve + avy + %UzSsz + 07 SVry + %'yzvyy) dt
+ (0Sve + yuy) dB

The partial differential equation satisfied bys

122 1.2 _
=TV + U+ TTVp + Uy + 507 Ve + OYTULy + 5 Vyy =0

where it should be noted that= v(¢, #, y), and all other variables are functions(¢fy). We have

XON Lo
whereo = o(t, Y (t)), y = v(t, Y (1)), v = v(t, S(t),Y (), andS = S(¢). We want to choosa (¢) so that
(see (3.2)
XY _ st yvin 5D 45
d (ﬁ(t) ) =At)o(t,Y (1)) dB(t).

Therefore, we should tak&(t) to be

Alt) = v (8, S(),Y (1)) +
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Chapter 23

Recognizing a Brownian Motion

Theorem 0.62 (Levy) Let B(t),0 < t < T, be a process onf2, F,’), adapted to a filtration
F(t),0 <t <T,such that:

1. the paths of3(¢) are continuous,
2. Bisamartingale,

3. (B)(t)=t,0<t < T, (i.e., informallyd B(t) dB(t) = dt).
ThenB is a Brownian motion.

Proof: (ldea) Let0 < s < ¢t < T be given. We need to show th&{t) — B(s) is normal, with
mean zero and varian¢e- s, and B(t) — B(s) is independent of (s). We shall show that the
conditional moment generating functiohB(t) — B(s) is

E [eu<B<t>—B<s>>

12
f(s)] = 2w (79,

Since the moment generating function characterizes the distribution, this show(that B(s)
is normal with mean 0 and varian¢e- s, and conditioning onF(s) does not affect this, i.e.,
B(t) — B(s) is independent of (s).

We compute (this uses the continuity condition (1) of the theorem)
de*P® = we'BOAB(t) + Lu2e*BDaB(t) dB(t),

SO

N~
usescond. 3

1 1
euB(t) :euB(s)_I_/ ueuB(v) dB(U)_I_%UZ/ euB(v) dv.
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Now [ ue"B(")dB(v) is a martingale (by condition 2), and so

t
E [/ ue"PdB(v)

7o)

= — /S ue*PWdB(v) + IE [/ ue*WdB(v)
0 0
=0.

It follows that

Eﬂwwwf@]:wwﬂ+gafﬁﬂwwwf@ﬂdu
We define
plo) = B | 0| 7(s)
so that
p(s) = "B
and

Plugging ins, we get

Therefore,

7o)
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23.1 Identifying volatility and correlation

Let B; and B, be independent Brownian motions and

d

% =rdt+ o011 dBy + 013 dBs,
1

d

% =rdt+ 091 dBy + 0322 dBs,
2

Define

_ ] 2 2
o1 =\/01; + Ty,
_ ] 2 2
T2 = \/ 05 + T3,

011021 + 0120922

0102
Define processdd’; andiV; by
011 dBy + 012 dBy

dWy =
g1

AW, = 091 dBy + 099 de‘
02

ThenW; andW, have continuous paths, are martingales, and

1
dW1 dW1 = ;(O’lldBl + UleBQ)Q
1

1
= ;(O’%ldBl dB1 + U%deQ dBQ)
1

= dt,
and similarly

dWy dWy = dt.

Therefore W, andlW, are Brownian motions. The stock prices have the representation

d
i =rdt+ oy dWy,
S1

dS;

S—zzrdt-l—O'Q dW2

The Brownian motion$V; andW, are correlated. Indeed,

1
dWy dW, = (611dB1 + 012dB3)(021d By + 022d By)

0102

1
= (011091 + 012092) dt
0102

= pdt.
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23.2 Reversing the process

Suppose we are given that

ﬁ =rdt +o1dWy,
S1

d

ﬁ =r dt + odWs,
b

whereWW; andWW, are Brownian motions with correlation coefficigntWe want to find

021 022

v — lUH 012]
so that

vy _011 012] lUH 021]

021 022| |012 022
I 2 2
_ 011+ 01, 011091 + 012092
= 2 2
011021 + 012022 051 + 09

[ 52
. 2 pPO102
- 2
_p0'10'2 09

A simple (but not unique) solution is (see Chapter 19)
011 =01, o2 =0,
021 = pPO2, 022:\/1—,02 g2.
This corresponds to
o1 dWy = o1dBi=dBy = dWy,
o9 dWy = poy dBy + £/ 1 — p?oy dBs

dWy — p dW
— dB; = —QT _,0p2 17 (p # £1)

If p = &1, thenthere is n®, anddWy = p dB; = p dW;.
Continuing in the casg # +1, we have
dBy dBy = dW, dW, = dt,

1
2

dB, dB; = (sz AWy — 2p AW, AW, + p*d W, sz)

= - _1,02 (dt = 2p* dt + p?* dt)

= dt,
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so bothB; and B, are Brownian motions. Furthermore,

1

dB1 dB2 = ﬁ (dWl dW2 — de1 dWl)
—-p
1
\m (IO p )

We can now apply aExtension of Levy's Theoremthat says that Brownian motions with zero
cross-variation are independent, to conclude thatB, are independent Brownians.
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Chapter 24

An outside barrier option

Barrier process:

< = Adt—|—0’1 dBl(t)

Stock process:

——= =pudt+ poy dBi(t) +1/1 — p? 05 dBsy(t),

whereo; > 0, 09 > 0, —1 < p < 1, andB; and B, are independent Brownian motions on some
(22, F,P). The option pays off:

(S(T) = K) " 1yy=(1y<r}
at timeT', where

0<S0)< K, 0<Y(0)<L,

(1) = Y (t).
YAHT) = max V(1)

Remark 24.1 The option payoff depends on both thieand.S processes. In order to hedge it, we

will need the money market and two other assets, which we take 10 &edS. The risk-neutral
measure must make the discounted value of every traded asset be a martingale, which in this case
means the discountéd and.S processes.

We want to findd; andé@, and define

dBy = 0, dt +dB;, dBy =05 dt + dB,
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so that

dY ~

7 =T dt—|— O'ldBl
=T dt—|— 0'101 dt—|— 01 ch

ds ~ ~

< =rdt+ poy dBy ++/1 — p? 02d By
=rdt+ poy 01 dt ++/1 — p? o260, dt

—|—p0’2 dB1—|— 1—p2 (] dB2

We must have

A =T ‘I’ 01017 (01)
=1+ poyby + /1 — p? o96;. (0.2)
We solve to get
6, — /\—r7
g1
g, _ 1=1 = posfs
V1—=p? oy '

We shall see that the formulas féy andé, do not matter. What matters is that (0.1) and (0.2)
uniquely determiné, andd,. Thisimplies the existence and uniqueness of the risk-neutral measure.
We define

2(T) = exp {01 By (T) — 62 B(T) — 5(63 + 63)T},

P(A) :/AZ(T) AP, VA€ F.

Under P, B, and B, are independent Brownian motions (Girsanov’s Theoreﬁ)is the unique
risk-neutral measure.

Remark 24.2 Under bothP and P, Y has volatilitys, S has volatilitye, and

dY dS _ i
vs po102 dt,

i.e., the correlation betweell- and % is p.
The value of the option at time zero is
0(0,8(0),Y(0) = I [T (S(T) = K)* 1 yw(py<ry] -

We need to work out a density which permits us to compute the right-hand side.
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Recall that théarrier processs

dy ~
TITdt-I—O'l dB17

SO
Y (1) =Y (0)exp{rt+ o1 By (t) — Lot}
Set
0=r/c,— 012
B(t) = 6t + By (t),
M(T) = max B(t)
Then

The joint density ofﬁ(T) andﬁ(T), appearing in Chapter 20, is
IP{B(T) € db, M(T) € dn}

2(21m — b) 2n -0 5 o
= L expd -+ 0b— LO?T } db din,
TV2rT p{ 2T 2

m > 0,b < 1.

The stock process.

ds

< = =rdt+ pUQdBl +14/1 = p? Ugdgg,

SO
S(T) = S(0) exp{rT + poyBy(T) — 1p*osT +4/1—p? 03By (T
= S(0) exp{rT — —02T + pagBl( )+4/1—p? O-QBQ(T)}
From the above paragraph we have
By(T) = —8T + B(T),
SO

S(T) = S(0) exp{rT + po, B(T) — LodT — pa T + /1 — p? 03B, (T)}

— )

03T}
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24.1 Computing the option value

0(0,5(0),Y(0)) = IB [ (S(T) = K)* L yyaryeny]

— e—rTE

" " - +
(S(O) exp{(r — 105 — poaf)T + poy B(T) + /1 — p? UQBQ(T)} — K)
Liv ) exp[almT)kL}]

We know the joint density o(E(T),Z\Y(T)). The density o3, (T') is

1 [ I
— ——+db, b€ R.
o exp{ QT} 0
Furthermore, the pair of random variabl®(T"), M (T)) is independentf B, (T') becauseB; and

B, are independent und#?. Therefore, the joint density of the random vedtBs (T'), B(T), M (T))
is

P{By(T) € db} =

IP{B,y(T) € db, B(T) € db, M(T) € din,} = IP{By(T) € db}.IP{B(T) € db, M(T) € din}
The option value at time zero is

v(0,5(0),Y(0))

1 L
0_110g Y(0) oo

R ) N +
=7 / / / (S(O) exp{(r — 505 — poab) T + posb +4/1 - P202b} - K)

0 —00 —00

(21 — b) 2m—b)? ~ |
okl 4+ eb—LeT
TV2rT eXp{ 2

db db din.
The answer depends dn 5(0) andY (0). It also depends ony, 02, p,r, K and L. It does not

depend or\, 4, 6, nor 6. The parametef appearing in the answerfis= 7 — g

Remark 24.3 If we had not regarded” as a traded asset, then we would not have tried to set its
mean return equal ta We would have had only one equation (see Eqgs (0.1),(0.2))
=1+ poyby +1/1 — p? o96s (1.1)

to determined; and#dy. The nonuniqueness of the solution alerts us that some options cannot be
hedged. Indeed, any option whose payoff depends cannot be hedged when we are allowed to
trade only in the stock.
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If we have an option whose payoff depends only$nthenY is superfluous. Returning to the
original equation fors,

g:udt—kpaz dB1 + /1 — p? 05 dBs,
we should set

dW = P dB1 + 1- pde27

soW is a Brownian motion undef’ (Levy’s theorem), and

d
?S = p dt + oodW.

Now we have only Brownian motion, there will be only ofienamely,

o=L""

g2

so withdW = 6 dt + dW, we have

g:rdt—l—ag dW7

and we are on our way.

24.2 The PDE for the outside barrier option

Returning to the case of the option with payoff
(S(T) — K) gy« (ry<rys
we obtain a formula for
ot 2,y) = T [(S(T) = KV fimas,gocr Vi) < L
by replacing!’, S(0) andY (0) by T" — ¢, = andy respectively in the formula for(0, 5(0), Y (0)).
Now start at time 0 at'(0) andY (0). Using the Markov property, we can show that the stochastic

process
eo(t, (1), Y (1))

is a martingale undelP. We compute
d et (t, S(1), Y (1))]
= e‘”[ (—rv + v+ rSv, +rYo, + %U%Szvm + po102SY vy, + %O‘%szyy) dt

+ poaSv, dBy 4+ /1 — p? o9Sv, dBy + O'1Y1jyd§1
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vit,x,L)=0, x >= 0

V\\

v(t,0,0)=0

Figure 24.1Boundary conditions for barrier option. Note that [0, T is fixed.

Setting thelt term equal to 0, we obtain the PDE

1.2.2
— TV 4 U+ rev; + ryvy + 5058 Vg

+ P0102$yvxy + %U%yQUyy = 07
0<t<T,

The terminal condition is

o(T,z,y)= (x — K)T, 2>0,0<y<1l,

and the boundary conditions are

v(t,0,0)=0, 0<t<T,
v(t,z,L)=0, 0<¢t<T, a>0.
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z=0 y=20

12,2 12,2
—rv 4+ v+ ryvy + 507y 0y =0 —TUF v+ rTvy + 5052

Vpy = 0

This is the usual Black-Scholes formularhis is the usual Black-Scholes formula

iny. inx.

The boundary conditions are The boundary condition is
v(t,0,L) =0, v(t,0,0) = 0; v(t,0,0) = e (T=9(0 — K)* = 0;
the terminal condition is the terminal condition is

o(T,0,y)=(0— K)T =0, y>0. o(T,2,0)= (z — K)*, a>0.

On thexz = 0 boundary, the option valug On they = 0 boundary, the barrier is ir-
isv(t,0,y)=0, 0<y<L. relevant, and the option value is given by
the usual Black-Scholes formula for a Eu-
ropean call.

24.3 The hedge

After setting thelt term to 0, we have the equation
d e~ (e, (1), Y (1))]

= e—rt [pUQSUx dél + 1- P2 UQSUx dEQ + Ulyvydgl] ’

wherev, = v,.(t,S(t),Y (1)), v, = v,(t,S(1),Y(t)), and By, By, S,Y are functions of. Note
that

d e S(1)] = e [-rS (1) di + dS(1)]
=" [,OUQS(t) dB, (t) + /1 — p? 725(t) dB, (t)] :
d ey (1)] = e [=rY (1) di + dY ()]
= e "oy Y (t) dBy(t).
Therefore,

d e~ to(t, S(1), Y (£)] = vpd[e " S] + vyd[e™1Y ],

Let Ay (t) denote the number of shares of stock held at tirand letA, (¢) denote the number of
“shares” of the barrier process. The valueX (¢) of the portfolio has the differential

dX = Agds + AldY + T‘[X - AQS - A1Y] dt.
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This is equivalent to
dle™" X ()] = Ay (t)d[e™" S ()] + A ()d[eY (1)].
To getX (t) = v(t, S(t), Y (t)) for all £, we must have
X(0) = v(0,5(0),Y(0))

and
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American Options

This and the following chapters form part of the cougechastic Differential Equations for Fi-
nance Il.

25.1 Preview of perpetual American put

dS=rSdt+o5SdB

Intrinsic value at time : (K — S(¢))*.
Let L € [0, K] be given. Suppose we exercise the first time the stock priterdower. We define
7, = min{t > 0; 5(¢t) < L},
vp (7)) = Be LK — S(rp))t
K-z if 2 <L,
{(K — L)Fe L if 2 > L.

The plan is to comuter, (z) and then maximize ovel to find the optimal exercise price. We need
to know the distribution ofy,.

25.2 First passage times for Brownian motion: first method

(Based on the reflection principle)
Let B be a Brownian motion unddP, letz > 0 be given, and define

T =min{t > 0; B(t) = z}.
7 is called thdirst passage time to. We compute the distribution of.
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Intrinsic value

A
|

| K Sock price  y

Figure 25.1:Intrinsic value of perpetual American put

Define
M(t) = max B(u).

0<u<t
From the first section of Chapter 20 we have

2(2m —b 2m — b)?
P{Zw(t)Edm,B(t)Edb}:Lexp{—%}dmdb7 m > 0,b< m.

Therefore,

P{M (1) Zw}:/oo/m Mexp{—w}dbdm

2t

b=m
dm

b=—o00

We make the change of variable= % in the integral to get

- 2 X 2 dz
= ——ce —— .
eviver P2
Now

T <= M(t) > =z,
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SO
)
Piredi} = 2 P{r <t} dt
P

= S P{M(1) > 2} dt

a [~ 2 22
= [%/M\ﬁﬁexp{—?}dzl dt
2 22l 0 [
:_EGXP{_E}'% (%) dt

T x? dt
= expl —— .
2wt P 2t

We also have the Laplace transform formula

Fe o = / e~ IP{T € dt}
0
= e‘l’m, a> 0. (See Homework)

Reference: Karatzas and Shreve, Brownian Motion and Stochastic Calculus, pp 95-96.

25.3 Drift adjustment

Reference: Karatzas/Shre®rpwnian motion and Stochastic Calcujygp 196-197.
For0 < ¢ < oo, define
B(t) = 6t + B(1),
Z(t) = exp{—0B(t) —
= exp{—0B(t) +

16°t},
16%t},
Define

7 = min{t > 0; B(t) = x}.

We fix a finite timeT and change the probability measure “only utb More specifically, with
T fixed, define

P(A) :/AZ(T) dP, A€ F(T).

Under P, the proces@(t), 0 <t < T,is a(nondrifted) Brownian motion, so

P{7 € dt} = IP{r € dt}

T T
= ——expli——, dt, 0<t<T.
tv/2rt p{ Qt} =
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For0 < ¢t < T we have

P{f’ < t} =F {1{7’@5}}
1
i< m]

(1<) exp{0B(T) — 1677}

-F :1{;375}% [exp{@E(T) — %OZT}‘]‘-(% A t)”

I
St

I
St

= I [L(s<ey exp{0B(7 A 1) — 0% (F A1)}
=F {1{;3,5} exp{fz — %027:}}
t —
= / exp{fz — 26°s}IP{7 € ds}
0
t g 22
= 0 — 1675 — — % d
0 s\/27rsexp{ rTave 28} N
b (z — 0s)?
= ——— ds.
/0 sV27s exp{ 2s } i

Therefore,

N x (z — 6t)?
P{7 e di} = ———— 0 dt, 0<t<T.
t N eXp{ 2 } =

SinceT is arbitrary, this must in fact be the correct formula fortait 0.

25.4 Dirift-adjusted Laplace transform
Recall the Laplace transform formula for
T =min{t > 0; B(t) =z}

for nondrifted Brownian motion:

o) T $2
Fe™ " = / exps —at — — pdi = 6_9”\/%7 a >0,z >0.
0o 2wt p{

For
7 =min{t > 0;6t + B(t) = z},
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the Laplace transform is

i < g (z — 6t)?
E@ om':/ ex —ot — —— dt
o 1oent p{ “ 21 }

o) T $2
= exp{ —at — — + 20 — 10%t Y dt
/0 tv/ 27t p{ 2t 2

o) 2

%6 < 1,2 z
—e exps —(a+ 20t — — 3 di

/0 tV2mt p{ (a3 =5 }

— ew@—w\/2a+€2

, a>0,2>0,

where in the last step we have used the formulafer>” with o replaced by + £62.
If 7(w) < oo, then

lim e~ 7@ = 1;
oz\l/O

if 7(w) = oo, thene=*7(W) = ( for everya > 0, so

lim e~ 7)) = q.

oz\l/O

Therefore,
lim e~ 7)) = lsce.
oz\l/O <
Letting |0 and using the Monotone Convergence Theorem in the Laplace transform formula

Ee—oﬁ' — ex@—x\/ 200462

9

we obtain _
P{f’ < OO} _ 61’6’—1’\/6’2 _ exé’—x|€|‘
If 8 > 0, then
P{7 < oo} =1.
If & < 0, then

P{7 < o0} = ¥ < 1.

(Recall that: > 0).

25.5 First passage times: Second method

(Based on martingales)

Leto > 0 be given. Then
Y (t) = exp{oB(t) — 307t}
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is a martingale, s& (¢ A 7) is also a martingale. We have
1=Y(OAT)
=IEY(tnT)
= Eexp{oB(t AT) — o*(t A T)}.
= 751i>1r1r100 Fexp{oB(tAT) — %02 (tAT)}
We want to take the limit inside the expectation. Since
0 < exp{oB(tAT)—30*(tAT)} < €,
this is justified by the Bounded Convergence Theorem. Therefore,
1= Etlgnoo exp{oB(t AT) — Lo*(t A T)}.
There are two possibilities. For thasdor which7(w) < oo,
12
: 2 _ Oz—350°T
751i>1r1r100 exp{oB(tAT) — o*(t A7)} = 7772977,
For thosev for which7(w) = oo,
751i>1r1r100 exp{oB(tAT) — io*(t AT)} < 751i>1r1r100 exp{oz — L1o%t} = 0.
Therefore,

1= Etlgnoo exp{oB(t A7) — 2o*(t A T)}
1
— E 60'90—50'27'17<Oo

152
:Eegl’—zg 7'7

1
where we understand“~ 27" to be zero ifr = cc.
Leta = $o?, s00 = v/2a. We have again derived the Laplace transform formula
e~V e 0> 0,2 > 0,

for the first passage time for nondrifted Brownian motion.

25.6 Perpetual American put

dS=rSdi4+0S5SdB
S(0) ==z
S(t) = wexp{(r — 1o*)t + oB(t)}
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Intrinsic value of the put at time (K — S(¢))*.
Let L € [0, K] be given. Define for: > L,

77, = min{t > 0; S(¢) = L}
1 L
= min{t > 0; 6t + B(t) = —log —}
o "

1 x
=min{t > 0; -0t — B(t) = —log —
min{t > 0; (t) UogL}
Define

v, = (K = L)IFe "

¢ 1
=(K-1) exp{——log T —log %\/Qr—I—H?}
o o

)
-2 L./ r+62
— (K- 1) (%) e .

We compute the exponent

1 2
—g—l\/2r+02:—%—|—%——¢2r—l— (ﬁ—a/Q)
o

o o o o
r 1 72
:—§+%—;¢2r—l—ﬁ—r—l—02/4
r . 1/
ST\ gttt
o L :
02+2 o (O‘+U/2)
r 1 /r
= §+%—;<;+0/2)
2r
T2
Therefore,
() (I(_x)7 0§$§L7
vr(z) =
’ (K-D) ()7, e

The curve§ K — L) (%)_27’/(72 , are all of the formC'z=27/9”.

We want to choose the largest possible constant. The constant is

C=(K-LL¥,

253
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value

(K- L) (x/L)'2r/ a2

| K Sock price

Figure 25.2:Value of perpetual American put

value

B 2
Cl X 2r/ o

Stock price  x

Figure 25.3:Curves.
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and
8C7 2r 2r 2r 4
— = -Lo? — (K - L)Lo?
JL T o2 ( )
2r 2r 1
=107 |14+ (K- L)~
-1+ S - nyg]
2r 2r 2r K
- [ (1 5+ 5
We solve
<1+ 27‘) 4 2r K _ 0
o2 o2 [
to get
_ 2rkK
T
Since0 < 2r < o2 + 2r, we have
0< L < K.

Solution to the perpetual American put pricing problem (see Fig. 25.4):

B (K - z), 0<a<L™
v(z) = (K — L7) (%)—27»/02 7 > L~
where
. 2rK
= o
Note that
vl(w):{_127 2 2 Pse<d
_0_72*([( _ L)*(L*)Zr/a p—2r/0 —17 x> L*.
We have
tim /(2) = 2L (K - L*)%
_ _QL (K— 2rkK ) o+ 2r
o2 c2+2r) 2rK
—_QL (02—|—2r—2r) o+ 2r
o2 o2+ 2r 2r
=-1
= lim o(z).

xTL*
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value

2
(K ) L*)(X/L* )-ZF/O'

L K Sock price
Figure 25.4:Solution to perpetual American put.
25.7 Value of the perpetual American put

Set

2r 2rkK vy i
= — = = K.
T L a2 +2r v+1
If 0 <2 < L* thenv(z) = K — 2. If L* <2 < oo, then
v(z)= (K - L") (L) a™" (7.1)
N—_——
C
— B [e—”(K . L*)+1{T<Oo}} : (7.2)
where
S(0) ==z (7.3)
T =min{t > 0; S(t) = L*}. (7.4)
If 0 <z < L* then
—rv(z) + rav’(z) + 30%2%0" (@) = —r(K —2)+ra(-1) = —rK.

If L* <2 < oo, then

—rv(z) + rav'(z) + 30%2%0" (2)
2

= Cl—ra™ —raya 771 = 1o 2y (—y = 1277

= Ca[—r —ry = 30°y(=y - 1)]

=C(=y—-1)z™" [r — 15° (2—2)]

= 0.

In other wordsyp solves thdinear complementarity problenfSee Fig. 25.5).
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K- v

Figure 25.5:Linear complementarity

Forallz € IR,z # L™,

rv—rav’ — %szzv” >0,
v> (K —2)7,

One of the inequalities (a) or (b) is an equality.

The half-line[0, oo) is divided into two regions:

¢ = {: v(a) > (K - 2)*),

S ={z; rv—rav’ — 1o%2%" > 0},

257

(@)
(b)
()

and L~ is the boundary between them. If the stock price i€ jihe owner of the put should not

exercise (should “continue”). If the stock price isSror atL*, the owner of the put should exercise

(should “stop”).

25.8 Hedging the put

Let S(0) be given. Sell the put at time zero fofS(0)). Invest the money, holding (¢) shares of
stock and consuming at raf&(t) at timet. The valueX (¢) of this portfolio is governed by

dX (1) = A(t) dS(t) + r(X(t) — A)SH) dt — C(t) dt,

or equivalently,

d(e X (1) = —e "C(t) dt + e P A(t)oS(t) dB(t).
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The discounted value of the put satisfies

d (e7'o(S(1)) = e [=ro(S () + rSEV(SM) + o2 (" (S (1)) dt
+e oSt (S(1)) dB(1)
= —rKe " spycrndt + oS ()0 (S (1)) dB(t).

We should set

C(t) = rK’l{S(t)<L*}7

A(L) =v'(S(1).
Remark 25.1 If S(t) < L*, then

v(S() =K — S(t), A(t) =v(S(1) = —1.

To hedge the put whefi(t) < L*, short one share of stock and hadtdin the money market. As
long as the owner does not exercise, you can consume the interest from the money market position,
i.e.,

C(t) = rKY]-{S(t)<L*}'

Properties of v (S (¢)):
1. e7"'v(S(t)) is a supermartingale (see its differential above).
2. e7"o(S() > eT(K - S(t)T, 0<¢t< oo
3. e7"w(S(t)) is the smallest process with properties 1 and 2.
Explanation of property 3. Let Y be a supermartingale satisfying
Y(t)>e K -St)T, 0<t<co. (8.1)
Then property 3 says that
Y(t) > e "o(S(t), 0<t< oo. (8.2)
We use (8.1) to prove (8.2) for= 0, i.e.,
Y(0) > 0(5(0)). (8.3)

If ¢ is not zero, we can takieto be the initial time and'(¢) to be the initial stock price, and then
adapt the argument below to prove property (8.2).
Proof of (8.3), assumingy” is a supermartingale satisfying (8.1)

Case |:5(0) < L*. We have

Y(0) > (K - 5(0)* = v(S(0).
(8.1)
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Casell: S(0) > L*: ForT > 0, we have
Y (0) > EY(r AT) (Stopped supermartingale is a supermartingale)
> I |Y(r AT)1(rcoy] - (SinceY > 0)

Now letT—oc to get

Y(0)> lim Y (F AT Loy

> I [Y(r)l{moo}} (Fatou's Lemma)

> e (K - S(T) 1<y (by8.1)
el
=v(5(0)). (Seeeq.7.2)

25.9 Perpetual American contingent claim

Intinsic value:h(S(t)).
Value of the American contingent claim:

v(x) = sup 7 [e7Th(S(7))],
where the supremum is over all stopping times.

Optimal exercise rule: Any stopping timewhich attains the supremum.

Characterization of v:

1. e7"'v(S(t)) is a supermartingale;
2. e "u(S(t) > e h(S(t), 0<t< oo;

3. e "w(S(t)) is the smallest process with properties 1 and 2.

25.10 Perpetual American call

o) = sup B [ (S(r) = )]

Theorem 10.63

v(z) =2 Va>0.
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Proof: For everyt,

v(@) > 17 [T (S(1) — K)7]
> B [e (S (1) - K)|
=" {e_rtS(t)} e K
=z —e K.

Lett—oo to getv(z) > z.
Now start withS(0) = = and define

Y(t) = e S ().
Then:

1. Y is a supermartingale (in fact; is a martingale);
2.Y(t) > e "(S(t) - K)T, 0<t< oo

ThereforeY (0) > v(S5(0)),i.e.,
z > v(z).

Remark 25.2 No matter what- we choose,
E*[e77(S(r) = K)T] < E"[e7779(r)] < = = v(z).

There is no optimal exercise time.

25.11 Put with expiration

Expiration time:T" > 0.
Intrinsic value:(K — S(¢)) .

Value of the put:

v(t, z) = (value of the put at timeif S(¢) = z)
=  sup FETe (K - S(m)T.
t<r<T

N——
7:stopping time

See Fig. 25.6. It can be shown that;, v, are continuous across the boundary, whilg has a
jump.

Let S(0) be given. Then
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v> K —u v(l,2)=0, 2> K

—rv+ v+ rav, + %02902%95 =0

T

e

v=K-—u v(lz)=K -2z, 0<2<K
v =0, v, =—-1, v, =0
—rv+ v + rev, + %0'2$2Uxx =—rK

T

Figure 25.6Value of put with expiration

1. e7"u(t, S(t)), 0<t¢<T,isasupermartingale;
2. et S(t) > e K - S(t)T, 0<t<T;

3. e7"w(t, S(t)) is the smallest process with properties 1 and 2.

25.12 American contingent claim with expiration

Expiration time:T" > 0.
Intrinsic value:h (S (t)).
Value of the contingent claim:

v(t,z) = 75<su£)T F=eU00(5 (7).

Then

rU — Uy — TV — %szzvm >0,
v > h(z),
At every point(t, z) € [0,7] x [0, 00), either (a) or (b) is an equality.

Characterization of v: Let.S(0) be given. Then

261

(@)
(b)
(©
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1. e "v(t,S(t)), 0 <t <T,isasupermartingale;
2. e "ot S(t) > e "Th(S(1));
3. e7"w(t, S(t)) is the smallest process with properties 1 and 2.
The optimal exercise time is
7 =min{t 2 0; v(t, 5(t)) = h(S(1))}

If 7(w) = oo, then there is no optimal exercise time along the particularpath
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Options on dividend-paying stocks

26.1 American option with convex payoff function

Theorem 1.64 Consider the stock price process
dS(t) =r(t)S(t) dt 4+ o(t)S(t) dB(t),

wherer and o are processes and(t) > 0, 0 <t < T, a.s. This stock pays no dividends.
Let 2(x) be a convex function of > 0, and assumé(0) = 0. (E.g.,h(z) = (z — K)*). An
American contingent claim payinly(S(¢)) if exercised at time does not need to be exercised
before expiration, i.e., waiting until expiration to decide whether to exercise entails no loss of value.

Proof: For0 < o < 1 andz > 0, we have

h(az) = h((1 - )0+ az)
< (1= a)h(0) + ah(z)
= ah(z).

Let 7" be the time of expiration of the contingent claim. Box ¢t < T,

OS%:exp{—/tTr(u) du}§1

andS(7) > 0, so

B0 B(1) ,
h (wsm) < SEhs ) )

Consider a European contingent claim paykig (7')) at time7". The value of this claim at time
t€[0,7]is
1

A(T)

263
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Therefore,

' (2, h(2))
ah(z)|---=--—mm o i
h(az)|--====== e e : o h i
Figure 26.1:Convex payoff function
X _ 1 B()
50 = w® e anFo)
1 A(t) .
> [ (58 sm) o] eye
> ﬁh (ﬂ(t) F [%‘}'(t)]) (Jensen’s inequality)
L (5050Y (S s amart
= ﬂ(t)h (ﬂ(t) (t)) (ﬁ is a martingale)
1
= %h(s (t))

This shows that the valu& (¢) of the European contingent claim dominates the intrinsic value
h(S(t)) of the American claim. In fact, except in degenerate cases, the inequality

X(t) > h(S(t), 0<t<T,

is strict, i.e., the American claim should not be exercised prior to expiration. [

26.2 Dividend paying stock

Let» ando be constant, lef be a “dividend coefficient” satisfying

0<d<l.
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Let7" > 0 be an expiration time, and léf € (0,7") be the time of dividend payment. The stock
price is given by
(1) = {S(O)exp{(r— to?)t+oB(t)}, 0<t<ty,
(1= 8)S(ty) exp{(r — 1o (t—t1) + o(B(t) — B(t1))}, th <t <T.

Consider an American call on this stock. At times (¢1,7), it is not optimal to exercise, so the
value of the call is given by the usual Black-Scholes formula

v(t,2) = aN(dp (T —t,2)) — Ke " TON@_(T —t,2)), t;<t<T,
where

1 x 9
de(T —t, z) o T log K—I—(T t(r+o°/2)

At time t;, immediatelyafter payment of the dividend, the value of the call is
v(ty, (1 —0)S(t1)).
At time t;, immediatelybeforepayment of the dividend, the value of the call is
w(ty, S(t1)),

where
w(ty, z) = max {(z — K)%, v(ty, (1 - 8)z}.

Theorem 2.65 For 0 < ¢ < t;, the value of the American call is(t, S(t)), where
wit,z) = B e Dy, S(t))]
This function satisfies the usual Black-Scholes equation
—rw + wy + rew, + %szzwm =0, 0<t<ty, 220,
(wherew = w(t, )) with terminal condition
w(ty, r) = max {(z — K)T, v(ty, (1-38)x)}, 2 > 0,

and boundary condition
w(t,0)=0, 0<t<T.

The hedging portfolio is

A@:{%@S@% 0<t<t,
v (t,5(1), i <t<T.

Proof: We only need to show that an American contingent claim with payoff, 5(¢1)) at time
t; need not be exercised before time According to Theorem 1.64, it suffices to prove

1. w(ty,0) =0,
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2. w(ty, z) is convex inz.

Sincev(t;,0) = 0, we have immediately that
w(t1,0) = max { (0 — K)*, v(ty, (1-6)0)} = 0.

To prove thatv (¢4, ) is convex inz, we need to show that(¢;, (1—0)x) is convex isz. Obviously,
(¢ — K)™T is convex inz, and the maximum of two convex functions is convex. The proof of the
convexity ofv(ty, (1 — §)z) in z is left as a homework problem. |

26.3 Hedging at timet,

Letx = S(tl)

Case l:v(ty, (1 = d)z) > (¢ — K)*.
The option need not be exercised at titpéshould not be exercised if the inequality is strict). We
have

w(ty, z) = v(ty, (1 - 0)x),
Aty) = we(ty, ) = (1 = vty (1= 8)a) = (1 — )A(L+),

where
A(ti+) = lim A(¥)
tht1
is the number of shares of stock held by the hedge immediately after payment of the dividend. The
post-dividend position can be achieved by reinvesting in stock the divideodived on the stock
held in the hedge. Indeed,

Alhi4) = —A(t) = Atr) + %A(tl)

1-4
OA(t1)S(t1)
= A(ly) + =2
(1-4)S(t1)
dividends received

= # of shares held when dividend s IoaHdprice per share when dividend is reinvested

Case ll: v(ty, (1 - 8)z) < (z — K)™T.

The owner of the option should exercise before the dividend payment at;tene receiveéz — ).
The hedge has been constructed so the seller of the optian-hds before the dividend payment
attimet, . If the option is not exercised, its value drops frem K to v(¢y, (1 — §)z), and the seller
of the option can pocket the difference and continue the hedge.
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Bonds, forward contracts and futures

Let{W(t), F(t); 0 <t < T} be a Brownian motion (Wiener process) on soffteF, P). Con-
sider an asset, which we call a stock, whose price satisfies

dS(t) = r(t)S(t) dt + o(t)S(t) dW (t).

Here,r ando are adapted processes, and we have already switched to the risk-neutral measure,
which we call IP. Assume that every martingale und€rcan be represented as an integral with
respect tav.

Define the accumulation factor

gt) = exp{/otr(u) du}.

A zero-coupon bond, maturing at tinfie pays 1 at timg” and nothing before tim@&'. According
to the risk-neutral pricing formula, its value at time [0, 7] is

B(,T) = B(1) IE [ﬁ‘m)]
—E [%‘m)

=F [exp {— /tTr(u) du} ‘]—'(t)] .

Given B(t,T) dollars at time, one can construct a portfolio of investment in the stock and money
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market so that the portfolio value at tirfieis 1 almost surely. Indeed, for some process

B(,T) = B(1) IE [ﬁ‘m)]

martingale
=50 [ (535 ) + [ 7w )]

o [po.m+ [0 dW(u)] ,

dB(,T) = r(1)5( [ 0T—|—/ ]dt+ﬂ() (£) AW (1)
=r()B(t,T) dt + B(t)y(t) dW(1).

The value of a portfolio satisfies
dX (t) = A(t) dS(t) + r(t)[X (1) — A(t)S(¢)]dt
*)

We set

If, at any timet, X (¢) = B(¢,T) and we use the portfolia (u), t < u < T, then we will have
X(T)=B(T,T) =

If »(¢) is nonrandom for alt, then

B(t,T) = exp {— /tTr(u) du} )

dB(t,T) = r(t)B(t,T) dt,

i.e.,7 = 0. ThenA given above is zero. If, at time you are givenB(¢, T') dollars and you always
invest only in the money market, then at tirheyou will have

B(t,T)exp {/tTr(u) du} = 1.

If »(¢) is random for allt, then~ is not zero. One generally has three different instruments: the
stock, the money market, and the zero coupon bond. Any two of them are sufficient for hedging,
and the two which are most convenient can depend on the instrument being hedged.
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27.1 Forward contracts

We continue with the set-up for zero-coupon bonds. Thirward price of the stock at time
t € [0,7]is theF(t)-measurable price, agreed upon at timér purchase of a share of stock at
time T, chosen so the forward contract has value zero attirreother words,

E [ﬁ (S(T) — F(1)) ‘}'(t)] —0, 0<i<T.

We solve forF'(t):

0= 55 (1) - 1) |70
-+[Stlp]- 530 o]
_ % _ %B(t,T).
This implies that
0= 3or

Remark 27.1 (Value vs. Forward price) The T-forward priceF'(¢) is not the value at time of
the forward contract. The value of the contract at titme zero. F'(t) is the price agreed upon at
time¢ which will be paid for the stock at timé.

27.2 Hedging a forward contract

Enter a forward contract at time 0, i.e., agree to pdy) = % for a share of stock at timé.

At time zero, this contract has value 0. At later times, however, it does not. In fact, its value at time
tel0,T]is

—‘}'(t)] ~F(0) E [@‘m)]

V(O = 510) I | 5o (S(T) - FO)|[F(0)
| m

= S(t) — F(0)B(t,T).

This suggests the following hedge of a short position in the forward contract. At time 0,/5{Qrt
T-maturity zero-coupon bonds. This generates income

S(0)

FO)BO.T) = 557

B(0,T) = 5(0).
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Buy one share of stock. This portfolio requires no initial investment. Maintain this position until
time T, when the portfolio is worth

S(T) — F(0)B(T,T) = S(T) — F(0).

Deliver the share of stock and receive paymef).

A short position in the forward could also be hedged using the stock and money market, but the
implementation of this hedge would require a term-structure model.

27.3 Future contracts

Future contracts are designed to remove the risk of default inherent in forward contracts. Through
the device ofmarking to marketthe value of the future contract is maintained at zero at all times.
Thus, either party can close out his/her position at any time.

Let us first consider the situation with discrete trading dates
O=to<th <...<t,=T.

On eacht;, ¢;41), r is constant, so

Sty = e [ vy au)

k

= exp {Z r(t) (t41 — t]‘)}
7=0

is F(tr)-measurable.

Enter a future contract at tinmg, taking the long position, when the future priceli§). At time
tr+1, When the future price i$(¢;41), you receive a paymeudt(t;11) — ®(¢x). (If the price has
fallen, you make the payment(®(tx4+1) — ®(¢x)). ) The mechanism for receiving and making
these payments is thmeargin accounteld by the broker.

By time T = t,,, you have received the sequence of payments

Q(tpr1) — P(tr), P(ths2) — P(trg1)y ---y P(tn) — P(tno1)
attimestyy1,tg+2, ..., t,. The value at time = ¢, of this sequence is
n—1 1
5O B | T 5 (B) - 206) \f(t)] .

Because it costs nothing to enter the future contract at tjrttds expression must be zero almost
surely.
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The continuous-time version of this condition is
T 1
t) IV —— d®(u
S| [ 50 det
Note that3(¢,41) appearing in the discrete-time versiorfi$t ;)-measurable, as it should be when
approximating a stochastic integral.

}'(t)]zo, 0<t<T.

Definition 27.1 TheT'-future priceof the stock is anyF (¢)-adapted stochastic process
{®(t); 0<t < T},
satisfying
¢(T)=5(T) as., and (a)

L |
E[t qu)(U)

Theorem 3.66 The unique process satisfying (a) and (b) is

f(t)] —0, 0<t<T. (b)

o(t) = IF [S(T)‘}'(t)] 0<t<T.

Proof: We first show that (b) holds if and only & is a martingale. Ii® is a martingale, then
s 7ty 4®(u) is also a martingale, so

E[ QI

o }'(t)] _ /0 L o)

(u)

}'(t)] _E [/Ot % 4 (u)

= 0.

On the other hand, if (b) holds, then the martingale

r 1
M(t) = IE l/o Sy 1200 }'(t)]
satisfies
to] T
M(t):/o Sy A2+ | [ e de }'(t)]
_/tﬁdcp(u), 0<t<T
this implies
1
AM(1) = 57 (),
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and so® is a martingale (its differential has o term).

Now define
o(t)=IF [S(T)‘}‘(t)] , 0<t<T.

Clearly (a) is satisfied. By the tower properdyjs a martingale, so (b) is also satisfied. Indeed, this
® is the only martingale satisfying (a). [

27.4 Cash flow from a future contract

With a forward contract, entered at time O, the buyer agrees td'p@yfor an asset valued &t(7').
The only payment is at timé'.

With a future contract, entered at time 0, the buyer receives a cash flow (which may at times be
negative) between times 0 afid If he still holds the contract at timE, then he pay$ (7') at time
T for an asset valued &t(7"). The cash flow received between times 0 &hsums to

T
/ dP(u) = B(T) — B(0) = S(T) — (0).
0
Thus, if the future contract holder takes delivery at tifhéhe has paid a total of
(@(0) = S(T) + S(T') = @(0)

for an asset valued &t(7').

27.5 Forward-future spread

Future priced(t) = IF [S(T) ‘}'(t)] .

Forward price:

If ﬁ andS(T) are uncorrelated,
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If ﬁ andS(T) are positively correlated, then

o(0) < F(0).

This is the case that a rise in stock price tends to occur with a fall in the interest rate. The owner
of the future tends to receive income when the stock price rises, but invests it at a declining interest
rate. If the stock price falls, the owner usually must make payments on the future contract. He
withdraws from the money market to do this just as the interest rate rises. In short, the long position
in the future is hurt by positive correlation betwe and S(T'). The buyer of the future is
compensated by a reduction of the future price below the forward price.

27.6 Backwardation and contango

Suppose
dS(t) = pS(t) dt + oS (t) dW (t).

Defined = “=2 W(t) = 0t + W (1),

g

Z(T) = exp{—6W (T') — £6°T}
P(A) = /A Z(T) dIP, VA ¢ F(T).

ThenW is a Brownian motion unde®, and
dS(t) = rS(t) dt + oS(t) dW (t).

We have

S(t) = S(0) exp{(u — o)t + oW (1)}
= S(0) exp{(r — Lot + oW (t)}

Becaus% = ¢~ is nonrandoms (T andﬁ are uncorrelated undé®. Therefore,

= T8,

B(t,T)
The expected future spot price of the stock unifeis
ES(T) = S(0)etT I {exp {—%O‘ZT + UW(T)H
= e"15(0).
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The future price at timé is
®(0) = e 15(0).

If o> r, then®(0) < IZS(T'). This situation is calleshormal backwardatioffsee Hull). If < r,
then®(0) > IF'S(T'). This is calleccontango.
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Term-structure models

Throughout this discussiofilV (t); 0 < ¢ < T*} is a Brownian motion on some probability space
(Q, F,P),and{F'(t); 0 <t < T*}is the filtration generated by’ .

Suppose we are given an adapiteerest rate procesér(t); 0 <t < 7™}. We define the accumu-
lation factor

ﬂ(t):exp{/otr(u) du}7 0<t<T™

In a term-structure model, we take the zero-coupon bonds (“zeroes”) of varioustieatiarbe the
primitive assets. We assume these bonds are default-free and pay $1 at matufitg Fet 7' <
T, let

B(t,T) = price attime of the zero-coupon bond paying $1 at tiffie

Theorem 0.67 (Fundamental Theorem of Asset PricingA term structure model is free of arbi-
trage if and only if there is a probability measuke on 2 (a risk-neutral measure) with the same
probability-zero sets a#’ (i.e., equivalento /P), such that for eacti’ € (0, 7], the process

0<t<T,

is a martingale undefP.
Remark 28.1 We shall always have

dB(t,T) = p(t, T)B(t, T) dt 4+ p(t, T)B(t,T) dW(t), 0<t<T,
for some functiong(¢,7") andp(t, T'). Therefore

d (Bg(’t)T)) — B(,T) d (ﬁ) + ﬁ dB(t,T)

= (e, 1) = (0] 4, )

B(t,T)
B(t)

dw (1),
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so [P is a risk-neutral measure if and onlyift, 7'), the mean rate of return @ (¢, T') underiP, is
the interest rate(t). If the mean rate of return @8 (¢, 7') under/P is notr(¢) at each time and for

each maturity!’, we should change to a measufeunder which the mean rate of returnig). If
such a measure does not exist, then the model admits an arbitrage by trading in zero-coupon bonds.

28.1 Computing arbitrage-free bond prices: first method

Begin with a stochastic differential equation (SDE)
dX (t) = a(t, X (t)) dt + b(t, X (t)) dW(1).

The solutionX (¢) is thefactor. If we want to haven-factors, we letiV be ann-dimensional
Brownian motion and leX be anr-dimensional process. We let the interest rdte¢ be a function
of X (¢). In the usual one-factor models, we take) to be X (¢) (e.g., Cox-Ingersoll-Ross, Hull-
White).

Now that we have an interest rate procésg); 0 < ¢ < 7™}, we define the zero-coupon bond
prices to be

B(t,T) = B(t) IE [%

F0)|
T
=F [exp{—/t r(u) du} ‘]—'(t)] , 0<t<T <T™
We showed in Chapter 27 that
dB(t,T) =r(t)B(t,T) dt + 3(t)y(t) dW ()
for some process. SinceB(t,1") has mean rate of returtit) under/P, IP is a risk-neutral measure

and there is no arbitrage.

28.2 Some interest-rate dependent assets

Coupon-paying bond: PaymentsP;, P, ..., P, attimesl, T,,...,T,. Price attime is

> BBt Ty).

{k:t<Tk}

Call option on a zero-coupon bond: Bond matures at tim&'. Option expires at timd; < T.
Price at time is

(B(Ty,T) — K)*

}‘(t)], 0<i<T.
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28.3 Terminology

Definition 28.1 (Term-structure model) Any mathematical model which determines, at least the-
oretically, the stochastic processes

B(t,T), 0<t<T,
forall T € (0,77].

Definition 28.2 (Yield to maturity) For0 < ¢t < T < T*, theyield to maturityY (¢, T') is the
F(t)-measurable random-variable satisfying

B, T)exp {(T - )Y (t,T)} = 1,

or equivalently,
Y(t,T)= -

log B(t,T).
7 log B(L,T)

Determining
B(t,T), 0<t<T<T™,

is equivalent to determining
Y(t,T), 0<t<T<T~

28.4 Forward rate agreement

Let0 <t < T < T+ ¢ < T* be given. Suppose you want to borrow $1 at tifhevith repayment
(plus interest) at timé&” + ¢, at an interest rate agreed upon at tim&o synthesize éorward-rate
agreemento dq this, at f[imet puy _aT—maturity zero and shog% (T + €)-maturity zeroes.
The value of this portfolio at timeis

B(t,T)

B(t,T)— —————B(t,T =0.
(7 ) B(t7T—|—€) (7 +€) 0
At time T, you receive $1 from th&-maturity zero. At timel’ + ¢, you pay $%. The
effective interest rate on the dollar you receive at tifnis R(¢, 7', T + ¢) given by
B(t,T)
—_— = t, T, T
BT g = PRI T T+ 0),
or equivalently,
log B(t,T —log B(t,T
BT T+ ) = 1B BT+ —log BET)
€
Theforward rateis
f&,T) =lim R(t, T, T+ ¢) = _9 log B(t,T). (4.1)
E\I/O 8T
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This is the instantaneous interest rate, agreed upon at tiimemoney borrowed at timé.
Integrating the above equation, we obtain

T T 5
/t flt,u) du= —/t %logB(t,u) du
u=T
= —log B(t, u)

u=t

= _logB(th)v

SO

B(t,T) = exp{—/tTf(t,u) du}.

You can agree at timeto receive interest ratg(¢, ) at each timex € [t, 7. If you invest $B(t,T')
at timet and receive interest rafg, ) at each time: betweent and7’, this will grow to

B(t,T) exp{/tTf(t,u) du} =1

at timeT'.

28.5 Recovering the interest(t) from the forward rate

B(t,T)=IF -exp{—/tTr(u) du} ‘]—'(t)] ,

8iTE:(lt,T) = _—r(T) exp{—/tTf‘(U) dU} ‘f(t)] )

9
B, T)

= :—r(t)‘}'(t)] —

On the other hand,

B(t,T) = exp{—/tTf(t,u) du}7
d

T
8—TB(t,T) =—f(t,T) eXp{—/t [t u) du} ;

0
8_TB(t7 T)

= _f(tv t)'

T=t

Conclusionxr(t) = f(¢,t).
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28.6 Computing arbitrage-free bond prices: Heath-Jarrow-Morton
method

For eachl’ € (0, 7], let the forward rate be given by
t t
F(.T) = £(0,T) +/ a(u, T) du +/ o(u, T) dW(u), 0<t<T.
0 0

Here{a(u,T); 0 <u <T}and{o(u,T); 0 <u < T} are adapted processes.

In other words,
df(t,T) = a(t,T) dt + o(t,T) dW ().

B(t,T) = exp{—/tT f(t,u) du}.

d{—/tTf(t,u) du} — f(t,0) dt—/tTdf(t,u) du

T
— (1) dt—/t [a(t,u) dt + o (t, u) AW ()] du

— (1) dit — [/Toe(t,u) du] dt - [/Ta(t,u) du] aw (1)

a*(t,T) o*(t,T)
= r(t) dt — o (t, T) dt — o*(t,T) dW (2).

Recall that

Now

Let
g(x) =€, ¢'(x) =€, ¢"(x) = €".
Then
T
B(t,T) = g (—/t (i, ) du) ,
and

T
%g" —/ ) du
¢
T (o™t

= B(t,T) [r(t) = o (t,T) +
— o™ (t, T)B(t,T) dW(1).

T))}d
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28.7 Checking for absence of arbitrage

IP is arisk-neutral measure if and only if

a*(t,T) = (a*(t,T))*, 0<t<T<T,

T T 2
/ a(t,u)du:%(/ U(t,u)du) , 0<t<T<T". (7.1)
t t
Differentiating this w.r.t.T’, we obtain
T
aft, T) = a(t,T)/ o(t,u) du, 0<t<T<T" (7.2)
t

Not only does (7.1) imply (7.2), (7.2) also implies (7.1). This will be a homework problem.

Suppose (7.1) does not hold. Th&his not a risk-neutral measure, but there might still be a risk-
neutral measure. Lé#(t); 0 < ¢ < 7™} be an adapted process, and define

<>=/0 O(w) du + W),

= exp /OtH - %/(Jt02(u) du}7
PA ):/AZ(T*) AP YA € F(T™).

Then
dB(t,T)= B, T) |r(t) — o™ (t,T) + %(a*(t,T))z} dt

JB(t,T) dW(t)
r(t) — o (t,T) + (o™ (t,T))* + a*(t,T)e(t)} dt
)B(t,T)dW(t), 0<t<T.
In order for B(¢, T') to have mean rate of returtit) underiP, we must have

o (t,T)=2(0*(t,T))> + o*(t, T)0(t), 0<t<T <T* (7.3)
Differentiation w.r.t.T" yields the equivalent condition

at,T)y=oc(t,T)o"(t, T)+o(t, T)0(t), 0<t<T T~ (7.4)

Theorem 7.68 (Heath-Jarrow-Morton) For each? € (0,77, let a(u,T), 0 < u < T, and
o(u,T),0 < u < T, be adapted processes, and assunie,?7’) > 0 for all v and 7. Let
£(0,7), 0 <t <T*, be adeterministic function, and define

F(t.T) :f(O,T)—|—/0toa(u,T) du—l—/ota(u,T) AW ().
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Thenf(¢t,T), 0 <t <T < T~ is a family of forward rate processes for a term-structure model
without arbitrage if and only if there is an adapted procésg, 0 < ¢t < 7™, satisfying (7.3), or
equivalently, satisfying (7.4).

Remark 28.2 Under P, the zero-coupon bond with maturifyhas mean rate of return
r(t) — o (t,T) + 3(0™(t, 1))
and volatilitys™ (¢, T'). The excess mean rate of return, above the interest rate, is
—a*(t,T) + (" (t,T))?,
and when normalized by the volatility, this becomesttirket price of risk

—a” (tv T) + %(U*(tv T))2
o*(t,T)

The no-arbitrage condition is that this market price of risk at tirdees not depend on the maturity
T of the bond. We can then set

—a” (tv T) + %(U*(tv T))2
o*(t,T) 7

b(t) = —

and (7.3) is satisfied.
(The remainder of this chapter was taught Mar 21)

Suppose the market price of risk does not depend on the maiurigp we can solve (7.3) fat.
Plugging this into the stochastic differential equation®g, 7'), we obtain for every maturity:

dB(t,T) = r(t)B(t,T) dt — o™ (t, T)B(t,T) diV ().

Because (7.4) is equivalent to (7.3), we may plug (7.4) into the stochastic differential equation for
f(t,T) to obtain, for every maturit§’

df (t,T) = [o(t, T)o* (t,T) + o (t, T)O(1)] dt + o(t, T) dW (%)

= o(t,T)o"(t,T) dt + o (t,T) dWW (t).

28.8 Implementation of the Heath-Jarrow-Morton model

Choose
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These may be stochastic processes, but are usually taken to be deterministic functions. Define

a(t,T) = o(t, T)o"(t,T) + o(t, T)O(L),

Let f(0,7), 0 <T <T*, be determined by the market; recall from equation (4.1):

0 log B(0,T), 0<T<T"

f(O,T) = _8_T

Thenf(t,T) for 0 < ¢ < T is determined by the equation
df (t,T) = o(t, T)o*(t,T) dt + o(t,T) dW (1), (8.1)
this determines the interest rate process
rt) = f(t,t), 0<t<T (8.2)

and then the zero-coupon bond prices are determined by the initial cond&{ong’), 0 < 7' <
T*, gotten from the market, combined with the stochastic differential equation

dB(t,T) = r(t)B(t,T) dt — o™ (t, T)B(t,T) diV (). (8.3)

Because all pricing of interest rate dependent assets will be done under the risk-neutral dheasure
under whichi¥ is a Brownian motion, we have written (8.1) and (8.3) in termglofather than

W. Written this way, it is apparent that neithé#t) nora(t, 17) will enter subsequent computations.
The only process which mattersdast, 7'), 0 <t < T < T*, and the process

T
o*(t,T) = / o(tyu)du, 0<t<T<T™, (8.4)
t

obtained fronv (¢, T').
From (8.3) we see that* (¢, 7') is the volatility at timet of the zero coupon bond maturing at time
T. Equation (8.4) implies

o (T, T)=0, 0<T<T". (8.5)
This is becaus®&(7",T') = 1 and so as approache§’ (from below), the voldlity in B(¢,T") must
vanish.

In conclusion, to implement the HIM model, it suffices to have the initial market/glgtal"), 0 <
T < T*, and the volatilities
o (t,T), 0<t<T<T"
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We require that™* (¢, T') be differentiable irf” and satisfy (8.5). We can then define

o(t,T) = 8iTU*(t,T)7

and (8.4) will be satisfied because

o*(t,T) = o™ (t,T) — o™ (1, 1) = /tT ga*(t, w) du.

U

We then leti?’ be a Brownian motion under a probability meastiteand we letB(¢,7), 0 <t <
T < T*, be given by (8.3), where(t) is given by (8.2) and (¢, 7) by (8.1). In (8.1) we use the
initial conditions

f(0,T) = —%logB(O,T), 0<T<T".

Remark 28.3 It is customary in the literature to writd” rather thaniV and P rather than/P,

so that/P is the symbol used for the risk-neutral measure and no reference is ever made to the
market measure. The only parameter which must be estimated from the market is the bond volatility
o*(t,T), and volatility is unaffected by the change of measure.
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Chapter 29

Gaussian processes

Definition 29.1 (Gaussian ProcessA Gaussian procesX (t), ¢ > 0, is a stochastic process with
the property that for every set of timés< ¢; < ¢y < ... < t,, the set of random variables

X(t), X(t2)y..., X(t,)
is jointly normally distributed.
Remark 29.1 If X is a Gaussian process, then its distribution is determined byaé function
m(t) = IEX(¢)
and itscovariance function
p(s,t) = IE[(X(s) = m(s)) - (X (1) —m(1))].

Indeed, the joint density oX (¢1),..., X (t,) is

P{X(t;) € dwl,... X (t,) € day}

= l _ Cy-1 . T
(27’1’)77‘/2 det Y] p{ 2 X b (X m(t)) } d$1 dx?ﬂ

wherel: is the covariance matrix

plti,t) pltita) .. plir,tn)
o ptat1) pliata) ... pliztn)
p(tnvtl) p(tnth) tee p(tnvtn)
x istherow vectofz, zo, ... , z,,], t isthe rowvectofty, to, ... , t,], andm(t) = [m(t1), m(tz), ..., m(t,)].

The moment generating function is

Eexp{zn: ukX(tk)} = exp{u-m(t)T + %u-E . uT}7

k=1

whereu = [uy, ug, ..., uy,)].
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29.1 An example: Brownian Motion

Brownian motioniV is a Gaussian process with(t) = 0 andp(s,t) = sAt. Indeed, ifd < s <,
then

pls,t) = IE[W(s)W ()] = IE [W(s) (W (1) — W(s)) + W(s)]
= EW (s).0E (W (t) — W(s)) + IEW?(s)
= IEW?(s)
=sAt.

To prove that a process is Gaussian, one must showktfyal, . . . , X (¢,,) has either a density or a
moment generating function of the appropriate form. We shall use the m.g.f., and shall cheat a bit
by considering only two times, which we usually cathnds. We will want to show that

021 022] |U2

IE exp {u1 X (s) + us X ()} = exp {u1m1 + ugma + 1[uq ] lffn Ul?] l?h] } ‘

Theorem 1.69 (Integral w.r.t. a Brownian) Let W (¢) be a Brownian motion and(t) a nonran-
dom function. Then

t
X(t) = / 5(u) dW (u)
0
is a Gaussian process with(¢) = 0 and

p(s,t) = /OSM 5% (u) du.

Proof: (Sketch.) We have

dX =& dW.
Therefore,
de" X = ue X5 (s) dW (s) + Lue ¥ (52 (s) ds,
X (9) = uX(0) 4y / "X W5 () AW (0) + b / SO () d,
Martingale
Ee X =1 1 Ly? / "5 (o) BN ) do,
LX) = L5 (5) e X0,

X () — uX(0) oy, {%uz /552(?]) dv} (1.1)
0

:exp{%ﬁ/:(s?(v) dv}.

This shows thafX (s) is normal with mean 0 and variangg 6*(v) dv.
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Now let0 < s < ¢ be given. Just as before,
de" X0 = we XD (1) dW (1) + Lue X 52 (2) dt.
Integrate froms to ¢ to get
t t
X = guX (o) 4 u/ 5(v)e“X(”) dW(v) + %uz/ 52(v)e“X(”) dv.

TakelF]. . .|F(s)] conditional expectations and use the martingale property

E [/:5(@)@“(”) AW (v) (s)] —E [/()t5(v)e“X(”) AW (v) (s)] —/055(11)61“(”) AW (v)

=0
to get
B [e“X(t) f(s)] = "X 4 Ly / () E [e“X(”) }'(s)] dv
ZE [ X(0) (s)] — LR [e“X(t) }'(s)] Ltz
The solution to this ordinary differential equation with initial tirnés
E [e“X(t) }'(s)] — X0 exp {%qﬁ / "5 (0) dv}, t> . (1.2)

We now compute the m.g.f. f@rX (s), X (¢)), where0 < s < ¢

(8)] _ omX() |:eu2X(t) (8)]

<1:-2>€<u1+u2><>exp{ / 2(y) d }

E [eu1X(s)+u2X(t)] _ E{E |:eu1X( ) X (¢ ]}
_E{ (u1tu2) X exp{% / }
(l:'l)exp{%(ul—l—im) / 52(v) dv + Lu /5 (v) dv}
_exp{ (u1—|—2u1u2)/0 §(v) dv + Ltu %/(Jt(;?(p) dv}
ol 551}
This shows that X (s), X (¢)) is jointly normal with[E' X (s) = IEX () = 0,
EX?(s) :/0552@) do,  EX(1) :/(f&?(v) dv,

E[X ()X (1)] = /0 52(v) do.

E [eulX(s)+u2X(t)
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Remark 29.2 The hard part of the above argument, and the reason we use moment generating
functions, is to prove the normality. The computation of means and variances does not require the
use of moment generating functions. Indeed,

is a martingale an& (0) = 0, so

For fixeds > 0,

by the I©§ isometry. Fob < s < ¢,

X (s) (X (1) = X(s))]

[l
&
&
——
Jal
=
T
Jal
B
—

Therefore,
EIX (5)X (1)] = E[X () (X (1) — X(s)) + X*(s)]
— EX(s) = 05 52(v) do.
If § were a stochastic proess, the isbmetry says
EX?(s) = /0 " B8 (v) dv
and the same argument used above shows that{os < ¢,
E[X ()X (£)] = EX(s) = /0 E6(v) do.

However, wher¥ is stochastic,X is not necessarily a Gaussian process, so its distribution is not
determined from its mean and covariance functions.

Remark 29.3 Whené is nonrandom,

X () = /Ot(sw) AW (u)

is also Markov. We proved this before, but note again that the Markov property follows immediately
from (1.2). The equation (1.2) says that conditionedr), the distribution ofX (¢) depends only
on X (s); in fact, X (¢) is normal with mearX (s) and variancg §2(v) dv.
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@ (b)

<wn

©

Figure 29.1:Range of values qf, z, v for the integrals in the proof of Theorem 1.70.

Theorem 1.70 Let W (¢) be a Brownian motion, and lek(¢) and 2(¢) be nonrandom functions.
Define

ThenY is a Gaussian process with mean functiop (¢) = 0 and covariance function

py (s,1) = /OSM 6% (v) (/Ush(y) dy) (/:h(y) dy) dv. (1.3)

Proof: (Partial) Computation opy (s,?): Let0 < s < t be given. It is shown in a homework
problem tha(Y (s), Y (¢)) is a jointly normal pair of random variables. Here we observe that

my (1) = EY (1) = /Oth(u) EX (u) du =0,

and we verify that (1.3) holds.



py (s,t) = I [Y(S)Y(t)]
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We have

= —~
< —~
5 5)
1_ = _
(@] P \P.v/
N b4 /1:.\
o 5 :
LL i 2
3 (O] .
5 o =2
6\ o> 6\ L
- 2
= =
d:m\w/ = = :m@\dw:m
— ™ 3
< 8 0 0 3 ZIM UIMU U\WU/U\})
= S s = N =SS T T
\l/lm dy\W/d2 U\%/Z\M/ N KU
= 2 % = 2,0 % s = < 7= 5 3
))deQ{\fO(d(d(d(@tt
= VAU\'/ /0»))5 [ —_— T~
< = = > 0 y/wy/umz = NN
[uy/wu\5ﬂo<>)h<h<m/hh\wu/\wu/
= ke g @« —
S = X< Loam 20T E T 2~ =2 <% =
d)[yO/( h(Z(\(\ou(\hs = - =
\W/M\E/(h \Wu/sy\l/CO\l/COt /UbtU(Uu\(Uu\
2 X 5 % % 3 T 2 3 =2 3 > = =
X\W(((M\th(? /.M\Q /.M\ )SUS @
hyy _ W N ~ —_— O~ o~
h e T T hh /.M\ — & T —
/hhh/z/ fs e o B e =2 = =
I B —s —s s o o% o
|

X(u) duis

1
0

§(u) dW (u), the process’ (t) = |,

1
0

Remark 29.4 Unlike the processY (t) = |
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neither Markov nor a martingale. For< s < t,

mwmﬂm:/%wmwwwwﬂfumﬂwm

0 i
=Y )+ [ LY (0| F()] du
:w@+luwﬂ@m

:Y@+X@/hwm%

S

where we have used the fact th¥tis a martingale. The conditional expectatihj} (¢)|F(s)] is
not equal taY'(s), nor is it a function ofY () alone.
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Chapter 30

Hull and White model

Consider

dr(t) = (a(t) = B(t)r (1)) dt + o (t) dW(1),
wherea(t), 5(t) andeo (¢) are nonrandom functions of
We can solve the stochastic differential equation. Set

K(t) = /Ot B(u) du.
Then

4 (K00 (1)) = K10 (ﬂ(t)r(t) di + dr(t))
=KW (a(t) dt + o (1) dW (1)).

Integrating, we get

KOy —I—/ du—l—/ W(u),
r(t) = e K [ +/ du—l—/ (u)].

From Theorem 1.69 in Chapter 29, we see it{a} is a Gaussian process with mean function

SO

m,(t) = e KO [r(O) + /0 t KW (u) du] (0.1)
and covariance function

prls,t) = KOO [T 22 ) g 0.2)
The process(t) is also Markov.
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We want to studyf;’ »(t) dt. To do this, we define
i - T -
X (1) = / KW () dW (), Y(T) = / EOX (1) du.
0 0
Then

- t - -
r(t) = e KO [r 0 —|—/ KW (u) du] +e KOX (1),

/OTr(t) dt:/o e~ [ —I—/ (u) u] dt+Y(T).

According to Theorem 1.70 in Chapter ggT ) dt is normal. Its mean is

T
JE/ r(t)dt:/ —K(@ [ +/ du] dt,
0
and its variance is
T
var (/ r(t) dt) = EY*(T)
0
T T 2
= / 2R W2 (p) (/ e~ KW dy) dv.
0 v
The price at time 0 of a zero-coupon bond paying $1 at fime
T
B(0,T) = Eexp{ / r(t) dt}
T
:exp{ E/ t) dt + 2(-1)% var (/ r(t) dt)}
0
:exp{—r(O)/ —K( dt—/ / KO+ () du dt
0
41 / 2K (v (/ —IX( ) dy) dv}

= exp{—r(0)C(0,T) — A(0,T)},

where

T .
c,T) = / KO gy,

T T :
A(0,T) / / ~KO+K) o (u) du dt — / 2R g2 (p) (/ e~ KW dy) dv.
0 v

(0.3)
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— u
Figure 30.1:Range of values af, ¢ for the integral.

30.1 Fiddling with the formulas
Note that (see Fig 30.1)
/T /t e KOTEW) o (4) du dt
0 0

T T - -

= / / e KO o (4) dt du
0 U
T -

T .
(y=t; v=u) = /0 e o (v) (/ e~ KW dy) dv.

Therefore,

T - T - - T - 2
A(0,T) :/ KW a (o) (/ e~ KW dy) — %62B(U)0'2(U) (/ e KW dy) dv,
0 v v

T .
c(0,7) :/ e K@) gy,

B(0,T) =exp{—r(0)C(0,7)— A(0,T)}.

Consider the price at timee [0, T'] of the zero-coupon bond:

B(t,T)=IF [exp{—/tTr(u) du} ‘]—'(t)] .

Because is a Markov process, this should be random only through a dependemn¢g) o fact,

B(t,T)=exp{—r(t)C(t,T)— A(t,T)},
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where

T - T - - T - 2
A, T) = / KW (o) (/ e~ KW dy) — 12K ®) o2 (1) (/ e~ KW dy) dv,
€ v v

. T .
C(t,T) = K0 / KW gy,

t

The reason for these changes is the following. We are now taking the initial time t@theer than
zero, so itis plausible thgf ... dv should be replaced bff’ ... dv. Recall that

and this should be replaced by

Similarly, K (y) should be replaced b (y) — K (¢). Making these replacements if(0,7"), we
see that thé\ (¢) terms cancel. 10'(0, T"), however, the¥ (¢) term does not cancel.

30.2 Dynamics of the bond price

LetCy(t,T) and A,(t, T') denote the partial derivatives with respect t&rom the formula
B(t,T) = exp {—r(t)C(t,T) — A(t,T)},
we have
dB(t,T) = B(t,T) [~C(t,T) dr(t) = LC?(8,T) dr(t) dr(t) = r(Co(t, T) dt = Ay(t, T) di]
— B, T) [ _ O, T) (alt) = B)r(t)) di
—C(t, T)o(t) dW(t) — 2C?*(t,T)o?(t) dt

— (1)t T) dt — Ay(t,T) dt] .

Because we have used the risk-neutral pricing formula

B(t,T)=IF [exp {— /tTr(u) du} ‘]—'(t)]

to obtain the bond price, its differential must be of the form

AB,T) = r(t) B, T) dt + (...) dW (1)
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Therefore, we must have
—C(t,T) (a(t) = BO)r (1)) — LC?(t, T)o* (1) — r()Ce(t, T) — A (1, T) = r(t).

We leave the verification of this equation to the homework. After this verification, we have the
formula

dB(t,T) = r(t)B(t,T) dt — c()C(t, T)B(t, T) dW (t).

In particular, the volatility of the bond price is(t)C'(¢,T').

30.3 Calibration of the Hull & White model

Recall:

dr(t) = (a(t) = f(t)r(t)) dt + a(t) dB(1),

T - T - - T - 2
A, T) = R Wa(v e KW gy | — LK) 52y e KW gy dv,
t v 2 v

. T .
C(t,T) = KO / KW gy,

t

B(t,T) =exp{—r(t)C(t,T) — A(t,T)}.

Suppose we obtaif# (0, 7") for all 7" € [0, 7*] from market data (with some interpolation). Can we
determine the functions(t), 5(¢), ando (¢) for all t € [0,7~]? Not quite. Here is what we can do.

We take the following input data for the calibration:

1. B(0,T), 0<T < T

4. o(t), 0 <t < T (usually assumed to be constant);

5. ¢(0)C(0,T), 0 <T < T*, i.e., the volatility at time zero of bonds of all maturities.

Step 1.From 4 and 5 we solve for
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We can then compute

iC(o T) = ¢~ KT

aT
. d
= K(T') = —log 8_TC(O T),
G_TK 8T/ B(T).

We now have3(T') forall T € [0, T%].
Step 2.From the formula

B(0,T) = exp{—r(0)C(0,T) — A(0,T)},

we can solve ford(0,7') for all 7" € [0, T*]. Recall that

Ao = [ [e“”)o«(v) ([ as) - g ([ eor ) ] o

We can use this formula to determiaél’), 0 < 7" < 7™ as follows:

8%14 0, T [ e~ K(T) _ 62]&"(1})02(1])6—]((1“) (/T e~ K() dy)] dv,
. T .
(M) ;TA(O T) = [ 2R W) 62 () (/ e~ KW dy)] dv,

O [ gy _ KD, T k(o) 2/ —K(T)

a7 | 8TA(O T) = e o*(v) e dv,
k) 9 [ ke 9 _ 2K(T) o 2K (v) 2
e a7 | 8TA(O T) =e a(T) — e o”(v) dv,

0
8% 6K(T)aiT eK(T)aiTA(O7 T):| — O/(T)€2K(T) + 204(T)ﬁ(T)62K(T) _ 62]&"(T)0_2(T)7 0<T<T

This gives us an ordinary differential equation fari.e.,
of (1)K 4 2a(1) B(1)e* M — 2K 52 (1) = known function oft.

From assumption 4 and step 1, we know all the coefficients in this equation. From assumption 3,
we have the initial condition/(0). We can solve the equation numerically to determine the function
a(t), 0 <t <T™.

Remark 30.1 The derivation of the ordinary differential equation foft) requires three differ-
entiations. Differentiation is an unstable procedure, i.e., functions which are close can have very
different derivatives. Consider, for example,

flz)y=0 VzelR,
_ sin(10002)

g(z) = 100 Ve € IR.
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Then
1
— <
@) = g(@)| < 75 Vo € IR

but because
g'(z) = 10 cos(1000z),
we have

|f'(@) = g'(x)] = 10

for many values of:.

Assumption 5 for the calibration was that we know the volatility at time zero of bonds of all maturi-
ties. These volatilities can be implied by the prices of options on bonds. We consider now how the
model prices options.

30.4 Option on a bond

Consider a European call option on a zero-coupon bond with strike firimed expiration timd .
The bond matures at tini& > 7. The price of the option at time 0 is

E [6_ Jo rtw a (B(Th, T») - K)+]
= Fe fOTl r(u) du(exp{—f‘(Tl)C(Tl, Ty) — A(Ty,Ts) } — I()-I',
= /_O:o /:: e " (exp{_yC(ThTz) - AT, 17)} — K)—l_f(w, y) da dy,

wheref (z, y) is the joint density oi(fOTl r(u) du, r(Tl)).

We observed at the beginning of this Chapter (equation (0.3))fﬁiat(u) du is normal with
A T1 Tl
p = IE / r(u) du :/ Er(u) du
0 0

T . .
:/ r(o)e—lx(v)_l_e—lx(v)/
0

0
A T T . T . 2
o? = var / r(u) du| = / KW g2 (v) / e KW qy ) do.
0 0 v

We also observed (equation (0.1)) théty) is normal with

v

B (u) du] dv,

. . AT
i) = Er(Ty) = r(O)e_B (T1) 4 =K (Tl)/ e (“)a(u) du,
0

. T .
O'% 2 var (r(7T1)) = e 2K (Tl)/ o2k (“)Uz(u) du.
0
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In fact, (fOTl r(u) du, r(Tl)) is jointly normal, and the covariance is

T
poros = IE l/o (r(u) = Er(w)) du. (r(T1) — Er(Ty))
_ /OTl El(r(u) — Er(w)) (r(T1) — Er(T1))] du

T
= [ petu 1)
0

wherep,. (u, T1) is defined in Equation 0.2.
The option on the bond has price at time zero of

[ [ e (optovemm - g, m) - K)+

1 1 2?2 2pzy  y?
—— | = de dy. (4.1
exp{ 2<1—p2>[ ] )

2ro109y/ 1 — p? of 0109

The price of the option at timee [0, T1] is

}'(t)] (4.2)

Because of the Markov property, this is random only through a dependende)orTfo compute
this option price, we need the joint distribution@f1 r(u) du, r(Tl)) conditioned orr(¢). This
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pair of random variables has a jointly normal conditional distribution, and

pi(t) = IE /tTl r(u) du

f(t)]

T, - Y e
:/ [r(t)e—lx(v)-l—lx(t)_I_e—Ix(v)/ KW o () du] dv,
t t

oi(t) = IE ( / () du - ul(t))

Tl_ i (A 2
:/ 2R W52 (p) (/ e~ KW dy) dv,
t v

palt) = I [+(1) ()
T

— p(1)e KK ) _I_e—K(Tl)/ W () du,

t

f(t)]

7Hit) = B [(r(T) - al0)* (0

= e | " K0 42() du,
t

T
01 0)020) = | [ 1601 =) 07 = st 0

_ /Tl e-]«'@)-K(Tl)/“ KW 62 () dv du.
t t

The variances and covariances are not random. The means are random through a dependence on
r(t).
Advantages of the Hull & White model:

1. Leads to closed-form pricing formulas.
2. Allows calibration to fit initial yield curve exactly.
Short-comings of the Hull & White model:

1. One-factor, so only allows parallel shifts of the yield curve, i.e.,
B(t,T) = exp {~r()C(t,T) = A(t,T)},
so bond prices of all maturities are perfectly correlated.

2. Interest rate is normally distributed, and hence can take negative values. Consequently, the

bond price
T
B(t,T)=IF [exp {—/t r(u) du} ‘]—'(t)]

can exceed 1.
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Chapter 31

Cox-Ingersoll-Ross model

In the Hull & White model;(¢) is a Gaussian process. Since, for egetit) is normally distributed,
there is a positive probability thaft) < 0. The Cox-Ingersoll-Ross model is the simplest one which
avoids negative interest rates.

We begin with ad-dimensional Brownian motiotVy, W5, ..., W,). Letg > 0 ando > 0 be
constants. Fof = 1,...,d, let X;(0) € IR be given so that

XP(0) + X3(0) + ...+ X7(0) > 0,
and letX; be the solution to the stochastic differential equation
dX;(t) = —1BX;(t) dt + Fo dW;(1).

X is called theOrstein-Uhlenbeckrocess. It always has a drift toward the origin. The solution to
this stochastic differential equation is

1 [
X (t) = e 3% [Xj(()) tlo /0 ez de(u)] .
This solution is a Gaussian process with mean function
1 t
m;(t) = 727 X(0)
and covariance function

1 1 SNt
p(s,t) = 1026_25(5“)/0 e du.

Define
A

r(t) = X7 + X3 +...+ X3(0).
If d =1, we haver(t) = X#(¢) and for each, IP{r(¢) > 0} = 1, but (see Fig. 31.1)

P{There are infinitely many values of> 0 for whichr(t) = 0} =1

303
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r() = X5 (0

5%3/— (X ®, %®)

Figure 31.1:x(¢) can be zero.

If d > 2, (see Fig. 31.1)

IP{There is at least one value of> 0 for whichr(t) =0} = 0.

Let f(z1,22,...,2q) = 27+ 25+ ...+ 22 Then

2 ifi=j,

Joo =200 Jain, {0 if ¢ # 5.

Itd’s formula implies

d d

d d
1
:g;z&(—%ﬂxﬂu+%adwxo)+§:Zgzﬂ%dwg

= —ﬁf‘(t) dt + Uzd:XZ’ dW; + d;‘z dt
2 - d .
:(%}_ﬁmo)a+a¢ﬁﬁgjﬁiimm@.

Define
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ThenW is a martingale,

>
dW = - dW;,
=1 \/F

d X2
dW dw =" =t dt = dt,

N r
=1

soW is a Brownian motion. We have

dr(t) = (%‘2 - ﬂr(t)) dt + oy/r(t) AW (2).

TheCox-Ingersoll-Ross (CIR) proceissgiven by
dr(t) = (o — pr(t)) dt + or/r(t) dW (1),

We define

but we do not requir€ to be an integer. Il < 2 (i.e.,a < £0?%), then
IP{There are infinitely many values of> 0 for whichr(¢) = 0} = 1.

This is not a good parameter choice.
If d > 2 (i.e.,a > 10%), then

IP{There is at least one value of> 0 for whichr(t) = 0} = 0.

With the CIR process, one can derive formulas under the assumptior tha% is a positive
integer, and they are still correct even whéis not an integer.

For example, here is the distribution«f) for fixedt > 0. Letr(0) > 0 be given. Take
X1(0) =0, X2(0) =0, ..., Xq-1(0) = 0, X4(0) =+/7(0).

Fori=1,2,...,d — 1, X;(¢) is normal with mean zero and variance

0.2
p(t ) = E(l —e .
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X4(t) is normal with mean

and variance(t, t). Then

“Ooxw )
r(t) = p<m>2( Z ) + X3() (0.1)
= \Wpl(t 1) ——
Normal squared and independent of the other
4a—0?2

Chi-square withl — 1 = degreesof term

0—2
freedom

Thusr(t) has anon-central chi-square distribution.

31.1 Equilibrium distribution of ()

As t—o0, mgq(t)—0. We have

r(t) = p(t,t) Z: (\/)%) :

As t—o0, we havep(t,t) = %, and so the limiting distribution of(¢) is Z—; times a chi-square

with d = % degrees of freedom. The chi-square density \@hjegrees of freedom is

1 20—02

fW) = ———F—~vy o
(y) 220/ T (22)

We make the change of variable= Z—;y. The limiting density for-(¢) is

20—
=G (Br) T
0?2 92a/02T (2_a)

2

2a
oz a=0?
- (2)" oy
o

o2 2_a)
T2

We computed the mean and variance @f in Section 15.7.

31.2 Kolmogorov forward equation

Consider a Markov process governed by the stochastic differential equation

AX () = b(X (1)) dt + o(X (1)) dW (2).
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Figure 31.2:The functiorf(y)

Because we are going to apply the following analysis to the éag¢ = r(t), we assume that
X(t) > 0forall t.

We start atX' (0) = = > 0 at time 0. ThenX (¢) is random with density(0, ¢, z,y) (in they
variable). Since 0 and will not change during the following, we omit them and wrjitg, y) rather
thanp(0,¢, z,y). We have

BhX0) = [ k() dy

for any functionh.

The Kolmogorov forward equation (KFE) is a partial differential equation in the “forward” variables
t andy. We derive it below.

Let ~(y) be a smooth function af > 0 which vanishes neay = 0 and for all large values of (see
Fig. 31.2). I0’s formula implies

dh(X (1)) = [W(X ()X (1) + SH" (X (0)* (X ()] dt + 1/ (X (£)a(X (£) dW (1),

SO

PO 0) = X))+ [ WX DB )+ 3 X ()X ()] ds+
[ H e ) aw s,

A (0) = WX )+ 1 [ [0 ) di -+ 1 (X () (X ()] s,
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or equivalently,

[ nwte ) dy=nx o) + [ [0 @b dy ds +
LT e wpte, o) dy ds.

Differentiate with respect toto get

[ vt dy = [0 @b@pe) dy+ 5 [T 10 ) dy.

Integration by parts yields

Yy=00

| Wit dy = hwbws(t.y)

Ammwp%mmumdy:M@M%wMuw

_ /OOO h(y)é% (0(y)p(t,y)) dy,

y=0

- [Trg () dy

y=0

Therefore,

[ nwmten dy == [ w5 6 do+ [ (s s) o

or equivalently,
82

| ) [mu D)+ 5 pl ) - b (Wt y))] dy = 0.

This last equation holds for every functiérof the form in Figure 31.2. It implies that

pe(ty) + a% ((b(y)p(t,y)) — %38—; (*wp(t, ) = 0. (KFE)

If there were a place where (KFE) did not hold, then we could fake > 0 at that and nearby
points, but také: to be zero elsewhere, and we would obtain

/mh L L =12 )| ay 2o
et g (p) =5 5 (@ )| dy # 0.



CHAPTER 31. Cox-Ingersoll-Ross model 309

If the processX (¢) has an equilibrium density, it will be
ply) = lim p(t,y).
In order for this limit to exist, we must have
0= t1i>moo pt(tv y)
Lettingt—oc in (KFE), we obtain the equilibrium Kolmogorov forward equation

55 )~ b (W) = 0.

When an equilibrium density exists, it is the unique solution to this equation satisfying

ply) 20 Vy >0,

/Ooop(y) dy = 1.

31.3 Cox-Ingersoll-Ross equilibrium density

We computed this to be

2002 28

where
_ (2 F 1
=)
We compute
200 — o2 2
UEE =L S G
2
= o (a %02 — ﬁr) p(r),
2 2 2 ,
p//(r) - _027‘2 (a — %0'2 _ ﬁr) p(r) + E(—ﬁ)p(r) + E (a — %0'2 _ ﬁr) P (T‘)
2

We want to verify the equilibrium Kolmogorov forward equation for the CIR process:

% ((ev = Br)p(r)) — %;—;(Uzr‘p(r)) =0. (EKFE)



Now
% (o = Br)p(r)) = =Bp(r) + (a = pr)p'(r),
2 (7rp(r) = 5 0%(r) 4 0% ()

= 202])’(7‘) + 0'27‘])//(7‘).
The LHS of (EKFE) becomes

—Bp(r) + (o = Br)p'(r) = P/ (r) — So2rp" (r)

=[5+ (= Br = o?) 3o 37— o)

+ %(a — 307 = fr) + 4 - %(a —30° - ﬂr)2]
= p0)[(0 = 3% = 1) St — b = )

~ ot e ot — )

+ %(04 — 30— pr) - %(a — 0% - mﬂ]

as expected.

31.4 Bond pricesin the CIR model

The interest rate proces§) is given by
dr(t) = (o — pr(t)) dt + or/r(t) dW (1),

wherer(0) is given. The bond price process is

B(t,T)=IF [exp{—/tTr(u) du} ‘]—'(t)] .

exp{—/otr(u) du}B(t,T) - [exp{—/OTr(u) du} ‘}'(t)],

the tower property implies that this is a martingale. The Markov property impliesitat’) is
random only through a dependencerdty. Thus, there is a functioB(r, ¢, T') of the three dummy
variables, ¢, 7" such that theprocessB (¢, T') is thefunctionB(r, ¢, T') evaluated at (¢),¢, 7, i.e.,

Because

B(t,T) = B(r(t),t,T).
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Becausexp {— o r(u) du} B(r(t),t,T) is a martingale, its differential has o term. We com-
pute

The expressionin . .] equals
=—rBdt+ B,(oo— fr) dt + B,o\/r dW
+ %BMU27‘ dt + B; dt.
Setting thelt term to zero, we obtain the partial differential equation

= rB(rt,T) + By(r,t, T) + (o = Br) By (r, £, T) + 50" By (r, £, T) = 0,
0<t<T, r>0. (41)

The terminal condition is
B(r,T,7)=1, r>0.

Surprisingly, this equation has a closed form solution. Using the Hull & White model as a guide,
we look for a solution of the form

B(r,t,T) = e~rCT)=AWT),

whereC(T,T) =0, A(T,T) = 0. Then we have

Bt = (—T‘Ct — At)B7
B, =-CB, B, =C"B,

and the partial differential equation becomes

0=-rB+ (-rC;— A)B — (o — Br)CB + 16*rC*B
=rB(-1-Cy+ BC 4 £0°C?*) = B(Ai 4 oC)

We first solve the ordinary differential equation
—1-Cy(t,T) 4+ BC(t,T) + 36°C*(t,T) =0; C(T,T)=0,

and then set .
A(L,T) :a/ C(u,T) du,
t
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soA(T,T)=0and
A(t,T) = —aC(t,T).

It is tedious but straightforward to check that the solutions are given by
sinh(y(T —t))
yeosh(y(T = 1)) + 3B sinh(y(T = 1))’
B )
veosh(y(T = t)) + 13sinh(y(T — t))

v = %\/ﬁ2—|—202, sinhu = %, coshu = %.

Thus in the CIR model, we have

Ct,T) =

2
A(t,T) = —U—O;log

9

where

T
E [exp{—/t r(u) du} ‘}'(t)] - B(r(1),t,T),
where
B(r,t,T) =exp{-rC(t,T)—- A, 1)}, 0<t<T, r>0,

andC'(t, T) and A(t, T') are given by the formulas above. Because the coefficients in

dr(t) = (a = fr(t)) dt + oy/r(t) AV (1)

do not depend on, the functionB(r,t,1") depends om and’ only through their difference =
T —t. Similarly, C'(¢t,T) and A(¢, T') are functions ofr = 7' — t. We write B(r, 7) instead of
B(r,t,T),and we have

B(r,7) = exp{—rC(r) = A(r)}, 720, r>0,

where
sinh (y7
= oo +(gﬂ)sinh(77>’
2ce 76%57
Alr) =~ loe Lmh(w) L %ﬂsinW)] |
V=1 o
We have

B(r(0),T) = Eexp{—/OTr(u) du}.

Now r(u) > 0 for eachu, almost surely, s&(r(0),7') is strictly decreasing iff’. Moreover,
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lim B(r(0),T) = IFexp {— /OOO r(u) du} =0.

T—r00
But also,
B(r(0),T) = exp{-r(0)C(T) — A(T)},
o)
r(0)C'(0)+ A(0) =0,
Tli_r}noo r(0)C(T) + A(T)] = oo,
and

r(0)C(T) + A(T)

is strictly inreasing ir/".

31.5 Option on a bond

The value at time of an option on a bond in the CIR model is

T
o(t,r(t) = IE [exp {—/t r(u) du} (B(T1, T) — K)* }'(t)] ,

whereT} is the expiration time of the optioft; is the maturity time of the bond, aid< ¢ < T <
Ty. As usualexp { - 5 r(u) du} v(t, (1)) is a martingale, and this leads to the partial differential

equation
—rv+ v+ (o = friv,. + %O‘ZT‘UW =0, 0<t<Ty, r>0.

(wherev = v(t, r).) The terminal condition is
o(Ty,r) = (B(r,T1,T2) - K)*, r>0.

Other European derivative securities on the bond are priced using the same partial differential equa-
tion with the terminal condition appropriate for the particular security.

31.6 Deterministic time change of CIR model

Process time scaldn this time scale, the interest raté) is given by the constant coefficient CIR
equation

dr(t) = (a = Br(t) dt + oy/r(t) dW (1),

Real time scaleln this time scale, the interest raté) is given by a time-dependent CIR equation

di(f) = (a(f) — BE)#(D)) di 4+ 6(D)\/#(f) dW ({).
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Figure 31.3:Time change function.

There is a strictly increasing time change functioa ¢(Z) which relates the two time scales (See
Fig. 31.3).

Let B(f, t, T) denote the price at real tindef a bond with maturityi’ when the interest rate at time
tis 7. We want to set things up so

B(#, 1, T) = B(r,t,T) = e—T’C(t,T)—A(t7T)7

wheret = o(f), T = ¢(T), andC'(t, T) and A(t, T) are as defined previously.
We need to determine the relationship betweamdr. We have

B(r(0),0,T) = IE exp {— /Tr(t) dt} ,
B(#(0),0,T) = IE exp {— /Tf(f) df} .

With T' = ¢ (T'), make the change of variable= »(f), dt = ¢/(f) df in the first integral to get

T A~ ~
B(r(0),0,T) = IE exp {— | rtetine dt},

and this will beB(7(0), 0, T) if we set

P(f) = r(e(D) ¢'(1)-
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31.7 Calibration

P ()

@(5&(@)

¢ ()
e {—f@w - Al (D), so(T))}
©'(t)

= exp {—f‘(f)é'(f, 1) - A(i, T)} )

B(#(t),1,T) :B(

where

(i T) = %(;(TD
AL, T) = Alp(d), 9(1))

do notdepend ori and7’ only through?’ — i, since, in the real time scale, the model coefficients
are time dependent.

Suppose we know(0) andB(#(0), 0, T) for all 7' € [0, T*]. We calibrate by writing the equation
B(#(0),0,7) = exp {=#(0)C(0,7) = A(0,7) },

or equivalently,

g B0).0,7) = JEEC((0), (1)) + A((0), (1),

Takea, # ando so the equilibrium distribution of(¢) seems reasonable. These values determine
the functionsC’, A. Take ¢’(0) = 1 (we justify this in the next section). For eaé@h solve the
equation forp(1'):

—log B(#(0),0,T) = #(0)C(0, (1)) + A0, o(T)). (*)

The right-hand side of this equation is increasing in &) variable, starting at 0 at tim@and
having limitoco atoo, i.e.,

7(0)C'(0,0) + A(0,0) =0,
Jlim [#(0)C(0,7) 4 A(0,T)] = oc.

Since0 < —log B(#(0),0,7) < oo, (*) has a unigue solution for eadh For7" = 0, this solution
is(0) = 0. If 71 < Ty, then

—log B(r(0),0,1}) < —log B(r(0),0, 1),

sop(11) < ¢(1,). Thusy is a strictly increasing time-change-function with the right properties.



316
31.8 Tracking down¢'(0) in the time change of the CIR model

Result for general term structure models:

0 log B(0,T)

~a7 =r(0).

T=0

Justification:
T
B(0,T) = IFexp {—/ r(u) du} .
0

—log B(0,T) = —logEexp{—/OTr(u) du}

FE [r(T)e_ Jo rtw) d“]

0
——log B(0,T) =
oT & ( ) Ee—fOTr(u) du
0
_8_T log B(07T) o = 7‘(0)

In the real time scale associated with the calibration of CIR by time change, we write the bond price
as

B(#(0),0,T),
thereby indicating explicitly the initial interest rate. The above says that
0 R .
——log B(#(0),0,T = #(0).
o7 08 BE0,0.1)] = (0)

The calibration of CIR by time change requires that we find a strictly increasing funetigith
©»(0) = 0 such that

~log B(#(0),0,T) = FO)C (o(D) + Ale(T)), T 20, (cal)

¢'(0)
whereB(#(0),0,7), determined by market data, is strictly increasind'irstarts at 1 whefi’ = 0,
and goes to zero @—oo. Therefore— log B(7(0), 0, 7)) is as shown in Fig. 31.4.

Consider the function

FO)C(T) + A(T),
HereC'(7') and A(T') are given by
sinh (yT)
cr) =
1) vcosh(yT) + 3Bsinh(yT)’
1
2c ’yeiﬁT
AT)=-—=1
(T) oz 8 veosh(yT) + Bsinh(v7) |’

v =1/8? + 202



CHAPTER 31. Cox-Ingersoll-Ross model 317

— log B(#(0),0,T)
Goes tox

Strictly increasing

Figure 31.4:Bond price in CIR model

H0)C(T)+ A(T)

—log B(

3>

(0),0,7) ~|----=-—~

Figure 31.5:Calibration

The function#(0)C'(T') + A(T) is zero atl’ = 0, is strictly increasing irl’, and goes tac as
T—oc. This is because the interest rate is positive in the CIR model (see last paragraph of Section
31.4).

To solve (cal), let us first consider the related equation
—log B(#(0),0, 1) = #(0)C((1)) + A(p(T)). (cal’)
Fix 7" and defines(T') to be the uniqué’ for which (see Fig. 31.5)
—log B(#(0),0,T) = #(0)C(T) 4 A(T)

If 7 =0, thenp(T) = 0. If Ty < Ty, thenp(Th) < p(12). AsT—o0, ¢(T)—oc. We have thus
defined a time-change functignwhich has all the right properties, except it satisfies (cal’) rather
than (cal).
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We conclude by showing that' (0) = 1 so also satisfies (cal). From (cal’) we compute

F(O):—ailogB 7(0),0 )

(
T=0
= #(0)C"((0))#'(0) + A((0))'(0)
= #(0)C(0)'(0) + A'(0)¢'(0),

We show in a moment that’(0) = 1, A’(0) = 0, so we have

#0) = #(0)¢(0).

Note that?(0) is the initial interest rate, observed in the market, and is striclty positive. Dividing by
7(0), we obtain
¢'(0) = 1.
Computation of_"(0):
1

C'(t) = > |7 cosh(y7) (7 cosh(y7) + $3sinh(y7)
('y cosh(y7) 4+ £ sinh('yr)) [7 ! (7 ! ! )

— sinh(y7) (72 sinh(y71) 4+ %ﬂ'y cosh('yr))]

C(0) = % [1+0) = 00+ 457)] =1

Computation ofA’(0):
, 2« [y cosh(y7) 4+ $3sinh(y7)
A (T) = _ﬁ 57_/2
ve

X

L [ 2tz (5 coshar) + sini (7))
('y cosh(y7) + £ smh(’ﬂ))

—7e2 (42 sinh (y7) + 46 coshW))] :

v =-S5 o [0+ 0) -0+ 567

o>l v 1(y+0)?
_ 2a 1 32 1.2
P IC R 277
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A two-factor model (Duffie & Kan)

Let us define:

X1 (t) = Interest rate at time
X,(t) = Yield at timet on a bond maturing at time+

Let X;(0) > 0, X2(0) > 0 be given, and lef; (¢) and X (¢) be given by the coupled stochastic
differential equations

Xm(t) = (a11X1 (t) + angg(t) + bl) dt + Ul\/ﬁle(t) + ﬁQXQ(t) + dWl(t)7 (SDEl)
dXQ(t) = (angl(t) + a22X2(t> + bz) dt + O'Q\/ﬁle(t) + ﬁQXQ(t) + (p dWl(t) + A/ 1- p2 dWQ(t))7
(SDE2)

whereWW; andWs are independent Brownian motions. To simplify notation, we define

Y (t) - biXa(t) + B2Xo () + a,
Wa(t) £ pWi(t) + /1 — p2Wa(t).

ThenWjs is a Brownian motion with
dWi(t) dWs(t) = p dt,
and
dX, dX, = oY dt, dX;dX,=o03Y dt, dX;dX; = poio,Y dt.

319
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32.1 Non-negativity ofY”

dY = 31 dX; + 3, dX,
= (Bra11 X1 + PrareXo + Bi1b1) dt + (Pra01 X1 + Paage Xo + B2bs) dt

VY (Broy AWy + Bapoy AWy + Bar/1 — p2ay dWs)
= [(Bra11 + B2a21) X1 + (Brarz + Baagz) Xo] dt 4 (8101 + [2b2) dt

1
+ (8302 + 281 faporog + B2o2) 2\ /Y (1) dWia(1)
where

(Bro1 + Bapoa)Wi(t) + Ba/1 — ploaWa(t)

W4(t) - 2 <2 2 2
\/ﬁ1 o7+ 2031 32pc102 + ﬁzgz

is a Brownian motion. We shall choose the parameters so that:

Assumption 1: For somey, (1a11 + Baa21 = Y01, Srais + Brazs = 5.
Then
1
+ (Biot + 2B1B2po103 + Br03) 2VY dW;

1
= ’yY dt + (ﬁlbl + ﬁzbg — Oé’y) dt + ( %O’% + Qﬁlﬁszle + ﬁ%O’%)Q\/)_/ dW4
From our discussion of the CIR process, we recall ¥hatill stay strictly positive provided that:
Assumption 2: Y (0) = 51 X1(0) + 52X2(0) + a > 0,

and
Assumption 3: ﬁlbl + ﬁzbg —yo > %(ﬁ%()’% + 2ﬁ1ﬁ2p0’10’2 + ﬁ%O’%)

Under Assumptions 1,2, and 3,
Y(t) >0, 0<t< oo, almostsurely,

and (SDE1) and (SDE2) make sense. These can be rewritten as

Xm (t) = (a11X1 (t) + a12X2 (t) + bl) dt + O'ly/Y(t) dW1 (t), (SDE:L’)
dXQ(t) = (a21X1 (t) + a22X2 (t) + bz) dt + O'Q\/Y(t) de(t) (SDE21)
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32.2 Zero-coupon bond prices

The value at time < 7" of a zero-coupon bond paying $1 at tirfids

T
B(t,T) = IE [exp{—/ X, (u) du} ‘}'(t)] .
t
Since the pairf Xy, X3) of processes is Markov, this is random only through a dependence on
X1(t), X2(t). Since the coefficients in (SDE1) and (SDEZ2) do not depend on time, the bond price

depends on and" only through their difference = 7" — ¢. Thus, there is a functioB(z1, 2, 7)
of the dummy variables,, =, andr, so that

B(X1(t), Xa(t), T — t) = IE [exp {— /tT X1 (u) du} ‘}'(t)] .
The usual tower property argument shows that
exp {— /Ot X1 () du} B(X1(t), Xa(t), T — 1)
is a martingale. We compute its stochastic differential and set/tteym equal to zero.
d (exp {— /Ot X1 () du} B(X1(t), Xa(t), T — t))
= exp {— /Ot X1 (u) du} [—XlB dt + B, dX1+ By, dX; — B, dt
44 Boysy dX) dX0 4 By X0 dXs 4 By, dX3 o]

= exp {— /Ot X1 (u) du} [(—XlB + (@11 X1 4+ a12X2 4 b1) By, + (a21 X1 + a2 X2 + b2) By, — B~

+ 101Y Byo, + po102Y By o, + %U%YBMM) dt

+ 01VY By, dWy + 0VY B, dwg]

The partial differential equation fd8(z1, z2, 7) is

—961B—BT+(G119€1+G129€2+51)BQU1+(0219€1+a229€2+52)3x2+%U%(519€1+529€2+&)Bmx1
+ poroa(Bray + Bora 4+ ) By, + %U%(ﬁlwl + Bawy + @) Byyz, = 0. (PDE)

We seek a solution of the form
B(z1, 29, 7) = exp{—21C1(1) — 22C3(7) — A(7) },
valid for all 7 > 0 and allz4, 2, satisfying

Biz1 + Bazy + o > 0. *)
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We must have
B(z1,22,0) =1, Va2, satisfying (*)
because = 0 corresponds to = T'. This implies the initial conditions
C1(0) = C5(0) = A(0) = 0. (IC)
We want to find” (1), C(7), A(7) for 7 > 0. We have

(PDE) becomes
0= B(zy,22,7) [—xl + 21C(7) + 22C5(7) + A'(7) = (a1171 + a1222 + b1)C1(7)

— (az1z1 + az2x2 + b3)Co(7)
+ %U%(ﬁlﬂh + Baxg + 04)012(7') + poroa(Brixr + Bara + a)Cr(17)Co(T)

+ 305 (Brey + Pawa + 04)022(7)]
= z1B(21, 22, 7) [ — 14+ O (1) — a11C1(1) — az1Ca(7)
+ 30151 CH(T) + po10251C1 (1) Co(T) + 50351022(7)-
+ 22 B(x1, 22, 7) |:C£(T) — a12C1(7) — az2Co(7)

+ 3015207 (1) + po10252C1 (T)Ca(7) + £05682C5(7)

 Bla1, 20, 7) [A'(T) — bCr () — byCir(7)

+ 207aCH(7) + po102aCy (1) Co(T) 4+ $050C5(7)
We get three equations:
Clr) = 14 anCi (1) + anCy(r) — 3016:CH(7) — po10251C1(r)Ca(r) — $056:C3 (1),
1)
CH(1) = a12C1(7) + azCy (1) — 2015207 (1) — po10252C1 (1) Co(T) — $056:,C5(T),  (2)

a
0

= b1C1(7) + b2C3(7) — $01aCi (1) — po1o2aCy (T)Ca(T) — 205aC3 (1), (3)
0



CHAPTER 32. A two-factor model (Duffie & Kan) 323

We first solve (1) and (2) simultaneously numerically, and then integrate (3) to obtain the function
A(T).

32.3 Calibration

Let o > 0 be given. The value at timeof a bond maturing at time+ 7, is
B(Xl (t), X2(t)7 To) = exp{—X1 (t)Cl(To) — XQ(t)CQ(TO) — A(Tg)}

and the yield is

— L og BOX1 (1), Xa(t), 70) = — [X1(1)Ch (7o) + Xa(t)Ca(70) + A(70)].

To To

But we have set up the model so th&(¢) is the yield at timeg of a bond maturing at time+ 7.
Thus

X,(t) = T—lo [X1(6)C (70) + Xa(t)Ca(ro) + A(ro)]
This equation must hold for every value 8f (¢) and X (¢), which implies that
Cy(10) =0, Cy(m0) =70, A(T) =0.
We must choose the parameters

aii, @12, 01 agi, ago,byy B, o, o1, p,09;

so that these three equations are satisfied.
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Chapter 33

Change of nuneraire

Consider a Brownian motion driven market model with time horiZéh For now, we will have
one asset, which we call a “stock” even though in applications it will usually be an interest rate
dependent claim. The price of the stock is modeled by

dS(t) = r(t) S(t) dt + o(1)S(t) dW (1), (0.1)

where the interest rate procesg) and the volatility process (¢) are adapted to some filtration
{F(t); 0 <t <T*}. W is aBrownian motion relative to this filtration, b (¢); 0 < ¢ < T*}
may be larger than the filtration generatediby

This isnota geometric Brownian motion model. We are particularly interested in the case that the
interest rate is stochastic, given by a term structure model we have not yet specified.

We shall work only under the risk-neutral measure, which is reflected by the fact that the mean rate
of return for the stock is(t).

We define theccumulation factor

50 =esp{ [ rw au},

so that the discounted stock prigg% is a martingale. Indeed,

SN _ S()
d <W) = S0 v,

The zero-coupon bond prices are given by

B(t,T)=IF [exp {— /tTr(u) du} ‘]—'(t)]
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SO

T = o]

is also a martingale (tower property).

TheT-forward price F'(t, 1) of the stock is the price set at timdor delivery of one share of stock
at timeT with payment at timd". The value of the forward contract at timés zero, so

0= I [% (S(T) — F(1,T)) ‘}'(t)]
_ S B
= sy | (1) o] pe e [M) 70
_an>@
= () 3]~ F.T)B.T)
= S(t) - F(t,T)B(t, T)
Therefore,
PO = g

Definition 33.1 (Numéraire) Any asset in the model whose price is always strictly positive can be
taken as the nuaraire. We then denominate all other assets in units of thienaing.

Example 33.1 (Money market as nurefaire) The money market could be the naraire. At timet, the

stock is Worth% units of money market and tlématurity bond is Worth% units of money market.
[ |

Example 33.2 (Bond as nurafaire) Thel-maturity bond could be the nwerédire. Attime < 7', the stock
is worth 7' (¢, T') units of T-maturity bond and th&-maturity bond is worth 1 unit. [ |

We will say that a probability measutEy is risk-neutral for the nureraire N if every asset price,
divided by N, is a martingale unddPy . The original probability measur# is risk-neutral for the
numéraire (Example 33.1).

Theorem 0.71 Let N be a nuretaire, i.e., the price process for some asset whose price is always
strictly positive. TherPy defined by

Px(4) = 55 /A ;Vg:)) AP, VA€ F(T*),

is risk-neutral for/V.
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Note: IP and [Py are equivalent, i.e., have the same probability zero sets, and

P(A) = N(0) /A ]@‘(g*)) APy, WA € F(T%).

Proof: BecauseV is the price process for some asséf,s is a martingale undef’. Therefore,

P9 = 5755 o <( =
1 *
~ N(0) ]E[ ]
_ 1N
= N 50)
=1,

and we see thaP’y is a probability measure.

Let Y be an asset price. Unddr, Y/ is a martingale. We must show that undex, Y/N is
a martingale. For this, we need to recall how to combine itamhl expectations with change of
measure (Lemma 1.54).0f< ¢ < T < T* andX is F(T')-measurable, then

_ N(O)B@E) N(T)
Ex [X‘}'(t)] - 56 [N(O)ﬁ(T)X‘}'(t)]
_ B0 p [N
= 5 [ o)
Therefore,
Y(T) _ B L [N(T) Y(T)
Ex [y 7] = w5 [y w0
_ B Yw
N(t) p(t)
_ Y@
= W’
which is the martingale property faf/ N underPy. [ |

33.1 Bond price as nungraire

Fix T' € (0,7*] and letB(t, T') be the nurafaire. The risk-neutral measure for this reraife is

o B(T,T)
P = 57y, sy

_B(l )/Aﬂ( T)

dIP YA ¢ F(T).
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Because this bond is not defined after tifiewe change the measure only “up to tirhg i.e.,

using%%%) and only forA € F(T).

IPr is called thel'-forward measureDenominated in units of’-maturity bond, the value of the
stock is

S() 0<t<T.

rT) = B(t,T) ==

This is a martingale unddPr, and so has a differential of the form
dF(th) = UF(th)F(th) dWT(t)7 0<t<T, (ll)

i.e., a differential without @t term. The proces§Wr; 0 < t < T'} is a Brownian motion under
IPr. We may assume without loss of generality tha{t,7') > 0.

We write F'(t) rather thar¥’(¢,7’) from now on.

33.2 Stock price as nuraraire

Let S(¢) be the nurefaire. In terms of this nueraire, the stock price is identically 1. The risk-
neutral measure under this naraire is

Ps(A) = ﬁ/fl % AP, VA€ F(T%).

Denominated in shares of stock, the value of thmaturity bond is

This is a martingale unddPs, and so has a differential of the form

d (ﬁ) (1, T) (ﬁ) AW s(t), 2.1)

where{Ws(t); 0 <t < T*} is a Brownian motion undef’s. We may assume without loss of
generality thaty(¢,7') > 0.

Theorem 2.72 The volatility~ (¢, T") in (2.1) is equal to the volatilityz(¢,7') in (1.1). In other
words, (2.1) can be rewritten as

d (ﬁ) — op(t,T) (ﬁ) AW s(t), 2.1
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Proof: Letg(z) = 1/z,s0¢'(z) = —1/2%, ¢"(x) = 2/2>. Then

= g'(F(1)) dF(t) + 39" (F(t)) dF(t) dF(1)

L R (L TYF(LT) dWr(l) + ——o (1, T)F2(1, T) di

1
F3(1)
= = [or(t, 1) dWr() + ok (t,T) di]

— op(t,T) (ﬁ) [—dWr(t) + o (1, T) di].

UnderiPr, —Wr is a Brownian motion. Under this measu has volatilitys (¢, T') and mean
t)

rate of returno7.(¢, 7). The change of measure froffiy to Ps makes#r; a martingale, i.e., it
changes the mean return to zero, but the change of measure does not affect the volatility. Therefore,
(¢, T)in (2.1) must ber (¢, ') andWs must be

Wislt) = —Wrp(t) + /Ot or(u,T) du.

33.3 Merton option pricing formula

The price at time zero of a European call is

1 .
VO0) = I | S5 - K7
S .
=FE [%1 )>K}] - KIE [ﬁl{S(TbK}]
S(T) ,

O gy 500700 P KBOD [ Sy
(0)Ps{S(T) > K} — KB(0,T)IPr{S(T) > K}
(0)Ps{F(T) > K} — KB(0,T)IPr{F(T) > K}

1 1

(0) P {m < K} — KB(0, T)IPp{F(T) > K}.

1

S
S
S
S
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This is a completely general formula which permits computation as soon as we spegify’). If
we assume thaty (¢, T") is a constant -, we have the following:

B(O T)

) S(0)

exp {O‘FWS — %O‘%T} ,

1
BT

_ Ws(T) 1 5()
—’Ps{ \S/T <(,F\/—1g1<1~3(0T)Jr UF\/_}

= N(p1),
where
S(0) | 2
P1= UF\/_[ KB( )—|-§O'FT:|.
Similarly,
KT = Bf(gf)T) exp {O‘FWT T}
Pr{F(T) > K} = IPr {UFWT(T) — 16%T > log KB(( ’) )}
_ Wr(T) 1 KB(0,T)
—PT{ T >UF\/T[1 S(0) +20FT]}
_p, [ ZW(T) 1 SO,
_PT{ VT opdT [1 KB(0,T) FT]}
= N(p2),
where

_ S0 1]
n= e e wmo s -]

If r is constant, the®(0,7) = e~"7,

_ 1 S(0) | ]

= orVT [log K Tt 2T,
1 S(0

e~ [10g (')“’“‘%"%)T]’

and we have the usual Black-Scholes formula. Whés not constant, we still have the explicit
formula

V(0) = S(0)N(p1) — KB(0,T)N (py).
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As this formula suggests, éf is constant, then far < ¢ < T, the value of a European call expiring
attime? is
V() = SEN(p1(t)) — KB(t, T)N(pa2(t)),

where

B 1 Ft) 1 5 ]
1 (t) - O'Fm |:10g K + QUF(T t) )
B 1 Ft) 4 5 ]
pZ(t) - O'Fm |:10g K - QUF(T t) :
This formula also suggests a hedge: at each timeold N(p:(¢)) shares of stock and short
K N (py(t)) bonds.

We want to verify that this hedge &elf-financing Suppose we begin with ¥ (0) and at each time
t hold N (p1(t)) shares of stock. We short bonds as necessary to finance this. Will thiepas
the bond always be K' N (p2(t))? If so, the value of the portfolio will always be

SON(pr(t)) = KB(t, T)N (p2(1)) = V (1),

and we will have a hedge.
Mathematically, this question takes the following form. Let

A(t) = N(pi(t)).
At time ¢, hold A(t) shares of stock. IX (¢) is the value of the portfolio at timg then X (¢) —

A(t)S(t) will be invested in the bond, so the number of bonds own ;ﬁ)t S(t) and the
portfolio value evolves according to

A1) - A®)

AX (1) = A) dS(0) + =5

S(t) dB(t, T). (3.1)

The value of the option evolves according to
dV (t) = N(p1(1)) dS(t) + S(1) dN(p1(1)) + dS(t) dN (pa(t))
— KN (p2(t)) dB(t,T) — K dB(t,T) dN(pa(t)) — KB(t,T) dN (p2(t)). (3.2)
If X(0)=V(0),will X(t)=V(t)for0 <t <T?
Formulas (3.1) and (3.2) are difficult to compare, so we simplify them by a change @arawen”
This change is justified by the following theorem.

Theorem 3.73 Changes of nusraire affect portfolio values in the way you would expect.

Proof: Suppose we have a model withassets with pricesy, So, ..., S.. At each timet, hold

A, (t) shares of asseét: = 1,2,...,k — 1, and invest the remaining wealth in askeBegin with

a nonrandom initial wealttX' (0), and letX (¢) be the value of the portfolio at time The number
of shares of assétheld at time! is
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and X evolves according to the equation

k-1
:ZAidSH-( ZAS) 15

=1

k
= ZAZ» ds;.
=1
Note that
k
= Ai(t)Si(1)

=1

and we only get to specif$h(, ..., Ar_1, NotAy, in advance.

Let NV be a nunefaire, and define

Then
1 1 1
X = S dX + X d( ) +dXd(
+ (N)+ (N)

k

— ey (Yas)a() X aasa(y)
= f:Ai (N dS; + Sid (%) +d5id <%))

Now

X - il AS)
Sk
(X/N = Sk Asi/N)
Sp/N
_ )A( - Zf:_f Aigi
- = -

A

Therefore,

ZA ds; +( ZAS) 25

=1
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This is the formula for the evolution of a portfolio which holdg shares of asseti = 1,2, ..., k—
1, and all assets and the portfolio are denominated in unité.of [

We return to the European call hedging problem (comparison of (3.1) and (3.2)), but we now use
the zero-coupon bond as namire. We still holdA(¢) = N (p4(¢)) shares of stock at each time
In terms of the new nusraire, the asset values are

Stock: S() = F(t),

B(t,T)
. BLT) _
Bond: BT) 1.
The portfolio value evolves according to
dX (1) = A(t) dF(t) + (X (1) — A(t))@ = A(t) dF(t). (3.1)

1

In the new nurefaire, the option value formula
V() = N(pa(1))S(t) = KB(t, T)N (p2(t))

becomes

V(t)= = N(p:1(1)) F(t) — KN (p2(1)),
and

AV = N(p1(1)) dF (1) + F(t) dN (p1(1)) + dN (p1 (1)) dF(1) — K dN (palt))- -

To show that the hedge works, we must show that
(1) dN (p1(t)) + dN (pa(1)) dF(t) — K dN(pa(t)) = 0.

This is a homework problem.
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Chapter 34

Brace-Gatarek-Musiela model

34.1 Review of HIM under risk-neutral IP

f(t,T) = Forward rate at timefor borrowing at timel".
df(t, Ty = o, T)o"(t,T)dt +o(t,T) dW (t),
where
T
o*(t,T) :/ o(t,u) du
t

The interest rate is(t) = f(¢,t). The bond prices

B(t,T)=IF [exp{—/tTr(u) du}
= exp{—/tTf(t,u) du}

dB(t,T)=r(t) B(t,T) dt — o*(t,T) B(t,T) dW(t).
N——
volatility of 7'-maturity bond.
To implement HIM, you specify a function

o(t,T), 0<t<T.

f(t)]

satisfy

A simple choice we would like to use is
o(t,T)=0of(t,T)

whereo > 0 is the constant “volatility of the forward rate”. This is not possibdeduse it leads to
T
o (t,T) = O'/ f(t,u) du,
t
T
At T) = o2 f(t, T) (/ F(t,u) du) dt + o f(t,T) dW (1),
t
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and Heath, Jarrow and Morton show that solutions to this equation explode liefore

The problem with the above equation is that thiderm grows like the square of the forward rate.
To see what problem this causes, consider the similar deterministic ordinary differential equation

;') =),
wheref(0) = ¢ > 0. We have
' _
HONE
d 1
def(t)y
1 1 ¢
—m+mz : ldu=t
_L—t_i—t_l/czd_l
ft) f(0) ’
C
J&) = 1—-

This solution explodes at= 1/c.

34.2 Brace-Gatarek-Musiela model

New variables:

Current timet
Time to maturityr =7 — t.

Forward rates:

r(t,7) = f(t,t+7), rt,0)=f(t,t)=r(t), (2.1)
J J
Er(t,r) = 8—Tf(t,t—|—7') (2.2)
Bond prices:
D(t,7)=B(t,t+ 1) (2.3)

= exp{—/tH—T f(t,v) dv}

(u=wv—t; du=dv): :exp{—/OTf(t,t—l—u) du}

= exp {— /OTr(t,u) du}
d

d
ED(t7 T) = 8—TB(t,t—|— T) = —r(t,7)D(t, 7). (2.4)
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We will now write o (¢, 7) = o (¢, T — t) rather tharr (¢, 7"). In this notation, the HIM model is

A (6, T) = olt, 7)o" (t,7) di + o (t,7) AW (1), 2.5)
dB(t,T) = r(1)B(t,T) di — o™ (t, ) B(t,T) dW (1), 2.6)
where
o (t,7) = /0 o(t, u) du, @2.7)
%a*(t, ) = a(t, 7). 2.8)

We now derive the differentials of¢, 7) and D(¢, 7), analogous to (2.5) and (2.6) We have

dr(t,7) = df(t,t 4+ 1) + %f(t,t—l—r) dt

N—_— ——
differential applies only to first argument

(2'52(2'2)0(@ 7)o" (t,7) di +o(t,7) dW (1) + %Mu ) dt

2 [t )+ Lo (7)) dt+ ot 7) AW (D). (2.9)
Also,

dD(t, 1) = dB(t,t+ ) —I—%B(t,t—l—r) dt

differential applies only to first argument
@OLCAL 41y Bt,t +7) dt — o™ (t,7)B(t,t + ) dW(t) — r(t, ) D(t, ) dt
@D 1(t,0) = r(t, 7)) D(t, 7) dt — o*(t, 7)D(L, 7) AW (). (2.10)

34.3 LIBOR

Fix § > 0 (say,6 = & year). $D(t, §) invested at time in a (¢ + &)-maturity bond grows to $ 1 at
timet + §. L(¢,0) is defined to be the corresponding rate of simple interest:

D(t,8)(1 + 6L (t,0)) = 1,

1 d
14 6L(t,0) = D, 5) :exp{ ; r(t, u) du}7

2]
L(t.0) = exp {fo r(t, u) du} — 1'
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34.4 Forward LIBOR

§ > 0 is still fixed. Attimet, agree to invest W at timet + 7, with payback of $1 at time

t + 7+ 4. Can do this at time by shortingw bonds maturing at time+ 7 and going long

one bond maturing at time+ = + 4. The value of this portfolio at timeis
D(t, 7+ 9)

D(t,7)
Theforward LIBORL(¢, 7) is defined to be the simple (forward) interest rate for this investment:
D(t, 74 9)

D(t,7)

D(t,7)+ D(t,7+6) = 0.

(1+6L(t, 7)) =1,

D(t,7) _ exp{— Jo r(t,u) du}
D(t,7+9)  exp {— f07+5 r(t, u) du}

= exp {/:+5 r(t, u) du} )

exp {f:"’é r(t, u) du} -1

1+ 0L(t, 1) =

L(t,7) = ; (4.1)
Connection with forward rates:
o T+6 T+6
=< exp / r(t,u) du =r(t,7+ ) exp / r(t,u) du
85 T §=0 T §=0
=r(t, 1),
SO
exp f:"'ér tybu)dup —1
flt,t+71)=r(t,7)=Ilim { ) }
slo 6
exp f:+5rt,u dup —1
L(t,T)= { (5 ) } ,  0>0 fixed.
4.2)

r(t, 7) is the continuously compounded rafg(t, 7) is the simple rate over a period of durati®n

We cannot have a log-normal model f@r, 7) because solutions explode as we saw in Section 34.1.
For fixed positives, we canhave a log-normal model fat (¢, 7).

34.5 The dynamics ofL(¢, )

We want to choose(¢,7), ¢t > 0, 7 > 0, appearing in (2.5) so that
dL(t,7) = (...)dt+ L(t,7)y(t,7) dW(t)
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for some~(¢,7), t > 0,7 > 0. This is the BGM model, and is a subclass of HIM models,
corresponding to particular choicesafft, 7).

Recall (2.9):
dr(t, ) = % [t w) + L(o™ (8, w))?] dt+ o (t,u) AWV (D).
Therefore,
d (/T+5r(t, ) du) = /T-I_(g dr(t,u) du (5.1)
T+6 T+6
:/T ’ % {r(t,u)+%(g*(t,u))2} du dt—l—/T ' o(t,u) du dW(t)
= [r(t 4 6) = r(t,7) + S(07 (6,7 + ) = Lo (t,7))?] dt
+[o"(t, 7+ 0) — o™ (t, )] dW(¥)
and
dr(t, ) " g [GXP {f:+5r(§’ u) du} - 1]

1 T+6 T+6
= s exp {/ r(t, u) du} d/ r(t,u) du

T+6 T+6 2
—I—%exp{/T ' r(t, u) du} (d/T ' r(t, u) du)

41),611
8

[1+0L(t, )] X (5.2)
X {[r(t, T4 68) —r(t, )+ %(U*(t7 T+ 5))2 - %(U*(t7 T))z] dt

+[o*(t, 7+ 0) — o™ (t, )] AW (1)

+ Lo (b T+ 8) — o™ (t, ) dt}

1

5[1 + dL(t, T)]{[r(t, T+ 68) —r(t,0)] dt

+ o (t, T+ 0)[o"(t, T+ &) — o™(t, )] dt

= +o*(t, T+ 0) — (¢, T)] dW(t)}.
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But
9 9 exp{f:-l'ér(t,u) du}—l
a7 = 57 [ 5
— exp {/:+5 r(t, ) du} [t 7+ 8) = r(t, 8)]
- %[1 b SL( It + 6) — r(t, 5)].
Therefore,

dL(t,7) = iL(t7 T) dt + l[1 +SL(t, )][o"(t, T+ 8) — o™ (t, 7)].[o"(t, T+ O) dt + dW ()]

or 5
Take~ (¢, ) to be given by
y(t, T)L(t, T) = %[1 +0L(t,T)][o"(t, 7+ &) — o™(t, T)]. (5.3)
Then
dL(t,7) = [%L(t, )+t )L, 7)o" (6, T+ 0)] dt + (¢, 7)L(t, 7) dW (2).
(5.4)
Note that (5.3) is equivalent to
o*(t,7 4 8) = (1, ) 4 LTI (5.3)

14+ 0L(t,7)
Plugging this into (5.4) yields

SLA(t, T)y*(t, )
14+ 68L(t,T)
+5(t, T)L(t, T) dW (). (5.4

dt

dL(t,7) = %L(t7 )+, 7)L(t, T)o" (t, T) +

34.6 Implementation of BGM

Obtain the initiaforward LIBOR curve
L(0,7), 72>0,
from market data. Choosdarward LIBOR volatility functior{usually nonrandom)

v(t,7), t>0,7>0.
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Because LIBOR gives no rate information on time periods smaller dhare must also choose a
partial bond volatility function

o*(t,7), t>0,0<7<$

for maturities less tha#i from the current time variable

With these functions, we can for eacke [0, §) solve (5.4°) to obtain
L(t,7), t>0,0<7 <4

Plugging the solution into (5.3"), we obtadrt (¢, 7) for § < 7 < 24. We then solve (5.4’) to obtain
L(t,7), t>0,8<7 <20,

and we continue recursively.

Remark 34.1 BGM is a special case of HIM with HIMs* (¢, 7) generated recursively by (5.3’).
In BGM, ~ (¢, 7) is usually taken to be nonrandom; the resultrigt, 7) is random.

Remark 34.2 (5.4) (equivalently, (5.4")) is a stochaspartial differential equation because of the
%L(t, T) term. This is not as terrible as it first appears. Returning to the HIM variabled?’,
set
K, T)=L(t,T —1t).
Then
dK(t,T)=dL(t,T —t) — %L(t,T —t)dt

and (5.4) and (5.4’) become

AK(,T) = v(t, T — K (t,T) [0 (t, T — t + &) dt + dW ()]
SK(t,T)y(t, T —1)
1+ 0K (t,T)

=y (t, T - K, T) |o"(t, T — t) dt + dt + dw ()] .

(6.1)

Remark 34.3 From (5.3) we have

o*(t, 7+ 6) — o*(t, T)

y(t, T)L(t, 7) =[1 4 6L(t,7)]

If we let 4,0, then

7(t,7’)L(t,r)—>ﬁU*(t,T—|—5) =o(t, 1),
96 5=0

and so
vy, T —t)K(t,T)—o(t, T —t).

We saw before (eq. 4.2) that &s0,

L(t,m)—=r(t,7)= f(t,t+ 1),
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SO
K, T)—=f(t,T).

Therefore, the limit ag |0 of (6.1) is given by equation (2.5):
df(t, Ty =o(t, T —t)[c"(t, T —t) dt + dW(1)].

52 (¢, T-t)K?(+,T

) . . -9 .
TTRT) involving K¢, solutions

Remark 34.4 Although thedt term in (6.1) has the ter
to this equation do not explode because

§vit, T — t)K2(¢,T) < §v3(, T — t)K2(¢,T)
1+ 6K (t,T) SK(t,T)
<A T - K(t,T).

34.7 Bond prices

Let 3(t) = exp {fg r(u) du} . From (2.6) we have

B(L,T)\ 1
d( 50 )_ﬁ(t)[—r(t)B(t,T) dt + dB(t,T))

= - (LT = 1) AV ().

The solution—2+* ((g) to this stochastic differential equation is given by

B(t,T)

W = exp {— /Ot o (u, T —u) dW(u) — %/Ot(a*(u,T —u))? du} .

This is a martingale, and we can use it to switch toftre/ard measure

1 1
P = 5075 J, 50
B(T,T)

~ JaBI)BO.T)

Girsanov’s Theorem implies that

dIP VA ¢ F(T).

—I—/ (u, T —u)du, 0<t<T,

is a Brownian motion undef’r.
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34.8 Forward LIBOR under more forward measure

From (6.1) we have

AK(,T) = v(t, T — )K(t,T) [o"(t, T — t + &) dt + dW (1)]
=y (t, T — K (t,T) dWrs(t),

SO

t t

Y(u, T —u) dWris(u) — %/0 v (u, T — u) du}

K(t,T) = K(0,T) exp {/0

and

(8.1)
T T
=K(,T) exp{/ Y(u, T —u) dWrys(u) — %/ v (u, T — u) du
t t
We assume that is nonrandom. Then
T T
X(t) = /t Y(u, T — w) dWrys(u) — %/t Y2 (u, T — u) du (8.2)

is normal with variance

and mean-1p?(t).

34.9 Pricing an interest rate caplet

Consider a floating rate interest payment settled in arrears. AtKime, the floating rate interest
payment due i9L(7,0) = §K(T,T), the LIBOR at time7'. A caplet protects its owner by
requiring him to pay only the cafr if SK(7',7) > dc. Thus, the value of the caplet at tiriiet §
iS§(K(T,T)— c)*. We determine its value at timés< ¢ < T + 4.

Casel:T <t <T+6.

Cros(t) = E %5(1{(1 T)— o)
B(t)

_S(K(T,T) = ) IE [m‘m)]

= §(K(T,T)— )" B(t,T + §).

f(t)] (9.1)
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Casell:0<t<T.
Recall that

Prys(A) = /AZ(T L 8)dIP, YA€ F(T +34),

where
B(t, T +9)
0= 500+
We have
Cras(t) = IE %5(1{@, T)— o)t }'(t)]
B B(t)B(0,T +9) B(T + 6,17 +9) .
= §B(t,T + 6) BT BT 90T (K(T,T) - )" | (1)
S Z(T+86)

Z(t)

= 0B(t, T+ §) Erys |[(K(T,T) — )T | F(t)

From (8.1) and (8.2) we have
K(T,T)=K(t,T)exp{X(t)},

whereX (¢) is normal undetPr s with variancep®(t) = [;" v*(u, T — u) du and mean-1p2(t).
Furthermore X (¢) is independent af ().

Crys(t) =B, T 4 ) Erys |(K(t, T)exp{X (1)} — ¢)T

}'(t)] .

Set
9(y) = Brys [(yexp{X ()} - 0)*]
—y N (ﬁlog Ly %p(t)) _eN (ﬁlog J_ %p(t))
Then
Crys(t) =0 B, T+0) g(K(L,T)), 0<t<T -0, 92)

In the case of constant we have

p(t) =T —t,

and (9.2) is called thBlack caplet formula.
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34.10 Pricing an interest rate cap

Let
/‘TOIO7 T1:57 T2:257 ,Tn:ncs

A cap is a series of payments
S(K(Ty, Ty) — o)t attimeTy q, k=0,1,...,n— 1.
The value at time of the cap is the value of all remaining caplets, i.e.,

)= 3, Cr().

k:tSTk

34.11 Calibration of BGM

The interest rate capleton L(0,7") at time7" + ¢ has time-zero value
CT+5(0) = 5B(07 T+ 5) g(I((Ov T))7

whereg (defined in the last section) depends on

T
/ Y (u, T — u) du.
0
Let us suppose is a deterministic function of its second argument, i.e.,

vt ) =7(7).

Theng depends on
T

/OT'yQ(T— u) du = / v2(v) dv.

0

If we know the caplet pric€'r;5(0), we can “back out” the squared voIatiIij}}F 72 (v) do.

know caplet prices
CT0+5 (0)7 CT1_|_5 (0)7 sy CTn+5(0)7

wherel, < T) < ... < T,, we can “back out”

/OTO 7 (v) dv, /Tl v (v) dv = /Tl v (v) dv — /TO +2(0) dv,

Ty 0 0

. /Tn v2(v) dv.

Tn—l

In this case, we may assume thas constant on each of the intervals

(07T0)7 (T07T1)7 e (Tn—17Tn)7

345

If we

(11.1)
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and choose these constants to make the above integrals have the values implied by the caplet prices.

If we know caplet price€T+5( ) for aII T > 0, we can “back out’jl"OT v%(v) dv and then differen-
tiate to discovety?(7) and~y(7) = /~v2(r) forall = > 0.

To implement BGM, we need botf(r), T >0, and
o*(t,7), t>0,0<7 <4

Now ¢*(t, T) is the volatility at timet of a zero coupon bond maturing at tirhe- 7 (see (2.6)).
Sinced is small (say: year), and) < = < 4, it is reasonable to set

o*(t,7)=0, t>0, 0<7 <4
We can now solve (or simulate) to get
L(t,7), t>0,7>0,

or equivalently,
K(t,T), t>0,T>0,

using the recursive procedure outlined at the start of Section 34.6.

34.12 Long rates

The long rate is determined by long maturity bond prices./Lié a large fixed positive integer, so
thatnd is 20 or 30 years. Then

1 né
Dl n9) = exp{/o r(t, u) du}

ké
exp {/ r(t, u) du}
(k=13

[L+ 0L, (k= 1)d)],

(l
s

o
Il

1

::3

o
Il
—

where the last equality follows from (4.1). The long rate is

! zn: [+ SL(t, (k — 1)8)].

né log D(t,n

34.13 Pricing a swap

Let 7, > 0 be given, and set

T1:T0—|—57 T2:T0+2(S7 ey TnIT0—|—n(S
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The swap is the series of payments
O(L(Ty,0)—¢c) attimelyy1,k=0,1,...,n—1.

Foro < t < Ty, the value of the swap is

ZE[ Tk+1) §(L(Ty,0) — ¢)

o).
Now

1
1+ 8L(T}, 0) =

B(Tk, Tht1)’
so

1 1
R Y S —

We compute

B(t)
B(Th1) (t)]

= :ﬂgrgl) () #0)

o [ S(L(Tk, 0) — ¢)

_ B(t) B(Ty) ) )

- B(Tk) B(Tk, Tht1) " [ﬂ(TkH) (Tk)] ‘f(t) (1+0¢)B(t, Thy1)
- B(Tx,Tr11)

_ [ B0 B .

= 575l 0] - 0+ 608 i)

=B(t,Ty) — (14 6¢)B(t, Trt1)-
The value of the swap at timds

Z JE[ SRS (L(T0) = )

]

- Z (t,Tx) — (L+8¢)B(t, Try1)]

= B(t To) — (14 0¢)B(t,T1) + B(t,T1) — (1+ d6¢)B(t,T3) + ...+ B(t,Ty,—1) — (L + 6¢)B(t, T,,)
= B(t,To) — 0cB(t,T1) — 0¢B(t,T3) — ... — 6¢B(t,T,) — B(t,T,).
The forward swap raterr, (t) at timet for maturity 7, is the value ofc which makes the time-
value of the swap equal to zero:
_ B(thO) — B(thn)
nll) = STEGT + o+ BT

In contrast to the cap formula, which depends on the term structure model and requires estimation
of v, the swap formula is generic.



