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Preface

This book aims to teach financial econometrics to students whose primary interest is
not in econometrics. These are the students who simply want to apply financial econo-
metric techniques sensibly in the context of real-world empirical problems. This book
is aimed largely at undergraduates, for whom it can serve either as a stand-alone course
in applied data analysis or as an accessible alternative to standard statistical or econo-
metric textbooks. However, students in graduate economics and MBA programs
requiring a crash-course in the basics of practical financial econometrics will also
benefit from the simplicity of the book and its intuitive bent.

This book grew out of a previous book I wrote called Analysis of Economic Data.
When writing my previous book I attempted to hold to the following principles:

1. It must cover most of the tools and models used in modern econometric research
(e.g. correlation, regression and extensions for time series methods).

2. It must be largely non-mathematical, relying on verbal and graphical intuition.
3. It must contain extensive use of real data examples and involve students in hands-

on computer work.
4. It must be short. After all, students in most degree programs must master a wide

range of material. Students rarely have the time or the inclination to study statis-
tics in depth.

In Analysis of Financial Data I have attempted to follow these principles as well 
but change the material so that it is of more interest for a financial audience. It 
aims to teach students reasonably sophisticated statistical tools, using simple non-
mathematical intuition and practical examples. Its unifying themes are the related con-
cepts of regression and correlation. These simple concepts are relatively easy to
motivate using verbal and graphical intuition and underlie many of the sophisticated
models (e.g. vector autoregressions and models of financial volatility such as ARCH



and GARCH) and techniques (e.g. cointegration and unit root tests) in financial
research today. If a student understands the concepts of correlation and regression
well, then she can understand and apply the techniques used in advanced financial
econometrics and statistics.

This book has been designed for use in conjunction with a computer. I am con-
vinced that practical hands-on computer experience, supplemented by formal lec-
tures, is the best way for students to learn practical data analysis skills. Extensive
problem sets are accompanied by different data sets in order to encourage students
to work as much as possible with real-world data. Every theoretical point in the book
is illustrated with practical financial examples that the student can replicate and extend
using the computer. It is my strong belief that every hour a student spends in front
of the computer is worth several hours spent in a lecture.

This book has been designed to be accessible to a variety of students, and thus,
contains minimal mathematical content. Aside from some supplementary material in
appendices, it assumes no mathematics beyond the pre-university level. For students
unfamiliar with these basics (e.g. the equation of a straight line, the summation oper-
ator, logarithms), appendices at the end of chapters provide sufficient background.

I would like to thank my students and colleagues at the Universities of Edinburgh,
Glasgow and Leicester for their comments and reactions to the lectures that formed
the foundation of this book. Many reviewers also offered numerous helpful com-
ments. Most of these were anonymous, but Ian Marsh, Denise Young, Craig Heinicke,
Kai Li and Hiroyuki Kawakatsu offered numerous invaluable suggestions that were
incorporated in the book. I am grateful, in particular, to Steve Hardman at John Wiley
for the enthusiasm and expert editorial advice he gave throughout this project. I would
also like to express my deepest gratitude to my wife, Lise, for the support and encour-
agement she provided while this book was in preparation.
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C H A P T E R

Introduction

1

There are many types of professionals working in the world today who are interested
in financial data. Academics in universities often derive and test theoretical models of
behavior of financial assets. Civil servants and central bankers often study the merits
of policies under consideration by government. Such policies often depend on what
is happening with stock markets, interest rates, house prices and exchange rates. In
the private sector, practitioners often seek to predict stock market movements or the
performance of particular companies.

For all of these people, the ability to work with data is an important skill. To decide
between competing theories, to predict the effect of policy changes, or to forecast
what may happen in the future, it is necessary to appeal to facts. In finance, we are
fortunate in having at our disposal an enormous amount of facts (in the form of
“data”) that we can analyze in various ways to shed light on many economic issues.

The purpose of this book is to present the basics of data analysis in a simple, non-
mathematical way, emphasizing graphical and verbal intuition. It focuses on the tools
used by financial practitioners (primarily regression and the extensions necessary for
time series data) and develops computer skills that are necessary in virtually any career
path that the student of finance may choose to follow.

To explain further what this book does, it is perhaps useful to begin by discussing
what it does not do. Financial econometrics is the name given to the study of quan-
titative tools for analyzing financial data. The field of econometrics is based on prob-
ability and statistical theory; it is a fairly mathematical field. This book does not
attempt to teach much probability and statistical theory. Neither does it contain much
mathematical content. In both these respects, it represents a clear departure from tra-
ditional financial econometrics textbooks. Yet, it aims to teach most of the tools used
by practitioners today.



Books that merely teach the student which buttons to press on a computer without
providing an understanding of what the computer is doing, are commonly referred 
to as “cookbooks”. The present book is not a cookbook. Some econometricians 
may interject at this point: “But how can a book teach the student to use the tools of
financial econometrics, without teaching the basics of probability and statistics?” My
answer is that much of what the financial econometrician does in practice can be
understood intuitively, without resorting to probability and statistical theory. Indeed,
it is a contention of this book that most of the tools econometricians use can be mas-
tered simply through a thorough understanding of the concept of correlation, and its
generalization, regression (including specialized variants of regression for time series
models). If a student understands correlation and regression well, then he/she can
understand most of what econometricians do. In the vast majority of cases, it can be
argued that regression will reveal most of the information in a data set. Furthermore,
correlation and regression are fairly simple concepts that can be understood through
verbal intuition or graphical methods. They provide the basis of explanation for more
difficult concepts, and can be used to analyze many types of financial data.

This book focuses on the analysis of financial data. That is, it is not a book about

collecting financial data. With some exceptions, it treats the data as given, and does
not explain how the data is collected or constructed. For instance, it does not explain
how company accounts are created. It simply teaches the reader to make sense out
of the data that has been gathered.

Statistical theory usually proceeds from the formal definition of general concepts,
followed by a discussion of how these concepts are relevant to particular examples.
The present book attempts to do the opposite. That is, it attempts to motivate

general concepts through particular examples. In some cases formal definitions
are not even provided. For instance, P-values and confidence intervals are important
statistical concepts, providing measures relating to the accuracy of a fitted regression
line (see Chapter 5). The chapter uses examples, graphs and verbal intuition to demon-
strate how they might be used in practice. But no formal definition of a P-value nor
derivation of a confidence interval is ever given. This would require the introduction
of probability and statistical theory, which is not necessary for using these techniques
sensibly in practice. For the reader wishing to learn more about the statistical theory
underlying the techniques, many books are available; for instance Introductory Statistics

for Business and Economics by Thomas Wonnacott and Ronald Wonnacott (Fourth
edition, John Wiley & Sons, 1990). For those interested in how statistical theory 
is applied in financial econometrics, The Econometrics of Financial Markets by John
Campbell, Andrew Lo and Craig MacKinlay (Princeton University Press, 1997) and
The Econometric Modelling of Financial Time Series by Terrence Mills (Second edition,
Cambridge University Press, 1999) are two excellent references.

This book reflects my belief that the use of concrete examples is the best way to
teach data analysis. Appropriately, each chapter presents several examples as a means
of illustrating key concepts. One risk with such a strategy is that some students might
interpret the presence of so many examples to mean that a myriad of concepts must
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be mastered before they can ever hope to become adept at the practice of econo-
metrics. This is not the case. At the heart of this book are only a few basic concepts,
and they appear repeatedly in a variety of different problems and data sets. The best
approach for teaching introductory financial econometrics, in other words, is to illus-
trate its specific concepts over and over again in a variety of contexts.

Organization of the book

In organizing the book, I have attempted to adhere to the general philosophy out-
lined above. Each chapter covers a topic and includes a general discussion. However,
most of the chapter is devoted to empirical examples that illustrate and, in some 
cases, introduce important concepts. Exercises, which further illustrate these con-
cepts, are included in the text. Data required to work through the empirical ex-
amples and exercises can be found in the website which accompanies this book
http://www.wiley.com/go/koopafd. By including many data sets, it is hoped that
students will not only replicate the examples, but will feel comfortable extending
and/or experimenting with the data in a variety of ways. Exposure to real-world data
sets is essential if students are to master the conceptual material and apply the tech-
niques covered in this book.

Most of the empirical examples in this book are designed for use in conjunction
with the computer package Excel. However, for the more advanced time series
methods used in the latter chapters of the book, Excel is not appropriate. The com-
puter package Stata has been used to do the empirical examples presented in these
latter chapters. However, there is a wide range of other computer packages that can
be used (e.g. E-views, MicroFit, Gauss, Matlab, R, etc.).

The website associated with this book contains all the data used in this book in
Excel format. Excel is a simple and common software package and most other
common packages (e.g. Stata) can work with Excel files. So it should be easy for the
student to work with the data used in this book, even if he/she does not have Excel
or Stata. Appendix B at the end of the book provides more detail about the data.

Throughout this book, mathematical material has been kept to a minimum. In
some cases, a little bit of mathematics will provide additional intuition. For students
familiar with mathematical techniques, appendices have been included at the end of
some chapters.

The content of the book breaks logically into two parts. Chapters 1–7 cover all the
basic material relating to graphing, correlation and regression. A very short course
would cover only this material. Chapters 8–12 emphasize time series topics and
analyze some of the more sophisticated financial econometric models in use today.
The focus on the underlying intuition behind regression means that this material
should be easily accessible to students. Nevertheless, students will likely find that these
latter chapters are more difficult than Chapters 1–7.
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Useful background

As mentioned, this book assumes very little mathematical background beyond the
pre-university level. Of particular relevance are:

• Knowledge of simple equations. For instance, the equation of a straight line is used
repeatedly in this book.

• Knowledge of simple graphical techniques. For instance, this book is full of graphs
that plot one variable against another (i.e. standard XY-graphs).

• Familiarity with the summation operator is useful occasionally.
• In a few cases, logarithms are used.

For the reader unfamiliar with these topics, the appendix at the end of this chapter
provides a short introduction. In addition, these topics are discussed elsewhere, in
many introductory textbooks.

This book also has a large computer component, and much of the computer mate-
rial is explained in the text. There are a myriad of computer packages that could be
used to implement the procedures described in this book. In the places where I talk
directly about computer programs, I will use the language of the spreadsheet and,
particularly, that most common of spreadsheets, Excel. I do this largely because the
average student is more likely to have knowledge of and access to a spreadsheet rather
than a specialized statistics or econometrics package such as E-views, Stata or
MicroFit.

I assume that the student knows the basics of Excel (or whatever computer soft-
ware package he/she is using). In other words, students should understand the basics
of spreadsheet terminology, be able to open data sets, cut, copy and paste data, etc.
If this material is unfamiliar to the student, simple instructions can be found in Excel’s
on-line documentation. For computer novices (and those who simply want to learn
more about the computing side of data analysis) Computing Skills for Economists by Guy
Judge ( John Wiley & Sons, 2000) is an excellent place to start.

Appendix 1.1: Concepts in mathematics 

used in this book

This book uses very little mathematics, relying instead on intuition and graphs to
develop an understanding of key concepts (including understanding how to interpret
the numbers produced by computer programs such as Excel). For most students, pre-
vious study of mathematics at the pre-university level should give you all the back-
ground knowledge you need. However, here is a list of the concepts used in this book
along with a brief description of each.

4 Analysis of financial data



The equation of a straight line

Financial analysts are often interested in the relationship between two (or more) vari-
ables. Examples of variables include stock prices, interest rates, etc. In our context a
variable is something the researcher is interested in and can collect data on. I use
capital letters (e.g. Y or X ) to denote variables. A very general way of denoting a rela-
tionship is through the concept of a function. A common mathematical notation for
a function of X is f(X ). So, for instance, if the researcher is interested in the factors
which explain why some stocks are worth more than others, she may think that the
price of a share in a company depends on the earnings of that company. In mathe-
matical terms, she would then let Y denote the variable “price of a share” and X

denote the variable “earnings” and the fact the Y depends on X is written using the
notation:

This notation should be read “Y is a function of X ” and captures the idea that
the value for Y depends on the value of X. There are many functions that one could
use, but in this book I will usually focus on linear functions. Hence, I will not use this
general “f(X )” notation in this book.

The equation of a straight line (what was called a “linear function” above) is used
throughout this book. Any straight line can be written in terms of an equation:

where a and b are coefficients which determine a particular line. So, for instance, setting
a = 1 and b = 2 defines one particular line while a = 4 and b = -5 defines a differ-
ent line.

It is probably easiest to understand straight lines by using a graph (and it might be
worthwhile for you to sketch one at this stage). In terms of an XY graph (i.e. one
which measures Y on the vertical axis and X on the horizontal axis) any line can be
defined by its intercept and slope. In terms of the equation of a straight line a is the
intercept and b the slope. The intercept is the value of Y when X = 0 (i.e. point at
which the line cuts the Y-axis). The slope is a measure of how much Y changes when
X is changed. Formally, it is the amount Y changes when X changes by one unit. For 

the student with a knowledge of calculus, the slope is the first derivative,

Summation notation

At several points in this book, subscripts are used to denote different observations
of a variable. For instance, a researcher in corporate finance might be interested in
the earnings of every one of 100 companies in a certain industry. If the researcher

dY

dX
.

Y X= +a b

Y X= f ( )
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uses Y to denote this variable, then she will have a value of Y for the first company,
a value of Y for the second company, etc. A compact notation for this is to use sub-
scripts so that Y1 is the earnings of the first company, Y2 the earnings of the second
company, etc. In some contexts, it is useful to speak of a generic company and refer
to this company as the i-th. We can then write, Yi for i = 1, . . . , 100 to denote the
earning of all companies.

With the subscript notation established, summation notation can now be intro-
duced. In many cases we want to add up observations (e.g. when calculating an average
you add up all the observations and divide by the number of observations). The
Greek symbol, S (pronounced “sigma”), is the summation (or “adding up”) operator
and superscripts and subscripts on S indicate the observations that are being added
up. So, for instance,

adds up the earnings for all of the 100 companies. As other examples,

adds up the earnings for the first 3 companies and

adds up the earnings for the 47th and 48th companies.
Sometimes, where it is obvious from the context (usually when summing over all

companies), the subscript and superscript will be dropped and I will simply write:

Logarithms

For various reasons (which are explained later on), in some cases the researcher does
not work directly with a variable but with a transformed version of this variable. Many
such transformations are straightforward. For instance, in comparing different com-
panies financial economists sometimes use the price-to-earnings ratio. This is a trans-
formed version of the stock price and earnings variables where the former is divided
by the latter.

One particularly common transformation is the logarithmic one. The logarithm 
(to the base B) of a number, A, is the power to which B must be raised to give A.
The notation for this is: logB(A). So, for instance, if B = 10 and A = 100 then the 
logarithm is 2 and we write log10(100) = 2. This follows since 102 = 100. In finance,
it is common to work with the so-called natural logarithm which has B = e where
e ª 2.71828. We will not explain where e comes from or why this rather unusual-

Yi .Â

Yii =Â 47

48

Yii=Â 1

3

Y Y Y Yii
= 1 2 100

100 + + +=Â . . .
1
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looking base is chosen. The natural logarithm operator is denoted by ln; i.e.
ln(A) = loge(A).

In this book, you do not really have to understand the material in the previous
paragraph. The key thing to note is that the natural logarithmic operator is a common
one (for reasons explained later on) and it is denoted by ln(A). In practice, it can be
easily calculated in a spreadsheet such as Excel (or on a calculator).

Introduction 7





C H A P T E R

Basic data handling

This chapter introduces the basics of data handling. It focuses on four important
areas:

1. The types of financial data that are commonly used.
2. A brief discussion of the sources from which data can be obtained.1

3. An illustration of the types of graphs that are commonly used to present infor-
mation in a data set.

4. A discussion of simple numerical measures, or descriptive statistics, often pre-
sented to summarize key aspects of a data set.

Types of financial data

This section introduces common types of data and defines the terminology asso-
ciated with their use.

Time series data

Financial researchers are often interested in phenomena such as stock prices, interest
rates, exchange rates, etc. This data is collected at specific points in time. In all of
these examples, the data are ordered by time and are referred to as time series data.
The underlying phenomenon which we are measuring (e.g. stock prices, interest rates,
etc.) is referred to as a variable. Time series data can be observed at many frequen-

2



cies. Commonly used frequencies are: annual (i.e. a variable is observed every year),
quarterly (i.e. four times a year), monthly, weekly or daily.2

In this book, we will use the notation Yt to indicate an observation on variable Y
(e.g. an exchange rate) at time t. A series of data runs from period t = 1 to t = T. “T ”
is used to indicate the total number of time periods covered in a data set. To give an
example, if we were to use monthly time series data from January 1947 through
October 1996 on the UK pound/US dollar exchange – a period of 598 months –
then t = 1 would indicate January 1947, t = 598 would indicate October 1996 and 
T = 598 the total number of months. Hence, Y1 would be the pound/dollar exchange
rate in January 1947, Y2 this exchange rate in February 1947, etc. Time series data are
typically presented in chronological order.

Working with time series data often requires some special tools, which are discussed
in Chapters 8–11.

Cross-sectional data

In contrast to the above, some researchers often work with data that is characterized
by individual units. These units might refer to companies, people or countries. For
instance, a researcher investigating theories relating to portfolio allocation might
collect data on the return earned on the stocks of many different companies. With
such cross-sectional data, the ordering of the data typically does not matter (unlike
time series data).

In this book, we use the notation Yi to indicate an observation on variable Y for
individual i. Observations in a cross-sectional data set run from unit i = 1 to N. By
convention, “N ” indicates the number of cross-sectional units (e.g. the number 
of companies surveyed). For instance, a researcher might collect data on the share
price of N = 100 companies at a certain point in time. In this case, Y1 will be equal
to the share price of the first company, Y2 the share price of the second company,
and so on.

The distinction between qualitative and quantitative data

It is worthwhile stressing an important distinction between types of data. In the pre-
ceding example, the researcher collecting data on share prices will have a number cor-
responding to each company (e.g. the price of a share of company 1 is $25). This is
referred to as quantitative data.

However, there are many cases where data does not come in the form of a single
number. For instance, in corporate finance a researcher may be interested in investi-
gating how companies decide between debt or equity financing of new investments.
In this case, the researcher might survey companies and obtain responses of the form
“Yes, we financed our investment by taking on debt” or “No, we did not finance our
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investment by taking on debt (instead we raised money by issuing new equity)”. Alter-
natively, in event-study analysis, interest centers on how events (e.g. a company’s
earning announcement) affects a company’s share price. In some cases, the events 
a researcher is studying come in the form of a simple Good News/Bad News
dichotomy.

Data that comes in categories (e.g. Yes/No or Good News/Bad News) are referred
to as qualitative. Such data arise often in finance when choices are involved (e.g. the
choice to invest or not to invest in a certain stock, to issue new equity or not, etc).
Financial researchers will usually convert these qualitative answers into numeric data.
For instance, in the debt financing example, we might set Yes = 1 and No = 0. Hence,
Y1 = 1 means that the first company financed its investment by taking on debt,
Y2 = 0 means that the second company did not. When variables can take on only the
values 0 or 1, they are referred to as dummy (or binary) variables. Working with
such variables is a topic that will be discussed in detail in Chapter 7.

Panel data

Some data sets will have both a time series and a cross-sectional component. This
data is referred to as panel data. For instance, research involving portfolio choice
might use data on the return earned by many companies’ shares for many months.
Alternatively, financial researchers studying exchange rate behavior might use data
from many countries for many months. Thus, a panel data set on Y = the exchange
rate for 12 countries would contain the exchange rate for each country in 1950 
(N = 12 observations), followed by the exchange rate for the same set of countries
in 1951 (another N = 12 observations), and so on. Over a period of T years, there
would be T ¥ N observations on Y.3

We will use the notation Yit to indicate an observation on variable Y for unit i at
time t. In the exchange rate example, Y11 will be the exchange rate in country 1, year
1, Y12 the exchange rate for country 1 in year 2, etc.

Data transformations: levels, growth rates,

returns and excess returns

In this book, we will mainly assume that the data of interest, Y, is directly available.
However, in practice, you may be required to take raw data from one source, and then
transform it into a different form for your empirical analysis. For instance, you may
take raw time series data on the variables X = company earnings, and W = number
of shares, and create a new variable: Y = earnings per share. Here the transformation
would be Y = X/W. The exact nature of the transformation required depends on the
problem at hand, so it is hard to offer any general recommendations on data trans-
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formation. Some special cases are considered in later chapters. Here it is useful to
introduce one common transformation that arises repeatedly in finance when using
time series data.

To motivate this transformation, note that in many cases we are not interested in
the price of an asset, but in the return that an investor would make from purchase
of the asset. This depends on how much the price of the asset will change over time.
Suppose, for instance, that we have annual data on the price of a share in a particu-
lar company for 1950–1998 (i.e. 49 years of data) denoted by Yt for t = 1 to 49. In
many empirical projects, this might be the variable of primary interest. We will refer
to such series as the level of the share price. However, people are often more inter-
ested in the growth of the share price. A simple way to measure growth is to take
the share price series and calculate a percentage change for each year. The percent-
age change in the share price between period t - 1 and t is calculated according to
the formula:

It is worth stressing that a percentage change always has a time scale associated with
it (e.g. the percentage change between period t - 1 and t ). For instance, with annual data
this formula would produce an annual percentage change, with monthly data the
formula would produce a monthly percentage change, etc.

As will be discussed in later chapters, it is sometimes convenient to take the natural
logarithm, or ln(.) of variables. The definition and properties of logarithms can be
found in the Appendix to Chapter 1 or virtually any introductory mathematics text-
book. Using the properties of logarithms, it can be shown that the percentage change
in a variable is approximately 100 ¥ [ln(Yt) - ln(Yt-1)]. This formula provides an alter-
native way of calculating a percentage change and is often used in practice.

The percentage change of an asset’s price is often referred to as the growth of the
price or the change in the price. It can also be referred to as the return if it reflects
the return that an investor purchasing the share would earn. However, to interpret
the growth of an asset’s price as the return an investor would make one has to assume
that there are no other income flows coming from holding the asset. For some assets
this may be a reasonable assumption. But where it is not reasonable, the formula for
a return has to be modified to include all income the investor would receive from
holding the asset. For instance, most stocks pay dividends. If we let Dt be the divi-
dend paid between period t - 1 and t then the return (which we denote by Rt) made
by an investor (measured as a percentage) would be

Another concept commonly used in finance is that of the excess return. This is the
difference between an asset’s return and that of some benchmark asset which is

Return = = - +( ) ¥-
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usually defined as a safe, low-risk asset (e.g. the return on a government bond). The
concept of an excess return is an important one, since investors will only take on the
risk of purchasing a particular asset if it is expected to earn more than a safe asset.
For instance, if the expected return on a (risky) company’s stock is 5% this might
sound like a good return. But if the investor can earn a 6% return by buying (safe)
government bonds, then the expected 5% return on the risky asset becomes much
less impressive. It is the excess return of holding a share that is important, not the
simple return. If the return on a risk-free asset is denoted by R0t, then the excess
return (ER ), measured as a percentage, on an asset is defined as:

Time series data will be discussed in more detail in Chapters 8–11. It is sufficient for
you to note here that we will occasionally distinguish between the level of a variable
and its growth rate, and that it is common to work with the returns an investor would
make from holding an asset.

Index numbers

Many variables that financial analysts work with come in the form of index numbers.
For instance, the common measures of stock price performance reported in the
media are indices. The Dow Jones Industrial Average (DJIA) and Standard & Poor’s
composite share index (S&P500) are stock price indices.

Appendix 2.1, at the end of this chapter, provides a detailed discussion of what
these are and how they are calculated. However, if you just want to use an index
number in your empirical work, a precise knowledge of how to calculate indices is
probably unnecessary. Having a good intuitive understanding of how an index
number is interpreted is sufficient. Accordingly, here in the body of the text we
provide only an informal intuitive discussion of index numbers.

Suppose you are interested in studying the performance of the stock market as a
whole and want a measure of how stock prices change over time. The question arises
as to how we measure “prices” in the stock market as a whole. The price of the stock
of an individual company (e.g. Microsoft, Ford or Wal-Mart, etc.) can be readily mea-
sured, but often interest centers not on individual companies, but on the stock market
as a whole. From the point of view of the investor, the relevant price would be the
price of a portfolio containing the sorts of shares that a typical investor might buy.
The price of this portfolio is observed at regular intervals over time in order to deter-
mine how prices are changing in the stock market as a whole. But the price of the
portfolio is usually not directly reported. After all, if you are told the price of an indi-
vidual share (e.g. the price of a share of Microsoft is $2.20), you have been told some-
thing informative, but if you are told “the price of a portfolio of representative
shares” is $1,400, that statement is not very informative. To interpret this latter
number, you would have to know what precisely was in the portfolio and in what

ER R Rt t t= - 0 .
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quantities. Given the thousands of shares bought and sold in a modern stock market,
far too much information would have to be given.

In light of such issues, data often comes in the form of a price index. Indices 
may be calculated in many ways, and it would distract from the main focus of
this chapter to talk in detail about how they are constructed (see Appendix 2.1 
for more detail). However, the following points are worth noting at the outset.
First, indices almost invariably come as time series data. Second, one time period 
is usually chosen as a base year and the price level in the base year is set to 100.4

Third, price levels in other years are measured in percentages relative to the base 
year.

An example will serve to clarify these issues. Suppose a price index for 4 years
exists, and the values are: Y1 = 100, Y2 = 106, Y3 = 109 and Y4 = 111. These numbers
can be interpreted as follows: The first year has been selected as a base year and,
accordingly, Y1 = 100. The figures for other years are all relative to this base year and
allow for a simple calculation of how prices have changed since the base year. For
instance, Y2 = 106 means that prices have risen from 100 to 106 – a 6% rise since the
first year. It can also be seen that prices have risen by 9% from year 1 to year 3 and
by 11% from year 1 to year 4. Since the percentage change in stock prices measures
the return (exclusive of dividends), the price index allows the person looking at the
data to easily see the return earned from buying the basket of shares which go into
making up the index. In other words, you can think of a price index as a way of pre-
senting price data that is easy to interpret and understand.

A price index is very good for measuring changes in prices over time, but should
not be used to talk about the level of prices. For instance, it should not be inter-
preted as an indicator of whether prices are “high” or “low”. A simple example illus-
trates why this is the case. At the time I am writing this, the DJIA is at 10,240 while
the S&P500 is at 1,142. This does not mean that the stocks in the DJIA portfolio are
worth almost ten times as much as the S&P500 portfolio. In fact, the two portfolios
contain shares from many of the same companies. The fact that they are different
from one another is due to their having different base years.

In our discussion, we have focussed on stock price indices, and these are indeed
by far the most common type of index numbers used in finance. However, it is worth
noting that there are many other price indices used in many fields. For example,
economists frequently use price indices which measure the prices of goods and ser-
vices in the economy. The economist faces the same sort of problem that the finan-
cial researcher does. The latter has to find ways of combining the information in the
stock prices of hundreds of individual companies while the former has to find ways
of combining information in the prices of millions of goods in a modern economy.
Indices such as the Consumer Price Index (CPI) are the solution and a commonly
reported measure of inflation is the change in the CPI. Since inflation plays a role in
many financial problems, such economic price indices are also of use to the financial
researcher.
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Furthermore, other types of indices (e.g. quantity indices) exist and should be inter-
preted in a similar manner to price indices. That is, they should be used as a basis for
measuring how phenomena have changed from a given base year.

This discussion of index numbers is a good place to mention another transfor-
mation which is used to deal with the effects of inflation. As an example, consider
the interest rate (e.g. the return earned on a savings deposit in a bank or the return
on a government bond). In times of high inflation, simply looking at an interest rate
can be misleading. If inflation is high (say 10%), then an investor who deposits money
in a savings account earning a lower rate of interest (say 5%) will actually lose money
on her investment. To be precise, if the investor initially deposits $100 in the savings
account, she will have $105 a year from now. But in the meantime the price of the
“portfolio of goods” used to construct the CPI will have gone up by 10%. So goods
which cost $100 originally will cost $110 a year later. The investor, with only $105
after a year, will actually end up being able to buy fewer goods than she could have
originally.

The issues discussed in the previous paragraph lead researchers to want to correct
for the effect of inflation. In the case of returns (e.g. the interest rate which mea-
sures the return the investor earns on her savings), the way to do this is to subtract
the inflation rate from the original return. To introduce some terminology, an inter-
est rate transformed in this way is called a real interest rate. The original interest
rate is referred to as a nominal interest rate. This distinction between real and
nominal variables is important in many investment decisions. The key things you
should remember is that a real return is a nominal return minus inflation and that real
returns have the effects of inflation removed from them.

Obtaining data

All of the data you need in order to understand the basic concepts and to carry out
the simple analyses covered in this book can be downloaded from the website asso-
ciated with this book (http://www.wiley.com/go/koopafd). However, in the future
you may need to gather your own data for an essay, dissertation or report. Financial
data come from many different sources and it is hard to offer general comments on
the collection of data. Below are a few key points that you should note about common
data sets and where to find them.

It is becoming increasingly common for financial researchers to obtain their data
over the Internet, and many relevant World Wide Web (www) sites now exist from
which data can be downloaded. You should be forewarned that the web is a rapidly
growing and changing place, so that the information and addresses provided here
might soon be outdated. Appropriately, this section is provided only to give an indi-
cation of what can be obtained over the Internet, and as such is far from complete.
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Some of the data sets available on the web are free, but many are not. Most uni-
versity libraries or computer centers subscribe to various databases which the student
can use. You are advised to check with your own university library or computer center
to see what data sets you have access to. There are many excellent databases of stock
prices and accounting information for all sorts of companies for many years. Unfor-
tunately, these tend to be very expensive and, hence, you should see whether your
university has a subscription to a financial database. Two of the more popular ones
are DataStream by Thompson Financial (http://www.datastream.com/) and
Wharton Research Data Services (http://wrds.wharton.upenn.edu/). With regards
to free data, a more limited choice of financial data is available through popular Inter-
net ports such as Yahoo! (http://finance.yahoo.com). The Federal Reserve Bank 
of St Louis also maintains a free database with a wide variety of data, including 
some financial time series (http://research.stlouisfed.org/fred2/). The Financial
Data Finder (http://www.cob.ohio-state.edu/fin/osudata.htm), provided by the
Fisher College of Business at the Ohio State University is also a useful source. Many
academics also make the data sets they have used available on their websites. For
instance, Robert Shiller at Yale University has a website which provides links to many
different interesting financial data sets (http://aida.econ.yale.edu/%7Eshiller/

index.html).
An extremely popular website among economists is “Resources for Economists

on the Internet” (http://rfe.wustl.edu/EconFAQ.html). This site contains all sorts
of interesting material on a wide range of economic topics, including links to many
sorts of financial data. On this site you can also find links to Journal Data Archives.
Many journals encourage their authors to make their data publicly available and,
hence, in some cases you can get financial data from published academic papers
through Journal Data Archives.

The general advice I want to give here is that spending some time searching the
Internet can often be very fruitful.

Working with data: graphical methods

Once you have your data, it is important for you to summarize it. After all, anybody
who reads your work will not be interested in the dozens or – more likely – hundreds
or more observations contained in the original raw data set. Indeed, you can think of
the whole field of financial econometrics as one devoted to the development and dis-
semination of methods whereby information in data sets is summarized in informa-
tive ways. Charts and tables are very useful ways of presenting your data. There are
many different types (e.g. bar chart, pie chart, etc.). A useful way to learn about the
charts is to experiment with the ChartWizard© in Excel. In this section, we will illus-
trate a few of the commonly used types of charts.
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Since most financial data is either in time series or cross-sectional form, we will
briefly introduce simple techniques for graphing both types of data.

Time series graphs

Monthly time series data from January 1947 through October 1996 on the UK
pound/US dollar exchange rate is plotted using the “Line Chart” option in Excel’s
ChartWizard© in Figure 2.1 (this data is located in Excel file EXRUK.XLS). Such charts
are commonly referred to as time series graphs. The data set contains 598 obser-
vations – far too many to be presented as raw numbers for a reader to comprehend.
However, a reader can easily capture the main features of the data by looking at the
chart. One can see, for instance, the attempt by the UK government to hold the
exchange rate fixed until the end of 1971 (apart from large devaluations in Septem-
ber 1949 and November 1967) and the gradual depreciation of the pound as it floated
downward through the middle of the 1970s.

Exercise 2.1

(a) File INTERESTRATES.XLS contains data on long-term interest rates and short-
term interest rates (measured as a percentage) from 1954Q1 to 1994Q2.5

Make one time series graph that contains both of these variables.
(b) Transform the long-term interest rate data to growth rates using the fact

that percentage changes are approximately 100 ¥ [ln(Yt) - ln(Yt-1)]. Make a
time series graph of the series you have created.
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Fig. 2.1 Time series graph of UK pound/US dollar exchange rate.



Histograms

With time series data, a chart that shows how a variable evolves over time is often
very informative. However, in the case of cross-sectional data, such methods are not
appropriate and we must summarize the data in other ways.

A key variable in many studies of international financial development is 
Gross Domestic Product (GDP) per capita, a measure of income per person. Excel
file GDPPC.XLS contains cross-sectional data on real GDP per capita in 1992 for 90
countries.6

One convenient way of summarizing this data is through a histogram. To construct
a histogram, begin by constructing class intervals or bins that divide the countries
into groups based on their GDP per capita. In our data set, GDP per person varies
from $408 in Chad to $17,945 in the USA. One possible set of class intervals is 0–2,000,
2,001–4,000, 4,001–6,000, 6,001–8,000, 8,001–10,000, 10,001–12,000, 12,001–14,000,
14,001–16,000 and 16,001 and over (where all figures are in US dollars).

Note that each class interval (with the exception of the 16,001 + category) is $2,000
wide. In other words, the class width for each of our bins is 2,000. For each class
interval we can count up the number of countries that have GDP per capita in that
interval. For instance, there are seven countries in our data set with real GDP per
capita between $4,001 and $6,000. The number of countries lying in one class inter-
val is referred to as the frequency7 of that interval. A histogram is a bar chart that
plots frequencies against class intervals.8

Figure 2.2 is a histogram of our cross-country GDP per capita data set that uses
the class intervals specified in the previous paragraph. Note that, if you do not wish
to specify class intervals, Excel will do it automatically for you. Excel also creates a
frequency table, which is located next to the histogram.
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The frequency table indicates the number of countries belonging to each class
interval (or bin). The numbers in the column labeled “Bin” indicate the upper bounds
of the class intervals. For instance, we can read that there are 33 countries with GDP
per capita less than $2,000; 22 countries with GDP per capita above $2,000 but less
than $4,000; and so on. The last row says that there are 4 countries with GDP per
capita above $16,000.

This same information is graphed in a simple fashion in the histogram. Graphing
allows for a quick visual summary of the cross-country distribution of GDP per
capita. We can see from the histogram that many countries are very poor, but that there
is also a “clump” of countries that are quite rich (e.g. 19 countries have GDP per
capita greater than $12,000). There are relatively few countries in between these poor
and rich groups (i.e. few countries fall in the bins labeled 8,000, 10,000 and 12,000).

Researchers often refer to this clumping of countries into poor and rich groups as
the “twin peaks” phenomenon. In other words, if we imagine that the histogram is
a mountain range, we can see a peak at the bin labeled 2,000 and a smaller peak at
14,000. These features of the data can be seen easily from the histogram, but would
be difficult to comprehend simply by looking at the raw data.
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Exercise 2.2

(a) Recreate the histogram in Figure 2.2.
(b) Create histograms using different class intervals. For instance, begin by

letting your software package choose default values and see what you get,
then try values of your own.

(c) If you are using Excel, redo questions (a) and (b) with the “Cumulative 
Percentage” box clicked on. What does this do?

XY-plots

Financial analysts are often interested in the nature of the relationships between two
or more variables. For instance: “What is the relationship between capital structure
(i.e. the division between debt and equity financing) and firm performance (e.g.
profit)?” “What is the relationship between the return on a company’s stock and the
return on the stock market as a whole?” “What are the effects of financial decisions
on the probability that a firm will go bankrupt?” “Are changes in the money supply
a reliable indicator of inflation changes?” “Do differences in financial regulation
explain why some countries are growing faster than others?”

The techniques described previously are suitable for describing the behavior of
only one variable; for instance, the properties of real GDP per capita across coun-
tries in Figure 2.2. They are not, however, suitable for examining relationships
between pairs of variables.



Once we are interested in understanding the nature of the relationships between
two or more variables, it becomes harder to use graphs. Future chapters will discuss
regression analysis, which is an important tool used by financial researchers working
with many variables. However, graphical methods can be used to draw out some
simple aspects of the relationship between two variables. XY-plots (also called
scatter diagrams) are particularly useful in this regard.

Figure 2.3 is a graph of data on executive compensation (i.e. the salary paid to the
chief executive, expressed in millions of dollars) for 70 companies, along with data
on the profits of the companies (i.e. profit expressed in millions of dollars). (This
data is available in Excel file EXECUTIVE.XLS.) It is commonly thought that there
should be a relationship between these two variables, either because more profitable
companies can afford to hire better chief executives (and pay them more) or because
executive talent leads to higher profits.

Figure 2.3 is an XY-plot of these two variables. Each point on the chart rep-
resents a particular company. Reading up the Y-axis (i.e. the vertical one) gives us 
the compensation of the chief executive in that company. Reading across the X-axis
(i.e. the horizontal one) gives us the profit of the company. It is possible to label 
each point with its corresponding company name. We have not done so here,
since labels for 70 companies would clutter the chart and make it difficult to 
read. However, one company, Company 43, has been labeled. Note that Company 
43 paid its chief executive $2.9 million (Y = 2.9) and had profits of $1,113 million 
(X = 1,113).
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The XY-plot can be used to give a quick visual impression of the relationship
between profits and executive compensation. An examination of this chart indicates
some support for the idea that a relationship between profits and executive com-
pensation does exist. For instance, if we look at companies with relatively low pro-
fits (less than $500 million, say), almost all of them compensate their executives at a
relatively low level (less than $1 million). If we look at companies with high profits
(e.g. over $1,500 million), almost all of them have high levels of executive compen-
sation (more than $2 million). This indicates that there may be a positive relation-

ship between profits and executive compensation (i.e. high values of one variable
tend to be associated with high values of the other; and low values, associated with
low values). It is also possible to have a negative relationship. This might occur, for
instance, if we substituted a measure of losses for profits in the XY-plot. In this case,
high levels of losses might be associated with low levels of executive compensation.

It is worth noting that the positive or negative relationships found in the data are
only “tendencies”, and, as such, do not hold necessarily for every company. That is,
there may be exceptions to the general pattern of profit’s association with high rates
of compensation. For example, on the XY-plot we can observe one company with
high profits of roughly $1,300 million, but low executive compensation of only
$700,000. Similarly, low profits can also be associated with high rates of compensa-
tion, as evidenced by one company with low profits of roughly $150 million, which
is paying its chief executive the high amount of almost $2.5 million. As researchers,
we are usually interested in drawing out general patterns or tendencies in the data.
However, we should always keep in mind that exceptions (in statistical jargon out-

liers) to these patterns typically exist. In some cases, finding out which companies
don’t fit the general pattern can be as interesting as the pattern itself.
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Exercise 2.3

In addition to the variables executive compensation and profit (discussed pre-
viously), the file EXECUTIVE.XLS contains data on the percentage change in
company sales over the last two years and on the percentage increase in company
debt over the same period. Construct and interpret XY-plots of these two vari-
ables (one at a time) against executive compensation. Does there seem to be a
positive relationship between executive compensation and the change in sales?
How about between executive compensation and the change in debt?

Working with data: descriptive statistics

Graphs have an immediate visual impact that is useful for livening up an essay or
report. However, in many cases it is important to be numerically precise. Later chap-
ters will describe common numerical methods for summarizing the relationship



between several variables in greater detail. Here we discuss briefly a few descriptive

statistics for summarizing the properties of a single variable. By way of motivation,
we will return to the concept of distribution introduced in our discussion on 
histograms.

In our cross-country data set, real GDP per capita varies across the 90 countries.
This variability can be seen by looking at the histogram in Figure 2.2, which plots the
distribution of GDP per capita across countries. Suppose you wanted to summarize
the information contained in the histogram numerically. One thing you could do is
to present the numbers in the frequency table in Figure 2.2. However, even this table
may provide too many numbers to be easily interpretable. Instead it is common to
present two simple numbers called the mean and standard deviation.

The mean is the statistical term for the average. The mathematical formula for the
mean is given by:

where N is the sample size (i.e. number of countries) and S is the summation 
operator (i.e. it adds up real GDP per capita for all countries). In our case, mean GDP
per capita is $5,443.80. Throughout this book, we will place a bar over a 
variable to indicate its mean (i.e. Y

–
is the mean of the variable Y, X

–
is the mean of

X, etc.).
The concept of the mean is associated with the middle of a distribution. For

example, if we look at the previous histogram, $5,443.80 lies somewhere in the middle
of the distribution. The cross-country distribution of real GDP per capita is quite
unusual, having the twin peaks property described earlier. It is more common for dis-
tributions of economic variables to have a single peak and to be bell-shaped. Figure
2.4 is a histogram that plots just such a bell-shaped distribution. For such distribu-
tions, the mean is located precisely in the middle of the distribution, under the single
peak.

Of course, the mean or average figure hides a great deal of variability across coun-
tries. Other useful summary statistics, which shed light on the cross-country variation
in GDP per capita, are the minimum and maximum. For our data set, minimum GDP
per capita is $408 (Chad) and maximum GDP is $17,945 (USA). By looking at the
distance between the maximum and minimum we can see how dispersed the distri-
bution is.

The concept of dispersion is quite important in finance and is closely related to
the concepts of variability and inequality. For instance, real GDP per capita in 1992
in our data set varies from $408 to $17,945. If poorer countries were, in the near
future, to grow quickly, and richer countries to stagnate, then the dispersion of real
GDP per capita in, say, 2012, might be significantly less. It may be the case that the
poorest country at this time will have real GDP per capita of $10,000 while the richest
country will remain at $17,945. If this were to happen, then the cross-country distri-
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bution of real GDP per capita would be more equal (less dispersed, less variable).
Intuitively, the notions of dispersion, variability and inequality are closely related.

The minimum and maximum, however, can be unreliable guidelines to dispersion.
For instance, what if, with the exception of Chad, all the poor countries, experienced
rapid economic growth between 1992 and 2012, while the richer countries did not
grow at all? In this case, cross-country dispersion or inequality would decrease over
time. However, since Chad and the USA did not grow, the minimum and maximum
would remain at $408 and $17,945, respectively.

A more common measure of dispersion is the standard deviation. Its mathe-
matical formula is given by:

although in practice you will probably never have to calculate it by hand.9 You 
can calculate it easily in Excel using either the Tools/Descriptive Statistics or the
Functions facility. Confusingly, statisticians refer to the square of the standard de-
viation as the variance (s2) and it is common to see either terminology used. So it is
important to remember this close relationship between the standard deviation and
the variance.

These measures have little direct intuition. In our cross-country GDP data set, the
standard deviation is $5,369.496 and it is difficult to get a direct feel for what 
this number means in an absolute sense. However, the standard deviation can be
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interpreted in a comparative sense. That is, if you compare the standard deviations
of two different distributions, the one with the smaller standard deviation will always
exhibit less dispersion. In our example, if the poorer countries were to suddenly expe-
rience economic growth and the richer countries to stagnate, the standard deviation
would decrease over time. As another example, consider the returns of two stocks
observed for many months. In some months the stocks earn high returns, in other
months they earn low returns. This variability in stock returns is measured by the vari-
ance. If one stock has a higher variance than the other stock, then we can say it
exhibits more variability. As the variability in stock returns relates to the risk involved
in holding the stock, the variance is very important in portfolio management.
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Exercise 2.4

Construct and interpret descriptive statistics for all the variables in 
EXECUTIVE.XLS.

Expected values and variances

In the previous section we talked about means and variances. If this were a statistics
textbook, we would actually have called them sample means and sample variances.
The word “sample” is added to emphasize that they are calculated using an actual
“sample” of data. For instance, in our cross-country GDP data set we took the data
we had and calculated (using Excel) exact numbers for Y

–
and s. We found these to

be $5,443.80 and $5,369.496, respectively. These are the sample mean and standard
deviation calculated using the data set at hand.

As another example, suppose we have collected data on the return to holding stock
in a company for the past 100 months. We can use this data to calculate the mean and
variance. However, these numbers are calculated based on the historical performance
of the company. In finance, we are often interested in predicting future stock returns.
By definition we do not know exactly what these will be, so we cannot calculate sample
means and variances as we did above. But a potential investor would be interested in
some similar measures. That is, this investor would be interested in the typical return
which she might expect. She might also be interested in the risk involved in purchas-
ing the stock. The concept of a typical expected value sounds similar to the ideas we
discussed relating to the mean. The concept of riskiness sounds similar to the idea of
a variance we discussed above. In short, we need concepts like the sample mean and
variance, but for cases when we do not actually have data to calculate them. The 
relevant concepts are the population mean and population variance.

If this were a statistics book, we would now get into a long discussion of the dis-
tinction between population and sample concepts involving probability theory and
many equations. However, for the student who is interested in doing financial data
analysis, it is enough to provide some intuition and definitions.



A conventional statistics textbook might begin motivating population and sample
concepts through an example. Consider, for instance, the height of every individual
in the USA. In the population as a whole there is some average height (the popula-
tion mean height) and some variance of heights (the population variance). This 
population mean and variance will be unknown, unless someone actually went out
and measured the height of every person in the USA.

However, a researcher might have data on the actual heights of 100 people (e.g. a
medical researcher might measure the height of each of 100 patients). Using the data
for 100 people, the researcher could calculate and s2. These are the sample mean
and variance. These will be actual numbers. The medical researcher could then use
these numbers as estimates (or approximations) for what is going on in the country
as a whole (i.e. sample means and variances can be used as estimates for population
means and variances). However, despite these relationships it is important to stress
that sample and population concepts are different with the former being actual
numbers calculated using the data at hand and the latter being unobserved.

Perhaps the previous two paragraphs are enough to intuitively motivate the dis-
tinction between sample and population means and variances. To see why financial
analysts need to know this distinction (and to introduce some notation), let us use
our example of a potential investor interested in the potential return she might make
from buying a stock. Let Y denote next month’s return on this stock. From the
investor’s point of view, Y is unknown. The typical return she might expect is mea-
sured by the population mean and is referred to as the expected value. We use the
notation E(Y ) to denote the expected return. Its name accurately reflects the intui-
tion for this statistical concept. The “expected value” sheds light on what we expect
will occur.

However, the return on a stock is rarely exactly what is expected [i.e. rarely will you
find Y to turn out to be exactly E(Y )]. Stock markets are highly unpredictable, some-
times the return on stocks could be higher than expected, sometimes it could be lower
than expected. In other words, there is always risk associated with purchasing a stock.
A potential investor will be interested in a measure of this risk. Variance is a common
way of measuring this risk. We use the notation var(Y ) for this.

To summarize, in the previous section on descriptive statistics we motivated the
use of the sample mean and variance, Y

–
and s2, to give the researcher an idea of the

average value and dispersion, respectively, in a data set. In this section, we have moti-
vated their population counterparts, E(Y ) and var(Y ), as having similar intuition but
being relevant for summarizing information about an uncertain outcome (e.g. the
return on a stock next month). This is probably enough intuition about the mean and
variance operator for you to master the concepts and techniques used in this book.
However, for the reader interested in how E(Y ) and var(Y ) are calculated, we provide
the following example.

Suppose you are an investor trying to decide whether to buy a stock based on its
return next month. You do not know what this return will be. You are quite confi-
dent (say, 70% sure) that the markets will be stable, in which case you will earn a 1%
return. But you also know there is a 10% chance the stock market will crash, in which

Y
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case the stock return will be -10%. There is also a 20% probability that good news
will boost the stock markets and you will get a 5% return on your stock.

Let us denote this information using symbols as there being three possible outcomes
(good, normal, bad) as 1, 2, 3. So, for instance, Y1 = 0.05 will denote the 5% return if
good times occur. We will use the symbol “P” for probability and the same subscript-
ing convention. Thus, P3 = 0.10 will denote the 10% probability of a stock market crash.
We can now define the expected return as a weighted average of all the possible outcomes:

In words, the expected return on the stock next month is 0.7% (i.e. a bit less than 1%).
In our example, we have assumed that there are only three possible outcomes next

month. In general, if there are K possible outcomes,10 the formula for the expected
value is:

The formula for var(Y ) is similar to that for s2 presented in the previous section.
It also has a similar lack of intuition and, hence, we shall not discuss it in detail. For
the case where we have K possible outcomes, the variance of Y is defined as:

The key thing to remember is that var(Y) is a measure of the dispersion of the pos-
sible outcomes which could occur and, thus, is closely related to the concept of risk.

var .Y P Y E Yi ii
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Chapter summary

1. Financial data come in many forms. Common types are time series, cross-
sectional and panel data.

2. Financial data can be obtained from many sources. The Internet is becom-
ing an increasingly valuable repository for many data sets.

3. Simple graphical techniques, including histograms and XY-plots, are useful
ways of summarizing the information in a data set.

4. Many numerical summaries can be used. The most important are the mean,
a measure of the location of a distribution, and the standard deviation, a
measure of how spread out or dispersed a distribution is.

5. If Y is a variable which could have many outcomes, then the expected value,
E(Y ), is a measure of the typical or expected outcome (e.g. the expected
return on a stock next month) and the variance, var(Y ), is a measure of the
dispersion of possible outcomes (e.g. relating to the riskiness in holding a
stock next month).



Appendix 2.1: Index numbers

To illustrate the basic ideas in constructing a stock price index, we use the data shown
in Table 2.1.1 on the stock price of three fictitious companies: Megaco, Monstroco
and Minico.

Calculating a Megaco price index

We begin by calculating a price index for a single company, Megaco, before proceed-
ing to the calculation of a stock price index. As described in the text, calculating a
price index involves first selecting a base year. For our Megaco price index, let us
choose the year 2000 as the base year (although it should be stressed that any year
can be chosen). By definition, the value of the Megaco price index is 100 in this base
year. How did we transform the price of Megaco in the year 2000 to obtain the price
index value of 100? It can be seen that this transformation involved taking the price
of Megaco in 2000 and dividing by the price of Megaco in 2000 (i.e. dividing the
price by itself) and multiplying by 100. To maintain comparability, this same trans-
formation must be applied to the price of Megaco in every year. The result is a stock
price index for Megaco (with the year 2000 as the base year). This is illustrated in
Table 2.1.2.

From the Megaco stock price index, it can be seen that between 2000 and 2003
the price of stock in Megaco increased by 4.4% and in 1999 the price of Megaco’s
stock was 97.8%, as high as in 2000.
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Table 2.1.1 Stock prices of companies in different years.

Megaco Monstroco Minico

1999 0.89 0.44 1.58
2000 0.91 0.43 1.66
2001 0.91 0.46 1.90
2002 0.94 0.50 2.10
2003 0.95 0.51 2.25

Table 2.1.2 Calculating a Megaco stock price index.

Price of Megaco Transformation Price index

1999 0.89 ¥100 ∏ 0.91 97.8
2000 0.91 ¥100 ∏ 0.91 100
2001 0.91 ¥100 ∏ 0.91 100
2002 0.94 ¥100 ∏ 0.91 103.3
2003 0.95 ¥100 ∏ 0.91 104.4



Calculating a stock price index

When calculating the Megaco stock price index (a single company), all we had to look
at was the stock price of Megaco. However, if we want to calculate a stock price index
(involving several companies), then we have to combine the prices of all stocks
together somehow. One thing you could do is simply average the prices of all stock
prices together in each year (and then construct a price index in the same manner as
for the Megaco stock price index). However, this strategy is usually inappropriate
since it implicitly weights all companies equally to one another. Let us suppose, as
their names indicate, that Megaco and Monstroco are huge companies with a large
amount of stock outstanding, traded on many stock exchanges. In contrast, we
suppose Minico to be a tiny company with only a small amount of stock outstand-
ing, traded only rarely on a local stock exchange. A simple average just would add up
the stock prices of these three companies and divide by three. In our example (and
many real world applications), this equal weighting is unreasonable.11 An examination
of Table 2.1.1 reveals that the stock prices of Megaco and Monstroco are going 
up only slightly over time (and, in some years, they are not changing or even 
dropping). However, the price of Minico’s stock is going up rapidly over time.
Megaco and Monstroco are common stocks purchased frequently by many people,
whereas Minico is a small obscure company purchased by a tiny minority of people.
In light of this, it is unreasonable to weight all three companies equally when calcu-
lating a stock price index. A stock price index which was based on a simple average
would reveal stock prices were growing at a fairly rapid rate (i.e. combining the slow
growth of Megaco and Monstroco’s stocks with the very fast growth of Minico would
yield a stock price index which indicates moderately fast growth). However, if the
financial analyst were to use such a price index to report “stock prices are increasing
at a fairly rapid rate”, the vast majority of people would find this report inconsistent
with their own experience. That is, the vast majority of people only have shares of
Megaco and Monstroco in their portfolios and their prices are growing only slowly
over time.

The line of reasoning in the previous paragraph suggests that a stock price index
which weights all companies equally will not often be a sensible one. It also suggests
how one might construct a sensible stock price index: use a weighted average of the
prices of all stocks to construct an index where the weights are chosen so as to reflect
the importance of each company. In our stock price index, we would want to attach
more weight to Megaco and Monstroco (the big companies) and little weight to the
tiny Minico.

There are many different ways of choosing such weights. But most share the idea
that stocks should be weighted by the size or importance of the underlying company.
The S&P500 weights companies by their market capitalization (i.e. the price per share
times the total number of shares outstanding).12 Sometimes, such indices are referred
to as “value-weighted”. For empirical work, it is usually acceptable to understand this
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intuition and a knowledge of the precise calculations performed in calculating a value-
weighted stock price index is not necessary. However, for the interested reader, the
remainder of Appendix 2.1 describes these calculations in the context of our simple
example.

A value-weighted stock price index can be written in terms of a mathematical
formula. Let P denote the price of a stock, Q denote the market capitalization and
subscripts denote the company and year with Megaco being company 1, Monstroco
company 2 and Minico company 3. Thus, for instance, P1,2000, is the stock price of
Megaco in the year 2000, Q3,2002 is the market capitalization of Minico in 2002, etc.
See the Appendix 1.1 if you are having trouble understanding this subscripting nota-
tion or the summation operator used below.

With this notational convention established, a value-weighted price index (PI) in
year t (for t = 1999, 2000, 2001, 2002 and 2003) can be written as:

Note that the numerator of this formula takes the price of each stock and multiplies
it by the current market capitalization. This ensures that Megaco and Monstroco
receive much more weight in the index than Minico. We will not explain the deno-
minator. For the more mathematically inclined, the denominator ensures that the
weights in the weighted average sum to one (which is necessary to ensure that it is a
proper weighted average) and that 2000 is the base year.

Table 2.1.3 presents the market capitalization (in millions of dollars) for our three
companies. Table 2.1.4 shows the calculation of the value-weighted stock price index
using the stock price data of Table 2.1.1 and the market capitalization data of Table
2.1.3.

The values from the last column can be interpreted as with any price index. So, for
instance, we can say that stock prices rose by 10.4% between 2000 and 2003.
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Table 2.1.3 Market capitalization (millions of dollars).

Megaco Monstroco Minico

1999 100 78 1
2000 100 82 1
2001 98 86 3
2002 94 87 4
2003 96 88 5



Appendix 2.2: Advanced descriptive statistics

The mean and standard deviation are the most common descriptive statistics but
many others exist. The mean is the simplest measure of location of a distribution.
The word “location” is meant to convey the idea of the center of the distribution.
The mean is the average. Other common measures of location are the mode and
median.

To distinguish between the mean, mode and median, consider a simple example.
Seven people report their respective incomes in £ per annum as: £18,000, £15,000,
£9,000, £15,000, £16,000, £17,000 and £20,000. The mean, or average, income of
these seven people is £15,714.

The mode is the most common value. In the present example, two people have
reported incomes of £15,000. No other income value is reported more than once.
Hence, £15,000 is the modal income for these seven people.

The median is the middle value. That is, it is the value that splits the distribution
into two equal halves. In our example, it is the income value at which half the people
have higher incomes and half the people have lower incomes. Here the median is
£16,000. Note that three people have incomes less than the median and three have
incomes higher than it.

The mode and median can also be motivated through consideration of Figures 2.2
and 2.4, which plot two different histograms or distributions. A problem with the
mode is that there may not be a most common value. For instance, in the GDP per
capita data set (GDPPC.XLS), no two countries have precisely the same values. So there
is no value that occurs more than once. For cases like this, the mode is the highest
point of the histogram. A minor practical problem with defining the mode in this
way is that it can be sensitive to the choice of class intervals (and this is why 
Excel gives a slightly different answer for the mode for GDPPC.XLS than the one given
here). In Figure 2.2, the histogram is highest over the class interval labeled 2,000.
Remember, Excel’s choice of labeling means that the class interval runs from 0 to
2,000. Hence, we could say that “the class interval 0 to 2,000 is the modal (or most
likely) value”. Alternatively, it is common to report the middle value of the relevant
class interval as the mode. In this case, we could say, “the mode is $1,000”. The mode
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Table 2.1.4 Calculating the value-weighted stock price index.

Numerator = Denominator =
S3

i=1Pit Qit S3
i=1Pi,2000Qit Price index

1999 124.90 126.20 99.0
2000 127.92 127.92 100
2001 134.44 131.14 102.5
2002 140.26 129.59 108.2
2003 147.33 133.50 110.4



is probably the least commonly used of the three measures of location introduced
here.

To understand the median, imagine that all the area of the histogram is shaded.
The median is the point on the X-axis which divides this shaded area precisely in half.
For Figure 2.4 the highest point (i.e. the mode) is also the middle point that divides
the distribution in half (i.e. the median). It turns out it is also the mean. However, in
Figure 2.2 the mean ($5,443.80), median ($3,071.50) and mode ($1,000) are quite 
different.

Other useful summary statistics are based on the notion of a percentile. Consider
our GDP per capita data set. For any chosen country, say Belgium, you can ask “how
many countries are poorer than Belgium?” or, more precisely, “what proportion of
countries are poorer than Belgium?”. When we ask such questions we are, in effect,
asking what percentile Belgium is at. Formally, the Xth percentile is the data value
(e.g. a GDP per capita figure) such that X % of the observations (e.g. countries) have
lower data values. In the cross-country GDP data set, the 37th percentile is $2,092.
This is the GDP per capita figure for Peru. 37% of the countries in our data set are
poorer than Peru.

Several percentiles relate to concepts we have discussed before. The 50th percentile
is the median. The minimum and maximum are the 0th and 100th percentile. The
percentile divides the data range up into hundredths, while other related concepts use
other basic units. Quartiles divide the data range up into quarters. Hence, the first
quartile is equivalent to the 25th percentile, the second quartile, the 50th percentile
(i.e. the median) and the third quartile, the 75th percentile. Deciles divide the data
up into tenths. In other words, the first decile is equivalent to the 10th percentile, the
second decile, the 20th percentile, etc.

After the standard deviation, the most common measure of dispersion is the inter-

quartile range. As its name suggests, it measures the difference between the third
and first quartiles. For the cross-country data set, 75% of countries have GDP per
capita less than $9,802 and 25% have GDP per capita less than $1,162. In other words,
$1,162 is the first quartile and $9,802 is the third quartile. The inter-quartile range is
$9,802-$1,162 = $8,640.

Endnotes

1. As emphasized in Chapter 1, this is not a book about collecting data. Nevertheless, it is
useful to offer a few brief pointers about how to look for data sets.

2. Some researchers even work with data observed more frequently than this. For instance,
in a stock market one can record the price of a stock every time it is traded. Since, for
some companies’ shares, the time between trades is measured in seconds (or even less)
such data is recorded at a very high frequency. Such data sets are useful for investigating
market micro-structure. We will not discuss such data sets nor models of market micro-
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structure in this book. The Econometrics of Financial Markets by Campbell, Lo and 
MacKinlay has a chapter on this topic.

3. Another type of data occurs if, say, a researcher carries out a survey of a different set of
companies each year. This is not the same as panel data and is referred to as repeated
cross-sectional data.

4. Some indices set the base year value to 1.00, 10 or 1000 instead of 100.
5. 1954Q1 means the first quarter (i.e. January, February and March) of 1954.
6. Real GDP per capita in every country has been converted into US dollars using purchasing

power parity exchange rates. This allows us to make direct comparisons across countries.
7. Note that the use of the word “frequency” here as meaning “the number of observations

that lie in a class interval” is somewhat different from the use of the word “frequency”
in time series analysis (see the discussion of time series data above).

8. Excel creates the histogram using the Histogram command (in Tools/Data Analysis). It
simply plots the bins on the horizontal axis and the frequency (or number of observa-
tions in a class) on the vertical axis. Note that most statistics books plot class intervals
against frequencies divided by class width. This latter strategy corrects for the fact that class
widths may vary across class intervals. In other words, Excel does not calculate the 
histogram correctly. Provided the class intervals are the same width (or nearly so) this
error is not of great practical importance.

9. In some textbooks, a slightly different formula for calculating the standard deviation is
given where the N - 1 in the denominator is replaced by N.

10. The case where there is a continuity of possible outcomes has similar intuition to the case
with K outcomes, but is mathematically more complicated. Since we are only interested
in providing intuition, we will not discuss this case.

11. An exception to this is the DJIA which does equally weight the stock prices of all com-
panies included in making the index. Note, however, that the DJIA is based only on a set
of large companies, so the problem of different-sized companies receiving equal weight
in a simple average is lessened.

12. This statement holds for the most commonly reported S&P500 Index, although we note
that Standard & Poor’s produces many stock price indices, including an S&P500 Equal
Weight Index.
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C H A P T E R

Correlation

3

Often financial analysts are interested in investigating the nature of the relationship
between different variables, such as the amount of debt that companies hold and 
their market capitalization or their risk and return. Correlation is an important way
of numerically quantifying the relationship between two variables. A related concept,
introduced in future chapters, is regression, which is essentially an extension of
correlation to cases of three or more variables. As you will quickly find as you read
through this chapter and those that follow, it is no exaggeration to say that correla-
tion and regression are the most important unifying concepts of this book.

In this chapter, we will first describe the theory behind correlation, and then work
through a few examples designed to think intuitively about the concept in different
ways.

Understanding correlation

Let X and Y be two variables (e.g. market capitalization and debt, respectively) and let
us also suppose that we have data on i = 1, . . . , N different units (e.g. companies).
The correlation between X and Y is denoted by the small letter, r, and its precise
mathematical formula is given in Appendix 3.1. Of course, in practice, you will never
actually have to use this formula directly. Any spreadsheet or statistics software
package will do it for you. In Excel, you can use the Tools/Data Analysis or Function
Wizard© to calculate them. It is usually clear from the context to which variables r

refers. However, in some cases we will use subscripts to indicate that rXY is the corre-
lation between variables X and Y, rXZ the correlation between variables X and Z, etc.



Once you have calculated the correlation between two variables you will obtain a
number (e.g. r = 0.55). It is important that you know how to interpret this number.
In this section, we will try to develop some intuition about correlation. First, however,
let us briefly list some of the numerical properties of correlation.

Properties of correlation

1. r always lies between -1 and 1. That is, -1 £ r £ 1.
2. Positive values of r indicate a positive correlation between X and Y. Nega-

tive values indicate a negative correlation. r = 0 indicates that X and Y are
uncorrelated.

3. Larger positive values of r indicate stronger positive correlation. r = 1 indicates
perfect positive correlation. Larger negative values1 of r indicate stronger negative
correlation. r = -1 indicates perfect negative correlation.

4. The correlation between Y and X is the same as the correlation between X and Y.
5. The correlation between any variable and itself (e.g. the correlation between Y and

Y ) is 1.

Understanding correlation through verbal reasoning

Statisticians use the word “correlation” in much the same way as the layperson does.
The following continuation of the executive compensation/profit example from
Chapter 2 will serve to illustrate verbal ways of conceptualizing the concept of
correlation.
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Example: The correlation between executive 

compensation and profit

Let us suppose that we are interested in investigating the relationship between
executive compensation and profit. Remember that Excel file EXECUTIVE.XLS

contains data on these variables (and others) for a cross-section of 70 compa-
nies. Using Excel, we find that the correlation between executive compensation
(Y ) and profit (X ) is 0.66. Being greater than zero, this number allows us to
make statements of the following form:

1. There is a positive relationship (or positive association) between executive
compensation and profit.
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2. Companies with high profits tend to have high levels of executive compen-
sation. Companies with low profits tend to have low levels of executive 
compensation. Note that we use the word “tend” here. A positive correla-
tion does not mean that every company with high profits necessarily has a
high level of executive compensation but, rather, that this is the general ten-

dency. It is possible that a few individual companies do not follow this
pattern (see the discussion of outliers in Chapter 2).

3. Compensation levels vary across companies as do profits (for this reason we
call them “variables”). Some companies pay their executives well, others pay
them relatively poorly. This high/low cross-company variance in compensa-
tion tends to “match up” with the high/low variance in profits.

All that the preceding statements require is for r to be positive.2 It is somewhat
more difficult to get an intuitive feel for the exact number of the correlation
(e.g. how is a correlation of 0.66 different from 0.26?). The XY-plots discussed
below offer some help, but here we will briefly note an important point to which
we shall return when we discuss regression:

4. The degree to which executive compensation varies across companies 
can be measured numerically using the formula for the standard deviation
(and variance) discussed in Chapter 2. As mentioned in point 3 above,
the fact that compensation and profits are positively correlated means 
that their patterns of cross-company variability tend to match up. The cor-
relation squared (r 2 ) measures the proportion of the cross-company vari-
ability in compensation that matches up with, or is explained by, the variance
in profits. In other words, correlation is a numerical measure of the degree
to which patterns in X and Y correspond. In our compensation/profits
example, since 0.662 = 0.44, we can say that 44% of the cross-company vari-
ance in compensation can be explained by the cross-company variance in
profits.

Exercise 3.1

(a) Using the data in EXECUTIVE.XLS, calculate and interpret the mean, stan-
dard deviation, minimum and maximum of executive compensation and
profits.

(b) Verify that the correlation between these two variables is 0.66.
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Example: The determinants of market capitalization

Investors and financial researchers are interested in understanding how the
stock market values a firm’s equity (i.e. its shares). In a fundamental sense, the
value of a firm’s shares (i.e. its market capitalization) should reflect investors’
expectations of the firm’s future profitability. However, data on expected future
profitability is non-existent. Instead, empirical financial studies must use mea-
sures such as current income, sales, assets and debt of the firm as variables we
can observe now but may influence the future prospects of the firm.

Excel file EQUITY.XLS contains data on N = 309 US firms in 1996. Data on
the following variables is provided. All variables are measured in millions of US
dollars.

• MARKETCAP = the total value of all shares. This is calculated as the price
per share times the number of shares outstanding.

• DEBT = the amount of long-term debt held by the firm.
• SALES = total sales of the firm.
• INCOME = net income of the firm.
• ASSETS = book value of the assets of the firm (i.e. what an accountant

would judge the firm’s assets to be worth).

We will use this data set in subsequent chapters, but here we focus on Y =
MARKETCAP and X = SALES. If we calculate the correlation between these
two variables, we find rXY = 0.41.

The following statements can be made about market capitalization using this
data set:

1. Companies with large sales tend to be worth more (as measured by market
capitalization) than those with small sales.

2. There is a positive relationship between sales and market capitalization.
3. The variance in sales accounts for 17% (i.e. 0.412 = 0.17) of the variability

in market capitalization.

Example: House prices in Windsor, Canada

Many financial theories involve pricing of a good or an asset. Here we give an
example of pricing a particularly important asset: a house. For most people, the
house they own is the biggest asset they have. Thus, housing is a big compo-
nent in most people’s portfolios. Given the importance of housing, many
researchers in finance and real estate economics have sought to understand how
houses are priced.



The above example allows us to motivate briefly an issue of importance, namely, that
of causality. Researchers are often interested in finding out whether one variable
“causes” another. We will not provide a formal definition of causality here but instead
will use the word in its everyday meaning. In this example, it is sensible to use the
positive correlation between house price and lot size to reflect a causal relationship.
That is, lot size is a variable that directly influences (or causes) house prices. However,
house prices do not influence (or cause) lot size. In other words, the direction of
causality flows from lot size to house prices, not the other way around. In our
sales/market capitalization example a similar story can be told. Companies with high
sales (indicating financial health) are valued more highly by the market. It is the high
sales which cause the markets to value them highly, not the high market valuation
which boosts sales.

Another way of thinking about these issues is to ask yourself what would happen
if a homeowner were to purchase some adjacent land, and thereby increase the lot
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The Excel file HPRICE.XLS contains data relating to N = 546 houses sold 
in Windsor, Canada in the summer of 1987. It contains the selling price (in
Canadian dollars) along with many characteristics for each house. We will use
this data set extensively in future chapters, but for now let us focus on just a
few variables. In particular, let us assume that Y = the sales price of the house
and X = the size of its lot in square feet, lot size being the area occupied by the
house itself plus its garden or yard. The correlation between these two variables
is rXY = 0.54.

The following statements can be made about house prices in Windsor:

1. Houses with large lots tend to be worth more than those with small lots.
2. There is a positive relationship between lot size and sales price.
3. The variance in lot size accounts for 29% (i.e. 0.542 = 0.29) of the variabil-

ity in house prices.

Now let us add a third variable, Z = number of bedrooms. Calculating 
the correlation between house prices and number of bedrooms, we obtain 
rYZ = 0.37. This result says, as we would expect, that houses with more bed-
rooms tend to be worth more than houses with fewer bedrooms.

Similarly, we can calculate the correlation between number of bedrooms and
lot size. This correlation turns out to be rXZ = 0.15, and indicates that houses
with larger lots also tend to have more bedrooms. However, this correlation is
very small and quite unexpectedly, perhaps, suggests that the link between lot
size and number of bedrooms is quite weak. In other words, you may have
expected that houses on larger lots, being bigger, would have more bedrooms
than houses on smaller lots. But the correlation indicates that there is only a
weak tendency for this to occur.



size of her house. This action would tend to increase the value of the house (i.e. an
increase in lot size would cause the price of the house to increase). However, if you
reflect on the opposite question: “will increasing the price of the house cause lot size
to increase?” you will see that the opposite causality does not hold (i.e. house price
increases do not cause lot size increases). For instance, if house prices in Windsor
were suddenly to rise for some reason (e.g. due to a boom in the economy) this would
not mean that houses in Windsor suddenly got bigger lots. Similarly, financial ana-
lysts, noting an increase in a firm’s sales, may be tempted to purchase the stock (driving
up its price and, hence, its market capitalization). But if the market capitalization of
a firm increases, that will not cause its sales to increase.

The discussion in the previous paragraph could be repeated with “lot size” replaced
by “number of bedrooms”. That is, it is reasonable to assume that the positive cor-
relation between Y = house prices and Z = number of bedrooms is due to Z ’s influ-
encing (or causing) Y, rather than the opposite. Note, however, that it is difficult to
interpret the positive (but weak) correlation between X = lot size and Y = number of
bedrooms as reflecting causality. That is, there is a tendency for houses with many
bedrooms to occupy large lots, but this tendency does not imply that the former
causes the latter.

One of the most important things in empirical work is knowing how to interpret
your results. The house example illustrates this difficulty well. It is not enough just to
report a number for a correlation (e.g. rXY = 0.54). Interpretation is important too.
Interpretation requires a good intuitive knowledge of what a correlation is in addi-
tion to a lot of common sense about the financial phenomenon under study. Given
the importance of interpretation in empirical work, the following section will present
several examples to show why variables are correlated and how common sense can
guide us in interpreting them.
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Exercise 3.2

(a) Using the data in HPRICE.XLS, calculate and interpret the mean, standard
deviation, minimum and maximum of Y = house price (labeled “sale price”
in HPRICE.XLS), X = lot size and Z = number of bedrooms (labeled
“#bedroom”).

(b) Verify that the correlation between X and Y is the same as given in the
example. Repeat for X and Z then for Y and Z.

(c) Now add a new variable, W = number of bathrooms (labeled “#bath”).
Calculate the mean of W.

(d) Calculate and interpret the correlation between W and Y. Discuss to what
extent it can be said that W causes Y.

(e) Repeat part (d) for W and X and then for W and Z.



Understanding why variables are correlated

In our executive compensation/profits example, we discovered that executive com-
pensation and profits are indeed correlated positively, indicating a positive relation-
ship between the two. But what exact form does this relationship take? As discussed
above, we often like to think in terms of causality or influence, and it may indeed be
the case that correlation and causality are closely related. For instance, the finding 
that profits and compensation are correlated could mean that the former directly
causes the latter. Similarly, the finding of a positive correlation between sales and
market capitalization could be interpreted as meaning that more profit does directly 
influence market capitalization. However, as the following examples demonstrate,
the interpretation that correlation implies causality is not always necessarily an 
accurate one.
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Example: Correlation does not necessarily imply causality

It is widely accepted that cigarette smoking causes lung cancer. Let us assume
that we have collected data from many people on (a) the number of cigarettes
each person smokes per week (X ) and (b) on whether they have ever had or
now have lung cancer (Y ). Since smoking causes cancer we would undoubtedly
find rXY > 0; that is, that people who smoked tend to have higher rates of lung
cancer than non-smokers. Here the positive correlation between X and Y indi-
cates direct causality.

Now suppose that we also have data on the same people, measuring the
amount of alcohol they drink in a typical week. Let us call this variable Z.
In practice, it is the case that heavy drinkers also tend to smoke and, hence,
rXZ > 0. This correlation does not mean that cigarette smoking also causes
people to drink. Rather it probably reflects some underlying social attitudes. It
may reflect the fact, in other words, that people who smoke do not worry about
their nutrition, or that their social lives revolve around the pub, where drinking
and smoking often go hand in hand. In either case, the positive correlation
between smoking and drinking probably reflects some underlying cause (e.g.
social attitude), which in turn causes both. Thus, a correlation between two vari-
ables does not necessarily mean that one causes the other. It may be the case
that an underlying third variable is responsible.

Now consider the correlation between lung cancer and heavy drinking. Since
people who smoke tend to get lung cancer more, and people who smoke also
tend to drink more, it is not unreasonable to expect that lung cancer rates will
be higher among heavy drinkers (i.e. rYZ > 0). Note that this positive correla-
tion does not imply that alcohol consumption causes lung cancer. Rather, it is



In our house price example, however, it is likely that the positive correlations we
observed reflect direct causality. For instance, having a larger lot is considered by most
people to be a good thing in and of itself, so that increasing the lot size should directly
increase the value of a house. There is no other intervening variable here, and hence
we say that the causality is direct.3

The general message that should be taken from these examples is that correlations

can be very suggestive, but cannot on their own establish causality. In the smoking/cancer
example above, the finding of a positive correlation between smoking and lung
cancer, in conjunction with medical evidence on the manner in which substances in
cigarettes trigger changes in the human body, have convinced most people that
smoking causes cancer. In the house price example, common sense tells us that the
variable, number of bedrooms, directly influences house prices. In finance, the
concept of correlation can be used in conjunction with common sense or a con-
vincing financial theory to establish causality.
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cigarette smoking that causes cancer, but smoking and drinking are related to
some underlying social attitude. This example serves to indicate the kind of
complicated patterns of causality which occur in practice, and how care must
be taken when trying to relate the concepts of correlation and causality.

Exercise 3.3

People with university education tend to hold higher paying jobs than those with
fewer educational qualifications. This could be due to the fact that a university
education provides important skills that employers value highly. Alternatively, it
could be the case that smart people tend to go to university and that employers
want to hire these smart people (i.e. a university degree is of no interest in and
of itself to employers).

Suppose you have data on Y = income, X = number of years of schooling
and Z = the results of an intelligence test4 of many people, and that you have
calculated rXY, rXZ and rYZ. In practice, what signs would you expect these cor-
relations to have? Assuming the correlations do have the signs you expect, can
you tell which of the two stories in the paragraph above is correct?

Understanding correlation through XY-plots

Intuition about the meaning of correlations can also be obtained from the XY-plots
described in Chapter 2. Recall that in this chapter we discussed positive and negative
relationships based on whether the XY-plots exhibited a general upward or down-



ward slope.5 If two variables are correlated, then an XY-plot of one against the other
will also exhibit such patterns. For instance, the XY-plot of executive compensation
density against profit exhibits an upward sloping pattern (see Figure 2.3). This plot
implies that these two variables should be positively correlated, and we find that this
is indeed the case from the correlation, r = 0.66. The important point here is that 
positive correlation is associated with upward sloping patterns in the XY-plot and
negative correlation is associated with downward sloping patterns. All the intuition
we developed about XY-plots in the previous chapter can now be used to develop
intuition about correlation.

Figure 3.1 uses the Windsor house price data set (HPRICE.XLS) to produce an XY-
plot of X = lot size against Y = house price. Recall that the correlation between these
two variables was calculated as rXY = 0.54, which is a positive number. This positive
(upward sloping) relationship between lot size and house price can clearly be seen in
Figure 3.1. That is, houses with small lots (i.e. small X-axis values) also tend to have
small prices (i.e. small Y-axis values). Conversely, houses with large lots tend to have
high prices.

The previous discussion relates mainly to the sign of the correlation. However,
XY-plots can also be used to develop intuition about how to interpret the magnitude
of a correlation, as the following examples illustrate.

Figure 3.2 is an XY-plot of two perfectly correlated variables (i.e. r = 1). Note that
they do not correspond to any actual financial data, but were simulated on the com-
puter. All the points lie exactly on a straight line.

Correlation 41

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000

Lot size (square feet)

H
ou

se
 p

ric
e 

(C
an

ad
ia

n 
do

lla
rs

)

Fig. 3.1 XY-plot of house price versus lot size.



Figure 3.3 is an XY-plot of two variables which are positively correlated (r = 0.51),
but not perfectly correlated. Note that the XY-plot still exhibits an upward sloping
pattern, but that the points are much more widely scattered.

Figure 3.4 is an XY-plot of two completely uncorrelated variables (r = 0). Note
that the points seem to be randomly scattered over the entire plot.

Plots for negative correlation exhibit downward sloping patterns, but otherwise the
same sorts of patterns noted above hold for them. For instance, Figure 3.5 is an XY-
plot of two variables that are negatively correlated (r = -0.58).
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These figures illustrate one way of thinking about correlation: correlation indicates
how well a straight line can be fit through an XY-plot. Variables that are strongly cor-
related fit on or close to a straight line. Variables that are weakly correlated are more
scattered in an XY-plot.

44 Analysis of financial data

Exercise 3.4

The file EX34.XLS contains four variables: Y, X1, X2 and X3.

(a) Calculate the correlation between Y and X1. Repeat for Y and X2 and for Y

and X3.
(b) Create an XY-plot involving Y and X1. Repeat for Y and X2 and for Y and

X3.
(c) Interpret your results for (a) and (b).

Correlation between several variables

Correlation is a property that relates two variables together. Frequently, however,
researchers must work with several variables. For instance, market capitalization might
depend on the firm’s assets, income, debts and many other characteristics of the firm.
As we shall see in subsequent chapters, regression is the most appropriate tool for
use if the analysis contains more than two variables. Yet it is also not unusual for
empirical researchers, when working with several variables, to calculate the correla-
tion between each pair. This calculation is laborious when the number of variables is
large. For instance, if we have three variables, X, Y and Z, then there are three pos-
sible correlations (i.e. rXY, rXZ and rYZ). However, if we add a fourth variable, W, the
number increases to six (i.e. rXY, rXZ, rXW, rYZ, rYW and rZW). In general, for M different
variables there will be M ¥ (M - 1)/2 possible correlations. A convenient way of
ordering all these correlations is to construct a matrix or table, as illustrated by the
following example.

CORMAT.XLS contains data on three variables labeled X, Y and Z. X is in the first
column, Y the second and Z the third. Using Excel, we can create the following cor-
relation matrix (Table 3.1) for these variables.

Table 3.1 The correlation matrix for X, Y, and Z.

Column 1 Column 2 Column 3

Column 1 1
Column 2 0.318237 1
Column 3 -0.13097 0.096996 1



The number 0.318237 is the correlation between the variable in the first column
(X ), and that in the second column (Y ). Similarly, -0.13097 is the correlation between
X and Z, and 0.096996, the correlation between Y and Z. Note that the 1s in the cor-
relation matrix indicate that any variable is perfectly correlated with itself.
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Exercise 3.5

(a) Using the data in EXECUTIVE.XLS, calculate and interpret a correlation
matrix involving executive compensation, profit, change in sales and change
in debt.

(b) Repeat part (a) using the following variables in the data set HPRICE.XLS:
house price, lot size, number of bedrooms, number of bathrooms and
number of stories. How many individual correlations have you calculated?

Covariances and population correlations

In the previous chapter, we discussed means and variances and distinguished between
sample and population variants. So, for instance, the sample mean was denoted by 
and was the average calculated using the data at hand. The population mean was
denoted by E(Y ) and called the expected value. It was a more theoretical concept.
We motivated it with an example where Y was next month’s return on a stock. This
is not known exactly, but the financial analyst is often able to predict what he would
expect the return to be. This is E(Y ). However, there is uncertainty associated with
the analyst’s prediction and this is measured through the (population) variance,
denoted var(Y ).

The same sample/population distinction holds with correlations. We will use the
notation r to denote the population correlation (remember r is our notation for the
sample correlation). To motivate why such a concept might be useful, consider a port-
folio consisting of the shares of two companies. The expected return of the port-
folio depends on the expected returns of the two individual stocks. What is the risk
of this portfolio? In the preceding chapter we related the risk of an individual stock
to its variance. But with a portfolio of stocks the correlation between their returns is
also important. The financial analyst is, thus, interested in r when evaluating the risk-
iness of a portfolio.

To illustrate the previous point, suppose an investor is interested in investing over
the summer months in the shares of two companies: an umbrella manufacturer and
an ice cream maker. Sales of these two companies are susceptible to the weather. If
it is a hot, sunny summer, then ice cream makers do well (and owners of their stock
make large returns). But if the summer is rainy, sales are very poor for the ice cream
makers (and owners of their stock make small or negative returns). Hence, it seems

Y



like shares in the ice cream company are very risky. Shares in the umbrella manufac-
turer are also very risky – but for exactly the opposite reasons. Sunny summers are
bad for umbrella sales, whereas rainy summers ensure good sales.

However, the overall portfolio is much less risky than the individual stocks. When-
ever one of the stocks does poorly, the other does well. In a rainy summer, the
investor will earn a good return on the part of her portfolio in umbrella stocks but
a bad return on the part in ice cream stocks. In a sunny summer, the opposite will
occur. Hence, the investor’s portfolio will be quite safe – earning an adequate return
regardless of the weather.

In statistical language, the previous example shows how the correlation between
the returns on the shares in the two companies is a crucial factor in assessing the risk-
iness of a portfolio. In our example, this correlation was negative (i.e. whenever one
stock made a good return, the other made a bad return). In practice, of course, the
correlations between the returns in shares of two different companies may be posi-
tive or negative.

The previous discussion is meant to motivate why correlation is an important
concept for the financial analyst. To develop a formula for exactly what the popula-
tion correlation is requires us to take a slight detour and introduce the concept of a
covariance. Remember that, in Chapter 2, we introduced the formula for the vari-
ance. We considered a case where Y was an unknown variable (e.g. the return of a
stock in a future month) and supposed there were K possible outcomes (e.g. return
of 1%, return of 2%, etc.). The probability of each outcome occurring was denoted
by Pi for i = 1, . . . , K. The variance of Y is defined as:

Covariance is a closely related concept, except that two variables, Y and X are
involved. The formula for covariance is:

The population correlation is the covariance normalized so as to have the same prop-
erties as the sample correlation (see the list “Properties of correlation” near the begin-
ning of this chapter and replace r by r). It has the following formula:

Knowledge of this exact formula is rarely required in this textbook. However, it is
crucial to have some intuition about correlation and how it depends on the variances
and covariances of two variables.

As with means and variances, it is common for sample concepts to be used as esti-
mates of population concepts. So, to return to our ice cream/umbrella example, the
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portfolio manager would be interested in knowing r: the population correlation
between the stock returns in the two companies. The portfolio manager might collect
data from the last 20 summers on stock returns for the two companies and use this
data to calculate r : the sample correlation. The sample correlation could then be used
as an estimate of r.
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Chapter summary

1. Correlation is a common way of measuring the relationship between two
variables. It is a number that can be calculated using Excel or any spread-
sheet or econometric software package.

2. Correlation can be interpreted in a common sense way as a numerical
measure of a relationship or association between two variables.

3. Correlation can also be interpreted graphically by means of XY-plots. That
is, the sign of the correlation relates to the slope of a best fitting line through
an XY-plot. The magnitude of the correlation relates to how scattered the
data points are around the best fitting line.

4. Correlations can arise for many reasons. However, correlation does not nec-
essarily imply causality between two variables.

5. The population correlation, r, is a useful concept when talking about many
issues in finance (e.g. portfolio management).

Appendix 3.1: Mathematical details

The correlation between X and Y is referred to by the small letter r and is calculated
as:

where and are the means of X and Y (see Chapter 2). More intuitively, note
that if we were to divide the numerator and denominator of the previous expression
by N - 1, then the denominator would contain the product of the standard devia-
tions of X and Y, and the numerator, the covariance between X and Y.
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Endnotes

1. By “larger negative values” we mean more negative. For instance, -0.9 is a larger negative
value than -0.2.

2. If r were negative, the opposite of these statements would hold. For instance, high values
of X would be associated with low values of Y, etc.

3. An alternative explanation is that good neighborhoods tend to have houses with large lots.
People are willing to pay extra to live in a good neighborhood. Thus, it is possible that
houses with large lots tend also to have higher sales prices, not because people want large
lots, but because they want to live in good neighborhoods. In other words, “lot size” may
be acting as a proxy for the “good neighborhood” effect. We will discuss such issues in
more detail in later chapters on regression. You should merely note here that the inter-
pretation of correlations can be quite complicated and a given correlation pattern may be
consistent with several alternative stories.

4. It is a controversial issue among psychologists and educators as to whether intelligence
tests really are meaningful measures of intelligence. For the purposes of answering this
question, avoid this controversy and assume that they are indeed an accurate reflection of
intelligence.

5. We will formalize the meaning of “upward” or “downward” sloping patterns in the XY-
plots when we come to regression. To aid in interpretation, think of drawing a straight line
through the points in the XY-plot that best captures the pattern in the data (i.e. is the best
fitting line). The upward or downward slope discussed here refers to the slope of this line.
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C H A P T E R

An introduction to 

simple regression

4

Regression is an important tool financial researchers use to understand the relation-
ship among two or more variables. Even when, as done in later chapters, we move
beyond regression and use slightly more complicated methods, the intuition provided
by regression is of great use. This motivates why we devote this chapter (and the next
three) to regression. It is important for the reader to develop the basic tools of regres-
sion before proceeding on to more sophisticated methods.

In finance, most empirical work involves time series data. However, as we shall see
in the second half of this book, working with time series data requires some 
specialized tools. Hence, with some exceptions,1 for the next few chapters you will
not see too many examples involving financial time series data. The examples in this
chapter will mostly involve cross-sectional data. The reader interested in more tradi-
tional applications involving financial time series can be reassured that they will re-
appear starting in Chapter 8. However, before we get to time series methods, a 
good understanding of basic regression is required.

Regression is particularly useful for the common case where there are many vari-
ables and the interactions between them are complex. All of the examples consid-
ered in Chapter 3 really should have involved many variables. For instance, market
capitalization likely depends on many characteristics of the firm, such as sales, assets,
income, etc. Executive compensation likely does not depend solely on firm profits,
but also on other firm characteristics. The price of a house, as well, depends on many
characteristics (e.g. number of bedrooms, number of bathrooms, location of house,
size of lot, etc.). Many variables must be included in a model seeking to explain why
some houses are more expensive than others.



These examples are not unusual. Many problems in finance are of a similar level
of complexity. Unfortunately, the basic tool you have encountered so far – simple
correlation analysis – cannot handle such complexity. For these more complex cases
– that is, those involving more than two variables – regression is the tool to use.

Regression as a best fitting line

As a way of understanding regression, let us begin with just two variables (Y and X ).
We refer to this case as simple regression. Multiple regression, involving many vari-
ables, will be discussed in Chapter 6. Beginning with simple regression makes sense
since graphical intuition can be developed in a straightforward manner and the rela-
tionship between regression and correlation can be illustrated quite easily.

Let us return to the XY-plots used previously (e.g. Figure 2.3 which plots profits
against executive compensation for many companies or Figure 3.1 which plots lot
size against house price). We have discussed in Chapters 2 and 3 how an examination
of these XY-plots can reveal a great deal about the relationship between X and Y. In
particular, a straight line drawn through the points on the XY-plot provides a con-
venient summary of the relationship between X and Y. In regression analysis, we for-
mally analyze this relationship.

To start with, we assume that a linear relationship exists between Y and X. As an
example, you might consider Y to be the market capitalization variable and X to be
the sales variable from data set EQUITY.XLS. Remember that this data set contained
the market capitalization of 309 American firms with several characteristics for 
each firm. It is sensible to assume that the sales of the firm affects its market 
capitalization.

We can express the linear relationship between Y and X mathematically as:2

where a is the intercept of the line and b is the slope. This equation is referred to as
the regression line. If in actuality we knew what a and b were, then we would know
what the relationship between Y and X was. In practice, of course, we do not have
this information. Furthermore, even if our regression model, which posits a linear
relationship between Y and X, were true, in the real world we would never find that
our data points lie precisely on a straight line. Factors such as measurement error
mean that individual data points might lie close to but not exactly on a straight line.

For instance, suppose the price of a house (Y) depends on the lot size (X ) in the
following manner: Y = 34,000 + 7X (i.e. a = 34,000 and b = 7). If X were 5,000 square
feet, this model says the price of the house should be Y = 34,000 + 7 ¥ 5,000 =
$69,000. But, of course, not every house with a lot size of 5,000 square feet will have
a sales price of precisely $69,000. No doubt in this case, the regression model is
missing some important variables (e.g. number of bedrooms) that may affect the price

Y X= +a b ,
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of a house. Furthermore, the price of some houses might be higher than they should
be (e.g. if they were bought by irrationally exuberant buyers). Alternatively, some
houses may sell for less than their true worth (e.g. if the sellers have to relocate to 
a different city and must sell their houses quickly). For all these reasons, even if
Y = 34,000 + 7X is an accurate description of a straight line relationship between
Y and X, it will not be the case that every data point lies exactly on the line.

Our house price example illustrates a truth about regression modeling: the linear

regression model will always be only an approximation of the true relation-

ship. The truth may differ in many ways from the approximation implicit in the linear
regression model. In many financial applications, the most probable source of error
is due to missing variables, usually because we cannot observe them. In our previous
example, house prices reflect many variables for which we can easily collect data (e.g.
number of bedrooms, number of bathrooms, etc.). But they will also depend on many
other factors for which it is difficult if not impossible to collect data (e.g. the number
of loud parties held by neighbors, the degree to which the owners have kept the prop-
erty well-maintained, the quality of the interior decoration of the house, etc.). The
omission of these variables from the regression model will mean that the model
makes an error.

We call all such errors e. The regression model can now be written as:

In the regression model, Y is referred to as the dependent variable, X the explana-

tory variable, and a and b, coefficients. It is common to implicitly assume that the
explanatory variable “causes” Y, and the coefficient b measures the influence of X

on Y. In light of the comments made in the previous chapter about how correlation
does not necessarily imply causality, you may want to question the assumption that
the explanatory variable causes the dependent variable. There are two responses that
can be made to this statement.

First, note that we talk about the regression model. A model specifies how dif-
ferent variables interact. For instance, models of salary determination posit that 
executive compensation should depend on firm profitability. Such models have the
causality “built-in” and the purpose of a regression involving Y = executive com-
pensation and X = profit is to measure the magnitude of the effect of profit on com-
pensation only (i.e. the causality assumption may be reasonable and we do not mind
assuming it). Secondly, we can treat the regression purely as a technique for general-
izing correlation and interpret the numbers that the regression model produces purely
as reflecting the association between variables. (In other words, we can drop the
causality assumption if we wish.3)

In light of the error, e, and the fact that we do not know what a and b are,
the first problem in regression analysis is how we can figure approximately, or esti-

mate, what a and b are. It is standard practice to refer to the estimates of a and
b as and (i.e. and are actual numbers that the computer calculates, for
instance, = 34,136 and = 6.599, which are estimates of the unknown true valuesb̂â

b̂âb̂â

Y X e= + +a b .
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a = 34,000 and b = 7). One can interpret the estimates as being obtained from a line
drawn through the points on an XY-plot which fits best. Hence, we must define what
we mean by “best fitting line”.

Before we do this, it is useful to make a distinction between errors and residuals.
The error is defined as the distance between a particular data point and the true
regression line. Mathematically, we can rearrange the regression model to write 
ei = Yi - a - bXi. This is the error for the ith observation. However, if we replace a
and b by their estimates and , we get a straight line which is generally a little dif-
ferent from the true regression line. The deviations from this estimated regression
line are called residuals. We will use the notation “u” when we refer to residuals. That
is, the residuals are given by ui = Yi - - Xi. If you find the distinction between
errors and residuals confusing, you can probably ignore it in the rest of this book and
assume errors and residuals are the same thing. However, if you plan on further study
of financial econometrics, this distinction becomes crucial.

If we return to some basic geometry, note that we can draw one (and only one)
straight line connecting any two distinct points. Thus, in the case of two points, there
is no doubt about what the best fitting line through an XY-plot is. However, typically
we have many points – for instance, our executive compensation/profit example has
70 different companies and the XY-plots 70 points – and there is ambiguity about
what is the “best fitting line”. Figure 4.1 plots three data points (A, B and C) on an
XY graph. Clearly, there is no straight line that passes through all three points. The
line I have drawn does not pass through any of them; each point, in other words, is
a little bit off the line. To put it another way: the line drawn implies residuals that are
labeled u1, u2 and u3. The residuals are the vertical difference between a data point and
the line. A good fitting line will have small residuals.

The usual way of measuring the size of the residuals is by means of the sum of
squared residuals (SSR), which is given by:

b̂â

b̂â
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for i = 1, . . . , N data points. We want to find the best fitting line which minimizes
the sum of squared residuals. For this reason, estimates found in this way are called
least squares estimates (or ordinary least squares – OLS – to distinguish them from
more complicated estimators which we will not discuss in this book).

In practice, software packages such as Excel can automatically find values for 
and which will minimize the sum of squared residuals. The exact formulae 

for and can be derived using simple calculus, but we will not derive them here
(see Appendix 4.1 for more details).

b̂â
b̂â

SSR = uii

N 2
1
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An introduction to simple regression 53

Example: The regression of executive compensation on profits

Consider again the data set EXECUTIVE.XLS, which contains data on profits and
executive compensation for 70 companies. It makes sense to assume that prof-
itability influences executive pay rather than the other way around.4 Thus we
choose executive compensation as the dependent variable (i.e. Y = executive
compensation) and profits as the explanatory variable (i.e. X = profits). Using
Excel (Tools/Data Analysis/Regression) we obtain = 0.60 and = 0.000842.
To provide some more jargon, note that when we estimate a regression model
it is common to say that “we run a regression of Y on X ”.

Note also that it is actually very easy to calculate these numbers in most sta-
tistical software packages. Appropriately, we will turn instead to the more impor-
tant issue: how do we interpret these numbers.

b̂â

Interpreting OLS estimates

In the example of the relationship between executive compensation and profits, we
obtained OLS estimates for the intercept and slope of the regression line. The ques-
tion now arises: how should we interpret these estimates? The intercept in the regres-
sion model, a, usually has little financial interpretation so we will not discuss it here.
However, b is typically quite important. This coefficient is the slope of the best fitting
straight line through the XY-plot. In the executive compensation/profits example,

was positive. Remembering the discussion on how to interpret correlations in the
previous chapter, we note that since is positive X and Y are positively correlated.
However, we can go further in interpreting if we differentiate the regression model
and obtain:

dY

dX
= b.

b̂
b̂

b̂



Even if you do not know calculus, the verbal intuition of the previous expression is
not hard to provide. Derivatives measure how much Y changes when X is changed by
a small (marginal) amount. Hence, b can be interpreted as the marginal effect of X

on Y and is a measure of how much X influences Y. To be more precise, we can inter-
pret b as a measure of how much Y tends to change when X is changed by one unit.5

The definition of “unit” in the previous sentence depends on the particular data set
being studied and is best illustrated through examples. Before doing this, it should be
stressed that regressions measure tendencies in the data (note the use of the word
“tends” in the explanation of b above). It is not necessarily the case that every obser-
vation (e.g. company or house) fits the general pattern established by the other obser-
vations. In Chapter 2 we called such unusual observations outliers and argued that, in
some cases, examining outliers could be quite informative. In the case of regression,
outliers are those with residuals that stand out as being unusually large. Hence, exam-
ining the residuals from a regression is a common practice. (In Excel you can examine
the residuals by clicking on the box labeled “Residuals” in the regression menu.)
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Example: Regression of executive compensation on profits

(continued from page 53)

In the executive compensation/profits example we obtained = 0.000842. This
is a measure of how much executive compensation tends to change when profit
changes by a small amount. Since profit and compensation are measured in 
millions of dollars, this figure implies that if profit goes up by $1 million (i.e. a
change of one unit in the explanatory variable), then executive compensation
will tend to increase by 0.000842 million dollars (or $842).

b̂

Exercise 4.1

The Excel data set EXECUTIVE.XLS contains data on Y = executive compensation,
X = profits, W = percentage change in sales and Z = percentage change in debt.

(a) Run a regression of Y on X and interpret the results.
(b) Run a regression of Y on W and one of Y on Z and interpret the results.
(c) Create a new variable, V, by dividing X by 100. What are the units in terms

of which V is measured?
(d) Run a regression of Y on V. Compare your results to those for (a). How do

you interpret your coefficient estimate of b? How does differ between a)
and d)?

(e) Experiment with scaling dependent and explanatory variables (i.e. by divid-
ing them by a constant) and see what effect this has on your coefficient 
estimates.

â



Fitted values and R2: measuring the fit of a

regression model

In the preceding discussion we learned how to calculate and interpret regression coef-
ficients, and . Furthermore, we explained that regression finds the “best fitting”
line in the sense that it minimizes the SSR. However, it is possible that the “best” fit
is not a very good fit at all. Appropriately, it is desirable to have some measure of fit
(or a measure of how good the best fitting line is). The most common measure of
fit is referred to as the R2. It relates closely to the correlation between Y and X. In
fact, for the simple regression model, it is the correlation squared. This provides the
formal statistical link between regression and correlation. However, the previous dis-
cussion should make the informal links between correlation and regression clear. Both
are interested in quantifying the degree of association between different variables and
both can be interpreted in terms of fitting lines through XY-plots.

To derive and explain R2, we will begin with some background material. We start
by clarifying the notion of a fitted value. Remember that regression fits a straight
line through an XY-plot, but does not pass precisely through each point on the plot
(i.e. an error is made). In the case of our executive compensation/profits example,
this meant that individual companies did not lie on the regression line. The fitted
value for observation i is the value that lies on the regression line corresponding to
the Xi value for that particular observation (e.g. house, company). In other words, if
you draw a straight vertical line through a particular point in the XY-plot, the inter-
section of this vertical line and the regression line is the fitted value corresponding
to the point you chose.

Alternatively, we can think of the idea of a fitted value in terms of the formula
for the regression model:

Remember that adding i subscripts (e.g. Yi) indicates that we are referring to a par-
ticular observation (e.g. the ith company or the house). If we ignore the error, we 
can say that the model’s prediction of Yi should be equal to a +bXi. If we replace a
and b by the OLS estimates and , we obtain a so-called “fitted” or “predicted”
value for Yi:

Note that we are using the value of the explanatory variable and the OLS estimates
to predict the dependent variable. By looking at actual (Yi) versus fitted ( i) values
we can gain a rough impression of the “goodness of fit” of the regression model.
Many software packages allow you to print out the actual and fitted values for each
observation. An examination of these values not only gives you a rough measure of
how well the regression model fits, they allow you to examine individual observations
to determine which ones are close to the regression line and which are not. Since the

Ŷ

ˆ ˆ ˆ .Y Xi i= +a b

b̂â

Y X ei i i= + +a b .

b̂â
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regression line captures general patterns or tendencies in your data set, you can see
which observations conform to the general pattern and which do not.
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Exercise 4.2

Using the data in EXECUTIVE.XLS (see Exercise 4.1), run a regression of Y on
X and graphically and numerically compare actual and fitted values. In Excel this
can be done by running the regression with the box clicked on labeled “Line Fit
Plot” in the Regression menu (i.e. look at the columns labeled “Residual Output”
and the accompanying display chart).

We have defined the residual made in fitting our best fitting line previously. Another
way to express this residual is in terms of the difference between the actual and fitted
values of Y. That is:

Software packages such as Excel can also plot or list the residuals from a regression
model. These can be examined in turn to give a rough impression of the goodness
of fit of the regression model. We emphasize that unusually big residuals are outliers
and sometimes these outliers are of interest.

u Y Yi i i= - ˆ .

Exercise 4.3

(a) Using the data in EXECUTIVE.XLS (see Exercise 4.1) run a regression of Y

on X and graphically and numerically compare residuals. In Excel this can
be done with the boxes labeled “Residuals” and “Residual Plots” in the
regression menu clicked on. How would you interpret the residuals? Are
there any outliers?

(b) Repeat question (a) for the other variables, W and Z in this data set.

To illustrate the kind of information with which residual analysis can provide us,
take a look at your computer output from Exercise 4.3 (a). In the Residual Output,
observation 39 has a fitted value of 2.93 and a residual of -1.63. By adding these two
figures together (or by looking at the original data), you can see that the actual com-
pensation paid to the chief executive by this company is 1.3. What do all these
numbers imply? Note that the regression model is predicting a much higher value
(2.93) for compensation than actually occurred (1.3) in this company. This means that
this company is getting a much cheaper chief executive than the regression model
implies.



The ideas of a residual and a fitted value are important in developing an informal
understanding of how well a regression model fits. However, we still lack a formal
numerical measure of fit. At this stage, we can now derive and motivate such a
measure: R2.

Recall that variance is the measure of dispersion or variability of the data. Here
we define a closely related concept, the total sum of squares or TSS:

Note that the formula for the variance of Y is TSS/(N - 1) (see Chapter 2). Loosely
speaking, the N - 1 term will cancel out in our final formula for R2 and, hence, we
ignore it. So think of TSS as being a measure of the variability of Y. The regression
model seeks to explain the variability in Y through the explanatory variable X. It can
be shown that the total variability in Y can be broken into two parts as:

where RSS is the regression sum of squares, a measure of the explanation provided
by the regression model.6 RSS is given by:

Remembering that SSR is the sum of squared residuals and that a good fitting regres-
sion model will make the SSR very small, we can combine the equations above to
yield a measure of fit:

or, equivalently,

Intuitively, the R2 measures the proportion of the total variance of Y that can be
explained by X. Note that TSS, RSS and SSR are all sums of squared numbers and,
hence, are all non-negative. This implies TSS ≥ RSS and TSS ≥ SSR. Using these facts,
it can be seen that 0 £ R2 £ 1.

Further intuition about this measure of fit can be obtained by noting that small
values of SSR indicate that the regression model is fitting well. A regression line which
fits all the data points perfectly in the XY-plot will have no errors and hence 
SSR = 0 and R2 = 1. Looking at the formula above, you can see that values of R2

near 1 imply a good fit and that R2 = 1 implies a perfect fit. In sum, high values of
R2 imply a good fit and low values a bad fit.

An alternative source of intuition is provided by the RSS. RSS measures how much
of the variation in Y the explanatory variables explain. If RSS is near TSS, then the

R
2 = RSS

TSS
.

R
2 1= - SSR

TSS

RSS = -( )Â ˆ .Y Yi

2

TSS RSS SSR= + ,

TSS = -( )Â Y Yi

2
,
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explanatory variables account for almost all of the variability and the fit will be a good
one. Looking at the previous formula you can see that the R2 is near one in this case.

Another property of R2 can be used to link regression and correlation. It turns out
that the R2 from the regression of Y on X is exactly equal to the square of the cor-
relation between Y and X. Regression is really just an extension of correlation. Yet,
regression also provides you with an explicit expression for the marginal effect (b),
which is often important for policy analysis.
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Exercise 4.4

(a) Using the data in EXECUTIVE.XLS (see exercise 4.1) run a regression of Y on
X using Excel. What is the R2?

(b) Calculate the correlation between Y and X.
(c) Discuss the relationship between your answers in (a) and (b).
(d) Redo (a) for various regressions involving the variables W, X, Y and Z in

the data set. Comment on the fit of each of these regressions.

Example: The capital asset pricing model

This book is about the analysis of financial data, not about financial theory (e.g.
the theory of investor behavior).7 However, it is instructive occasionally to give
a flavor of some of the theory that financial analysts use to motivate their
empirical work. In this example, we briefly describe a simple variant of the
capital asset pricing model (CAPM). This is a very popular model and it, or
extensions of it, are widely used by financial analysts. We show how it yields a
simple regression which can be estimated using OLS. Of the concepts used in
this example, we have discussed the return and excess return of an asset in
Chapter 2, the expected value and variance operators in Chapter 2 and the
covariance in Chapter 3. Please review this material now if you cannot remem-
ber what they are.

An important issue when deciding on an investment portfolio is the trade-
off between risk and expected return. After all, some assets the investor could
purchase are very safe (e.g. government bonds or cash), while others are mod-
erately safe (e.g. purchasing the shares of an established blue-chip company)
and others are much more risky (e.g. purchasing the shares of a newly estab-
lished dot.com). As discussed in Chapter 2, variance can be related to risk (e.g.
variance can be interpreted as measuring the variability of the return on an
asset). There is a large theoretical literature on mean-variance efficient port-

folios that trade off risk and return in an optimal manner. The CAPM is an
implication of this theory. To explain the CAPM, we need to define the returns
on three types of assets. We will let R be the return on the asset under study
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(e.g. the return on holding a share in a particular company, call it Company A),
Rf be the risk free rate of interest (e.g. the return on a very safe investment
such as a government bond) and Rm be the return on the market portfolio.
The market portfolio is formally defined as a portfolio containing the shares of
every possible company with portfolio weights proportional to each company’s
market capitalization. In empirical work, the market portfolio is usually proxied
using a stock market index such as the S&P500, NYSE or FTSE.

We will not derive the CAPM, but merely state some of its main implications
and provide some intuitive motivation for it. When deciding on a portfolio, the
investor does not know for certain the return of the stocks that are available
for purchase; hence we have to talk in terms of expected returns. It is assumed
that the return on the risk free asset is known (e.g. when the investor buys gov-
ernment bonds she knows how much their return will be in the future). The
CAPM implies:

Thus, the expected return on the share of Company A is equal to the risk free
rate plus b times the expected excess return on the market portfolio (remem-
ber that an excess return is a return minus the return on a safe asset). On a
broad level, this makes sense. Investors could have bought the safe asset or the
market portfolio. Investors’ decisions on whether to buy shares in Company A
will thus depend on the returns on the other available options. And investors’
decisions determine the price of shares in Company A. Thus, its expected return
can reasonably be expected to depend on Rf and E(Rm).

The precise relationship depends on b, which is commonly referred to as the
CAPM beta or investor’s beta which is given by:

The CAPM b thus depends on the covariance between the return on Company
A’s shares and the return on the market portfolio. Thus, it is closely related to
the correlation between these two variables (see the section on Covariances and
Population Correlations in Chapter 3). This is sensible since it relates to the old
adage that one should not put all one’s eggs in one basket. That is, it is wise for
an investor to diversify their portfolio since this will reduce risk.

To understand the CAPM better, consider what happens when Company A’s
shares are just as volatile as the stock market as a whole and movements in the
one perfectly match the other. Every time the stock market rises, Company A’s
shares rise by the same amount. Every time the stock market falls, Company A’s
shares fall by the same amount. In this case, it can be confirmed that b = 1 and
the CAPM equation implies that both expected returns have to be the same as
one another. Intuitively, if shares in Company A and the stock market as a whole

b = ( )
( )

cov ,
var

.
R R

R

m
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E R R E R Rf m f( ) = + ( ) -[ ]b .
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are exactly as risky as one another then their expected returns must be the 
same. If the stock market index had a higher expected return, then no investor
would ever buy the (equally risky, but with lower expected return) shares of
Company A.

In contrast, consider what would happen if returns to Company A’s stock
were negatively correlated with the stock market as a whole. Then, it can be
seen that b is negative. Note that the expected excess return on the market port-
folio is positive (since if E(Rm) < Rf then no one would ever invest in the stock
market – they would prefer the safe higher return of the risk free asset). Using
these facts in the CAPM equation, it can be seen that they imply E(R) < Rf and
the expected excess return to Company’s A shares is actually negative! How can
this be? In this case, Company A’s shares would be very attractive to investors.
After all, if their returns are negatively correlated with the stock market as a
whole, then whenever there is a stock market crash, the shares in Company A
would actually rise. In fact, in a sense they are even safer than a risk free asset
such as cash. In a stock market crash, cash would still hold its value, but shares
in Company A would actually increase in value. So to an investor who hates risk,
they would be an ideal purchase. Such investors would be willing to buy shares
in Company A even if their expected return was lower than the risk free rate.

The stories in the two previous paragraphs are intended to motivate the
CAPM equation and its importance for investment decisions. Of course, in prac-
tice, the CAPM b can take a wide range of values. It is common to find b > 1.
In this case the expected excess return to holding Company A’s shares is higher
than the expected excess return on the market portfolio. This indicates Company
A’s shares are riskier than the stock market as a whole and investors require a
higher expected return in order to compensate them for bearing this risk.

Given its importance for investment decisions, financial analysts often try to
estimate what the CAPM b is for individual company’s shares. This can be done
using regression methods. Of course, one cannot obtain data on the expected
excess return of a share or a market portfolio. However, if we replace expected
returns with the actual returns of a stock from the past we can run a regression
based on the CAPM equation. That is, we set Y = excess returns on Company
A’s shares (measured as the actual return minus the return on a risk free asset
such as a government bond) and X = excess returns on the market portfolio
(measured as the actual return on a major stock market index minus the return
on a risk free asset such as a government bond) and run a simple regression.

The file CAPM.XLS contains monthly data on Y = the excess returns on
Company A’s stock for the last 10 years as well as data on X = excess returns
on a stock market index for the same time period. If we run the regression of
Y on X we obtain = 0.43 and = 1.77. Thus, our estimate of the CAPM b
for Company A is 1.77.

b̂â



Nonlinearity in regression

So far, we have used the linear regression model and fit a straight line through XY-
plots. However, this may not always be appropriate. Consider the XY-plot in Figure
4.2. It looks like the relationship between Y and X is not linear. If we were to fit a
straight line through the data, it might give a misleading representation of the rela-
tionship between Y and X. In fact, we have artificially generated this data by assum-
ing the relationship between Y and X is of the form:

such that the true relationship is quadratic. A cursory glance at the XY-plots can often
indicate whether fitting a straight line is appropriate or not.

What should you do if a quadratic relationship rather than a linear relationship
exists? The answer is surprisingly simple: rather than regressing Y on X, regress Y on
X 2 instead.

Of course, the relationship revealed by the XY-plot may be found to be neither
linear nor quadratic. It may appear that Y is related to ln(X ) or 1/X or X 3 or any
other transformation of X. However, the same general strategy holds: transform the
X variable as appropriate and then run a regression of Y on the transformed variable.
You can even transform Y if it seems appropriate.

Y Xi i= 6 2 ,
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A very common transformation, of both the dependent and explanatory variables,
is the logarithmic transformation (see Appendix 1.1 for a discussion of logarithms).
Even if you are not familiar with logarithms, they are easy to work with in any spread-
sheet or econometric software package, including Excel.8 Often financial researchers
work with natural logarithms, for which the symbol is ln. In this book, we will always
use natural logarithms and simply refer to them as “logs” for short. It is common to
say that: “we took the log of variable X ” or that “we worked with log X ”. The math-
ematical notation is ln(X ). One thing to note about logs is that they are only defined
for positive numbers. So if your data contains zeros or negative numbers, you cannot
take logs (i.e. the software will display an error message).

Why is it common to use ln(Y) as the dependent variable and ln(X ) as the explana-
tory variable? First, the expressions will often allow us to interpret results quite easily.
Second, data transformed in this way often does appear to satisfy the linearity assump-
tion of the regression model.

To fully understand the first point, we need some background in calculus, which
is beyond the scope of this book. Fortunately, the intuition can be stated verbally. In
the following regression:

b can be interpreted as an elasticity. Recall that, in the basic regression without logs,
we said that “Y tends to change by b units for a one unit change in X ”. In the regres-
sion containing both logged dependent and explanatory variables, we can now say
that “Y tends to change by b percent for a one percent change in X ”. That is, instead
of having to worry about units of measurement, regression results using logged vari-
ables are always interpreted as elasticities. Logs are convenient for other reasons too.
For instance, as discussed in Chapter 2, when we have time series data, the percent-
age change in a variable is approximately 100 ¥ [ln(Yt) - ln(Yt-1)]. This transforma-
tion will turn out to be useful in later chapters in this book.

The second justification for the log transformation is purely practical: With many
data sets, if you take the logs of dependent and explanatory variables and make an
XY-plot the resulting relationship will look linear. This is illustrated in Figures 4.3 and
4.4. Figure 4.3 is an XY-plot of two data series, Y and X, neither of which has been
transformed in any way. Figure 4.4 is an XY-plot of ln(X ) and ln(Y ). Note that the
points in the first figure do not seem to lie along a straight line. Rather the relation-
ship is one of a steep-sloped pattern for small values of X, that gradually flattens out
as X increases. This is a typical pattern for data which should be logged. Figure 4.4
shows that, once the data is logged, the XY-plot indicates a linear pattern. An OLS
regression will fit a straight line with a high degree of accuracy in Figure 4.4. However,
fitting an accurate straight line through Figure 4.3 is a very difficult (and probably not
the best) thing to do.

On what basis should you log your data (or for that matter take any other trans-
formation)? There is no simple rule that can be given. Examining XY-plots of the

ln lnY X e( ) = + ( )+a b ,
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data transformed in various ways is often instructive. For instance, begin by looking
at a plot of X against Y. This may look roughly linear. If so, just go ahead and run a
regression of Y on X. If the plot does not look linear, it may exhibit some other
pattern that you recognize (e.g. the quadratic form of Figure 4.2 or the logarithmic
form of Figure 4.3). If so, create an XY-plot of suitable transformed variables (e.g.
ln(Y ) against ln(X )) and see if it looks linear. Such a strategy will likely work well in
a simple regression containing only one explanatory variable. In Chapter 6, we will
move on to cases with several explanatory variables. In these cases, the examination
of XY-plots may be quite complicated since there are so many possible XY-plots that
could be constructed.

Exercise 4.5

Using the data in EXECUTIVE.XLS examine different XY-plots involving the vari-
ables X, Y, W and Z (see Exercise 4.1 for a definition of these variables). Does
there seem to be a nonlinear relationship between any pair of variables?

Exercise 4.6

Data set EX46.XLS contains two variables, labeled Y and X.

(a) Make an XY-plot of these two variables. Does the relationship between Y

and X appear to be linear?
(b) Calculate the square root of variable X. Note the Excel function for square

root is SQRT.
(c) Make an XY-plot of the square root of X against Y. Does this relationship

appear to be linear?

Chapter summary

1. Simple regression quantifies the effect of an explanatory variable, X, on a
dependent variable, Y. Hence, it measures the relationship between two
variables.

2. The relationship between Y and X is assumed to take the form, Y = a +
bX, where a is the intercept and b the slope of a straight line. This is called
the regression line.

3. The regression line is the best fitting line through an XY graph.



Appendix 4.1: Mathematical details

The OLS estimator defines the best fitting line through the points on an XY-plot.
Mathematically, we are interested in choosing and so as to minimize the sum of
squared residuals. The SSR can be written as:

SSR = - -( )=Â Y Xi ii

N ˆ ˆ .a b
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1
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4. No line will ever fit perfectly through all the points in an XY graph. The
distance between each point and the line is called a residual.

5. The ordinary least squares, OLS, estimator is the one which minimizes the
sum of squared residuals.

6. OLS provides estimates of a and b which are labeled and .
7. Regression coefficients should be interpreted as marginal effects (i.e. as

measures of the effect on Y of a small change in X ).
8. R2 is a measure of how well the regression line fits through the XY graph.
9. OLS estimates and the R2 are calculated in computer software packages

such as Excel.
10. Regression lines do not have to be linear. To carry out nonlinear regres-

sion, merely replace Y and/or X in the regression model by a suitable non-
linear transformation (e.g. ln(Y ) or X 2).

b̂â

Optional exercise

Take first and second derivatives with respect to and of the above expres-
sion for SSR. Use these to find values of and that minimize SSR. Verify that
the solution you have found does indeed minimize (rather than maximize) SSR.

b̂â
b̂â

If you have done the previous exercise correctly, you should have obtained the 
following:
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ˆ ˆ ,a b= -Y X

b̂ =
-( ) -( )

-( )
=

=

Â
Â

Y Y X X

X X

i ii

N

ii

N

1
2

1



where and are the means of Y and X (see Chapter 2). These are the OLS esti-
mators for a and b. Note that there are several equivalent ways of writing the formula
for . If you consult other textbooks you will find alternative expressions for the
OLS estimator.

These equations can be used to demonstrate the consequences of taking devia-

tions from means. By way of explanation, note that we have assumed above that
the dependent and explanatory variables, X and Y, are based on the raw data.
However, in some cases researchers do not work with just X and Y, but rather with
X and Y minus their respective means:

and

Consider using OLS to estimate the regression:

where we have used the symbols a and b to distinguish them from the coefficients 
a and b in the regression involving Y and X.

It turns out that the relationship between OLS estimates from the original regres-
sion and the one where deviations from means have been taken is a simple one. The
OLS estimate of b is always exactly the same as and the OLS estimate of a is always
zero. In other words, taking deviations from means simplifies the regression model
by getting rid of the intercept (i.e. there is no point in including an intercept since its
coefficient is always zero). This simplification does not have any affect on the slope
coefficient in the regression model. It is unchanged by taking deviations from means
and still has the same interpretation as a marginal effect.

It is not too hard to prove the statements in the previous paragraph and, if you
are mathematically inclined, you might be interested in doing so. As a hint, note that
the means of y and x are zero.

In Chapter 6, we will consider the case where there are several explanatory vari-
ables. In this case, if you take deviations from means of the dependent and all of the
explanatory variables, you obtain the same result. That is, the intercept disappears
from the regression, but all other coefficient estimates are unaffected.

Endnotes

1. The regression methods outlined in the next few chapters can be used with time series
variables if they are stationary. At this stage, you will not know what the term “stationary”
means, but you can be assured that the examples in this chapter and the next involving
time series data involve stationary data. The concept of stationarity will be explained in
Chapter 9.

b̂

y a bx e= + + ,

x X Xi i= - .

y Y Yi i= -

b̂

XY
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2. Note that, at many places, we will omit multiplication signs for simplicity. For instance,
instead of saying Y = a + b ¥ X we will just say Y = a + bX.

3. Some statistics books draw a dividing line between correlation and regression. They argue
that correlation should be interpreted only as a measure of the association between two vari-
ables, not the causality. In contrast, regression should be based on causality in the manner
of such statements as: “Financial theory tells us that X causes Y ”. Of course, this divi-
sion simplifies the interpretation of empirical results. After all, it is conceptually easier to
think of your dependent variable – isolated on one side of the regression equation – as
being “caused” by the explanatory variables on the other. However, it can be argued that
this division is in actuality an artificial one. As we saw in Chapter 3, there are many cases
for which correlation does indeed reflect causality. Furthermore, in future chapters we will
encounter some cases in which the regressions are based on causality, some in which they
are not, and others about which we are unsure. The general message here is that you need
to exercise care when interpreting regression results as reflecting causality. The same holds
for correlation results. Common sense and financial theory will help you in your interpre-
tation of either.

4. Some may disagree with this assumption. If the management skills of the chief executive
are the key factor in firm profitability, and compensation directly reflects management skills,
then one can argue that the executive compensation should be the explanatory variable.
But, for reasons of exposition, let us accept that the assumption made in the text is 
reasonable.

5. If you cannot see this construct your own numerical example. That is, choose any values
for a, b and X, then use the equation Y = a + bX to calculate Y (call this “original Y”).
Now increase X by one, leaving a and b unchanged and calculate a new Y. No matter what
values you originally chose for a, b and X, you will find new Y minus original Y is pre-
cisely b. In other words, b is a measure of the effect on Y of increasing X by one unit.

6. Excel prints out TSS, RSS and SSR in a table labeled ANOVA. The column labeled “SS”
contains these three sums of squares. At this stage, you probably do not know what
ANOVA means, but we will discuss it briefly in Chapter 7 (Regression with Dummy 
Variables).

7. Any finance textbook will describe the theoretical derivations in this example in detail. See,
for instance, Quantitative Financial Economics by Keith Cuthbertson, published by John Wiley
& Sons, Ltd.

8. You can calculate the natural logarithm of any number in Excel by using the formula bar.
For instance, if you want to calculate the log of the number in cell D4 move to the formula
bar and type “= ln(D4)” then press enter.
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C H A P T E R

Statistical aspects 

of regression

5

Statistics is a field of study based on mathematics and probability theory. However,
since this book assumes you have little knowledge of these topics, a complete under-
standing of statistical issues in the regression model will have to await further study.1

What we will do instead in this chapter is to: (1) discuss what statistical methods in
the regression model are designed to do; (2) show how to carry out a regression analy-
sis using these statistical methods and interpret the results obtained; and (3) provide
some graphical intuition in order to gain a little insight into where statistical results
come from and why these results are interpreted in the manner that they are.

We will begin by stressing a distinction which arose in the previous chapter between
the regression coefficients, a and b, and the OLS estimates of the regression coeffi-
cients, and . Remember that we began Chapter 4 with a regression model of the
form:

Yi = a + bXi + ei,

for i = 1, . . . , N observations. As noted previously, a and b measure the relationship
between Y and X. We pointed out that we do not know what this relationship is, i.e.,
what precisely a and b are. We derived so-called ordinary least squares or OLS esti-
mates which we then labeled and . We emphasized that a and b are the unknown
true coefficients while and are merely estimates (and almost certainly not pre-
cisely the same as a and b ).

These considerations lead us to ask whether we can gauge how accurate these esti-
mates are. Fortunately we can, using statistical techniques. In particular, these tech-
niques enable us to provide confidence intervals for, and to enable us to carry out,
hypothesis tests on, our regression coefficients.

b̂â
b̂â

b̂â



To provide some jargon, we say that OLS provides point estimates for b (e.g.
= 0.000842 is the point estimate of b in the regression of executive compensation

on profits in the previous chapter). You can think of a point estimate as your best
guess at what b is. Confidence intervals provide interval estimates, allowing us to
make statements that reflect the uncertainty we may have about the true value of b
(e.g. “We are confident that b is greater than 0.0006 and less than 0.0010”). We can
obtain different confidence intervals corresponding to different levels of confidence.
For instance, in the case of a 95% confidence interval we can say that “we are 95%
confident that b lies in the interval”; in the case of a 90% confidence interval we can
say that “we are 90% confident that b lies in the interval”; and so on. The degree of
confidence we have in a chosen interval (e.g. 95%) is referred to as the confidence

level.
The other major activity of the empirical researcher is hypothesis testing. An

example of a hypothesis that a researcher may want to test is b = 0. If the latter
hypothesis is true, then this means that the explanatory variable has no explanatory
power. Hypothesis testing procedures allow us to carry out such tests.

Both confidence interval and hypothesis testing procedures will be explained
further in the rest of this chapter. For expository purposes, we will focus on b, since
it is usually more important than a in economic problems. However, all the proce-
dures we will discuss for b apply equally well for a.

Which factors affect the accuracy of the estimate b̂?

We have artificially created four different data sets for X and Y from regression
models with a = 0 and b = 1. XY-plots for these four different data sets are pre-
sented in Figures 5.1, 5.2, 5.3 and 5.4. All of these data sets have the same true coef-
ficient values of a = 0 and b = 1, and we hope to obtain and values that are
roughly equal to 0 and 1, respectively, when we estimate the model from any of these
four data sets. However, if you imagine trying to fit a straight line (as does OLS)
through these XY-plots, you would not expect all four of these lines to be equally
accurate.

How confident would you feel about the accuracy of the straight line that you have
just fitted? It is intuitively straightforward to see that the line fitted for Figure 5.3
would be the most accurate. That is, the straight-line relationship between X and Y

“leaps out” in Figure 5.3. Even if a ruler were used and you were to draw a best-
fitting line by hand through this XY-plot you would find that the intercept (a) was
very close to zero and the slope (b ) close to 1. In contrast, you would probably be
much less confident about the accuracy of a best-fitting straight line that you drew
for Figures 5.1, 5.2 and 5.4.

These figures illustrate three main factors that affect the accuracy of OLS estimates
and the uncertainty that surrounds our knowledge of what the true value of b
really is:

b̂â

b̂
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1. Having more data points improves accuracy of estimation. This can be seen by
comparing Figure 5.1 (N = 5) and Figure 5.3 (N = 100).

2. Having smaller errors improves accuracy of estimation. Equivalently, if the SSR
is small or the variance of the errors is small, the accuracy of the estimation will
be improved. This can be seen by comparing Figure 5.2 (large variance of errors)
with Figure 5.3 (small variance of errors).2

72 Analysis of financial data

–1

0
0 1 2 3 4 5 6

1

2

3

4

5

6

X

Y

Fig. 5.3 Large sample size, small error variance.

–4

–2

0

2

4

6

8

10

3.532.521.510.50

X

Y

Fig. 5.4 Limited range of X values.



3. Having a larger spread of values (i.e. a larger variance) of the explanatory variable
(X ) improves accuracy of estimation. This can be seen by comparing Figure 5.3
(values of the explanatory variable spread all the way from 0 to 6) to Figure 5.4
(values of the explanatory variable all clustered around 3).

The influence of these three factors is intuitively reasonable. With regards to the first
two factors, it is plausible that having either more data or smaller errors should
increase accuracy of estimation. The third factor is perhaps less intuitive, but a simple
example should help you to understand it.

Suppose you are interested in investigating the influence of business education
levels (X = years of business education) on the income people receive (Y = income).
To understand the nature of this relationship, you will want to go out and interview
all types of people (e.g. people with no qualifications, people with an undergraduate
degree in business, people with an MBA, people with PhDs in finance, etc.). In other
words, you will want to interview a broad spectrum of the population in order to
capture as many of these different education levels as possible. In statistical jargon,
this means that you will want X to have a high variance. If you do not follow this
strategy – for example, were you to interview only those people possessing PhDs in
finance – you would get a very unreliable picture of the effect of education on
income. In this case, you would not know whether the relationship between educa-
tion and income was positive. For instance, without collecting data on people who
had an MBA you would not know for sure that they are making less income than the
PhDs.

Thus, we can summarize by saying that having a large spread of values (i.e. a larger
variance) for the explanatory variable, X, is a desirable property in an analysis, whereas
having a large spread of values (i.e. a larger variance) for the error, e, is not.

Calculating a confidence interval for b
The above three factors are reflected in a commonly used interval estimate for b: the
confidence interval. This interval reflects the uncertainty surrounding the accuracy of
the estimate . If the confidence interval is small, it indicates accuracy. Conversely,
a large confidence interval indicates great uncertainty over b’s true value. In many
cases researchers choose to present the confidence interval in addition to (or even in
place of ) the OLS point estimate.

The mathematical formula for the confidence interval for b is:3

An equivalent way of expressing the equation above is to say that there is a high level
of confidence that the true value of b obeys the following inequality:

ˆ ˆ .b b b- £ £ +t s t sb b b b

ˆ , ˆ .b b- +[ ]t s t sb b b b

b̂
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The equations above use three numbers that must be calculated: , tb and sb. The
first of these, , we have already discussed in detail; the latter two you may not have
seen before. The confidence interval can be calculated automatically in computer
packages such as Excel. Thus, you can calculate confidence intervals without knowing
either the above formula or the precise definitions of tb and sb. At the most basic level,
you can just think of , tb and sb as three numbers calculated by the computer.
However, it is worthwhile to have at least some intuition about where the confidence
interval comes from as this will aid in your understanding of results.

Below, we discuss each of the three numbers required to calculate a confidence
interval, relating them to the issues raised in our discussion of Figures 5.1 through
5.4 on the factors affecting the accuracy of estimation of .

First, is always included in the confidence interval (in fact, it will be right in the
middle of it).

Second, sb is the standard deviation of . Somewhat confusingly, sb is often referred
to as the standard error as opposed to the standard deviation. In Chapter 2, we intro-
duced the standard deviation as a measure of dispersion (i.e. spread, or variability) of
a variable. For instance, Figure 2.2 plots a histogram for the variable GDP per capita
using the cross-country data set GDPPC.XLS. In Chapter 2, we argued that the stan-
dard deviation of GDP per capita was a measure of how much GDP per capita varied
across countries. Although it may seem a little odd, we can treat as a variable in the
same way as GDP per capita is a variable. In other words, we can calculate its stan-
dard deviation and use it as a measure of our uncertainty about the accuracy of the
estimate.

Large values of sb will imply large uncertainty. In this case, may be a very inac-
curate estimate of b. In contrast, small values of sb will imply small uncertainty. If
the latter, then will be an accurate estimate of b.

In other chapters, we have put mathematical formulae in appendices. However, to
properly draw out the connections between the formula for the confidence interval
and the graphical intuition provided in Figures 5.1–5.4, a small amount of mathe-
matics is required. We present (but do not derive) the following formula for the stan-
dard deviation of :

This expression, which measures the variability or uncertainty in , reflects all of the
issues raised in the context of our discussion of Figures 5.1, 5.2, 5.3 and 5.4.

Looking at the formula for the confidence interval, we can see that the larger sb is,
the wider the confidence interval is. If we combine this consideration with a careful
analysis of the components of the formula for sb, we can say that:

1. sb and, hence, the width of the confidence interval, varies directly with SSR (i.e.
more variable errors/residuals imply wider confidence intervals and, thus, less
accurate estimation).

b̂

s
N X X

b

i

=
-( ) -( )Â

SSR

2
2

.

b̂

b̂

b̂

b̂

b̂

b̂
b̂

b̂

b̂
b̂

74 Analysis of financial data



2. sb and, hence, the width of the confidence interval, vary inversely with N (i.e.
more data points imply narrower confidence intervals and, thus, more accurate
estimation).

3. sb and, hence, the width of the confidence interval, vary inversely with
S(Xi - )2 (i.e. more variability in X implies more accurate estimation).

Note that, as described in Chapter 2, S(Xi - )2 is a key component of the standard
deviation of X. In particular, large values of this expression are associated with large
standard deviations of X.

We stress that these three factors (i.e. N, SSR and the standard deviation of X ),
which affect the width of the confidence interval, are the same as those discussed
above as affecting the accuracy of the OLS estimate in Figures 5.1 through 5.4.

The third number in the formula for the confidence interval is tb. It is hard to
provide much intuition about this number without some knowledge of statistics. For
those with some knowledge of statistics, note that tb is a value taken from statistical
tables for the Student-t distribution. Appendix 5.1 provides some additional discus-
sion about tb. Some informal intuition for what it means, however, can be obtained
from the following example.

b̂

X

X
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Example: Election polls

You may have encountered “point estimates” and something akin to a confi-
dence interval in political polls, which are regularly taken in the weeks and
months before an election. These are usually carried out by staffers telephon-
ing a few hundred potential voters and asking them which party they intend to
support on election day. Suppose Party A is running in the election. The news-
paper reports that 43% of those surveyed will support Party A. This is the news-
paper’s point estimate of what voters will do on election day. Of course, in
reality the actual result on election day will rarely, if ever, be exactly that indi-
cated by the pre-election poll. This discrepancy illustrates a point we stressed
earlier in this chapter in the context of the regression model: a point estimate
(e.g. ) will rarely, if ever, be identical to the true value (e.g. b ).

Newspapers typically recognize that their surveys will not be precisely accu-
rate and often add statements to their coverage such as: “This result is accurate
to within +/- 2 percentage points.” Although they do not explicitly say it, they
are getting this result from a confidence interval (usually a 95% confidence inter-
val).4 An equivalent statement would be: “We are 95% confident that Party A
will receive between 41% and 45% of the vote on election day”.

This example provides some additional intuition about what confidence
intervals are. If you understand this example, you can also see that different

b̂



To return to the general statistical theory of regression, we should stress (without
explanation beyond that given in the previous example) the following:

1. tb decreases with N (i.e. the more data points you have the smaller the confidence
interval will be).

2. tb increases with the level of confidence you choose.

Researchers usually present 95% confidence intervals, although other intervals are
possible (e.g. 99% or 90% confidence intervals are sometimes presented). A useful
(but formally incorrect) intuition for 95% confidence intervals is conveyed by the fol-
lowing statement: “There is a 95% probability that the true value of b lies in the 95%
confidence interval”. A correct (but somewhat awkward) interpretation of this state-
ment is: “If you repeatedly used (in different data sets) the above formula for 
calculating confidence intervals, 95% of the confidence intervals constructed would
contain the true value for b”. Similar statements can be made for 99% or 90% con-
fidence intervals, simply by replacing “95%” with the desired confidence level. Thus,
the interpretation of confidence intervals is relatively straightforward (and will be
further illustrated in subsequent examples in this chapter).

The preceding material is intended to provide some intuition and motivation for
the statistical theory underlying confidence intervals. Even if you do not fully under-
stand this material, confidence intervals can be calculated quite easily in most stan-
dard computer software packages. For example, when you run a regression in Excel
it automatically calculates the confidence interval and labels the bounds of the 95%
confidence interval as “lower 95%” and “upper 95%”. Excel also enables you to
change the level of confidence, e.g. from 99% to 90%.
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confidence levels imply different confidence intervals. As a trivial example,
consider the 100% confidence level. We can be certain that Party A is going to
receive between 0% and 100% of the vote on election day. A 100% confidence
interval for Party A’s percentage of the vote would thus be [0, 100].

Now consider the other extreme: how confident can we be that Party A is
going to receive almost precisely 43% of the vote? Probably not very confident
for, as noted, in reality we rarely find that opinion polls and election day results
will match identically. For this reason, a confidence interval right around 43%
(e.g. [42.9, 43.1]) will have a very low confidence level (perhaps 10%).

Note that the more confident you wish to be about your interval, the wider
it becomes. For instance, 99% confidence intervals will always be wider than
95% confidence intervals. It turns out that the confidence level determines the
number tb. If the level of confidence is high (e.g. 99%) tb will be large, while if
the level of confidence is low (e.g. 50%) it will be small.
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Example: Confidence intervals for the data sets in 

Figures 5.1–5.4

Figures 5.1 through 5.4 contained four different data sets, all of which have 
a = 0 and b = 1. Remember that the data set used in Figure 5.3 has some very
desirable properties, i.e. large sample size, spread-out values for the explanatory
variables, and small errors. These properties are missing to varying degrees 
in the other three data sets. Table 5.1 contains OLS point estimates, , and 90%,
95% and 99% confidence intervals for these four data sets.

The following points are worth emphasizing:

1. Reading across any row, we can see that as the confidence level gets higher
the confidence interval gets wider. The widest interval is the 99% confidence
interval for the data set in Figure 5.4. In this case, if you want to be 99%
confident, you have to say b could be anywhere between -2.98 and 6.02!

2. The data set in Figure 5.3 – the one with the most desirable properties of
all the data sets – yields an OLS estimate of 1.00 which is equal to the true
value to two decimal places (more precisely, = 1.002577 for this data set).

3. The data set in Figure 5.3 yields confidence intervals which are much nar-
rower than those for Figures 5.1, 5.2 and 5.4. This makes sense since we
would expect the OLS estimate using the data set in Figure 5.3 to be more
accurate than the other data sets.

4. The data sets in Figures 5.1, 5.2 and 5.4 yield a variety of results. Figure 5.2
contains a data set of the sort usually found in a well-designed empirical
project (rarely does one get a data set as good as Figure 5.3). This data set
has mostly desirable properties, but the errors are moderately large, reflect-
ing the measurement error and imperfections in the underlying economic
theory which so often occur in practice. For this representative data set,

= 1.04 which is not too far off the true value of b = 1. With respect to
this data set, we can make statements of the form: “The value of b lies in
the interval [0.70, 1.38] with a 95% confidence level” or “We are 99% con-
fident that b lies between 0.59 and 1.49”.

b̂

b̂

b̂

Table 5.1 OLS estimates and confidence intervals.

90% 95% 99%
Confidence Confidence Confidence

Data Set b̂ interval interval interval

Figure 5.1 0.91 [-0.92, 2.75] [-1.57, 3.39] [-3.64, 5.47]
Figure 5.2 1.04 [0.75, 1.32] [0.70, 1.38] [0.59, 1.49]
Figure 5.3 1.00 [0.99, 1.01] [0.99, 1.02] [0.98, 1.03]
Figure 5.4 1.52 [-1.33, 4.36] [-1.88, 4.91] [-2.98, 6.02]
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Exercise 5.1

The data sets used to calculate Figures 5.1, 5.2, 5.3 and 5.4 are in FIG51.XLS,
FIG52.XLS, FIG53.XLS and FIG54.XLS.

(a) Calculate the OLS estimates and for these four data sets. How close
are they to 0 and 1 (the values we used to artificially simulate the data)?

(b) Calculate confidence intervals for a for the four data sets. Examine how the
width of the confidence interval relates to N and the variability of the errors.

(c) Calculate 99% and 90% confidence intervals for the data sets. How do these
differ from the 95% confidence intervals in (b)?

b̂â

Example: The regression of executive compensation on profits

Let us go back to our executive compensation (Y ) and profit (X ) data set
(EXECUTIVE.XLS). We saw in the last chapter that = 0.000842. In other 
words, the marginal effect of profit on executive pay was 0.000842. A 95% con-
fidence interval for this effect is [0.00061, 0.001075], indicating (with a great
deal of certitude) that the marginal effect of profit on executive pay is greater
than 0.00061 and less than 0.001075.

b̂

Example: The regression of lot size on house price

In Chapter 3 we investigated the effect of X = lot size on Y = the sales price
of a house, using data on 546 houses sold in Windsor, Canada (see data set
HPRICE.XLS). Running a regression of Y on X we obtain the following estimated
relationship:

Y = 34,136 + 6.59X,

or, equivalently, = 34,136 and = 6.59. We can say that the OLS estimate of
the marginal effect of X on Y is 6.59. Our best guess would be that increasing
lot size by an extra square foot of lot is associated with a $6.59 increase in house
price.

The 95% confidence interval for b is [5.72, 7.47]. Although the effect of lot
size on house price is estimated at $6.59, we are not certain that this figure is
exactly correct. However, we are extremely confident (i.e. 95% confident) that
the effect of lot size on house is at least $5.72 and at most $7.47. This interval
would be enough for a potential buyer or seller to have a good idea of the value
of lot size.

b̂â



Testing whether b = 0

Hypothesis testing is another exercise commonly carried out by the empirical
researcher. As with confidence intervals, we will not go into the statistical theory that
underlies hypothesis testing. Instead we will focus on the practical details of how 
to carry out hypothesis tests and interpret the results. Classical hypothesis testing
involves specifying a hypothesis to test. This is referred to as the null hypothesis,
and is labeled as H0. It is compared to an alternative hypothesis, labeled H1. A
common hypothesis test is whether b = 0. Formally, we say that this is a test of H0:
b = 0 against H1: b π 0.
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Example: The capital asset pricing model

In Chapter 4, we introduced the CAPM, a theory that implied that the excess
return on the stock of a particular company should depend on the excess return
on the market portfolio. This motivated a regression using monthly data on 
Y = the excess returns on Company A’s stock for the last 10 years on X = excess
returns on a stock market index for the same time period. When we ran a regres-
sion of Y on X we obtain = 0.43 and = 1.77. Thus, our estimate of the
CAPM b for Company A was 1.77. The 95% confidence interval correspond-
ing to our estimate is [1.37, 2.17]. Thus, we can conclude that, with high confi-
dence, the CAPM b is at least 1.37 and at most 2.17.

b̂â

Exercise 5.2

The file EQUITY.XLS contains data on Y = market capitalization and X = debt
(both measured in millions of dollars) for N = 309 companies in the USA.

(a) Run a regression of Y on X and obtain 95% confidence intervals for a
and b.

(b) Write a sentence explaining verbally what the 95% confidence interval for
b means in terms of the possible range of values that the effect of the
explanatory variable on the dependent variable may take.

Exercise 5.3

The file EQUITY.XLS also contains data on other potential explanatory variables:
sales, income and assets (all measured in millions of dollars). Repeat Exercise
5.2 using these explanatory variables one at a time.



Note that, if b = 0 then X does not appear in the regression model; that is, the
explanatory variable fails to provide any explanatory power whatsoever for the depen-
dent variable. If you think of the kinds of questions of interest to researchers (e.g.
“Does a certain characteristic influence the price of an asset or good?”, “Will a certain
advertising strategy increase sales?”, “Does the debt burden of a firm influence its
market capitalization?”, etc.) you will see that many are of the form “Does the
explanatory variable have an effect on the dependent variable?” or “Does b = 0 in
the regression of Y on X?”. The purpose of the hypothesis test of b = 0 is to answer
this question.

The first point worth stressing is that hypothesis testing and confidence intervals
are closely related. In fact, one way of testing whether b = 0 is to look at the confi-
dence interval for b and see whether it contains zero. If it does not then we can, to
introduce some statistical jargon, “reject the hypothesis that b = 0” or conclude “X

has significant explanatory power for Y ” or “b is significantly different from zero”
or “b is statistically significant”. If the confidence interval does include zero then 
we change the word “reject” to “accept” and “has significant explanatory power” to
“does not have significant explanatory power”, and so on. This confidence interval
approach to hypothesis testing is exactly equivalent to the formal approach to hypoth-
esis testing discussed below.

Just as confidence intervals came with various levels of confidences (e.g. 95% is
the usual choice), hypothesis tests come with various levels of significance. If you
use the confidence interval approach to hypothesis testing, then the level of signifi-
cance is 100% minus the confidence level. That is, if a 95% confidence interval does
not include zero, then you may say “I reject the hypothesis that b = 0 at the 5% level
of significance” (i.e. 100% - 95% = 5%). If you had used a 90% confidence interval
(and found it did not contain zero) then you would say: “I reject the hypothesis that
b = 0 at the 10% level of significance”.

The alternative way of carrying out hypothesis testing is to calculate a test statis-

tic. In the case of testing whether b = 0, the test statistic is known as a t-statistic (or
t-ratio or t-stat). It is calculated as:

“Large” values (in an absolute value sense) of t indicate that b π 0, while “small”
values indicate that b = 0. Mathematical intuition for the preceding sentence is given
as: if is large relative to its standard deviation, sb, then we can conclude that b is
significantly different from zero. The question arises as to what we mean by “large”
and “small”. In a formal statistical sense, the test statistic is large or small relative to
a “critical value” taken from statistical tables of the “Student-t distribution”. A dis-
cussion of how to do this is given in Appendix 5.1. Fortunately, we do not have to
trouble ourselves with statistical tables since most common computer software pack-

b̂

t
sb

=
ˆ

.
b

80 Analysis of financial data



ages such as Excel print out something called a P-value automatically. The P-value
provides a direct measure of whether the t is “large” or “small”. A useful (but for-
mally incorrect) intuition would be to interpret the P-value as measuring the proba-
bility that b = 0. If the P-value is small, b = 0 is unlikely to be true. Accordingly,

1. If the P-value is less than 5% (usually written as 0.05 by the computer) then t is
“large” and we conclude that b π 0.

2. If the P-value is greater than 5% then t is “small” and we conclude that b = 0.

The preceding test used the 5% level of significance. However, if we were to replace
the figure 5% in the above expressions with 1% (i.e. reject b = 0 if the P-value is less
than 1%) our hypothesis test would be carried out at the 1% level of significance.

As an aside, it is worth noting that we are focussing on the test of b = 0 partly
because it is an important one, but also because it is the test that is usually printed
out by computer packages. You can use it without fully understanding the underlying
statistics. However, in order to test other hypotheses (e.g. H0: b = 1 or hypotheses
involving many coefficients in the multiple regression case in the next chapter) you
would need more statistical knowledge than is covered here (see Appendix 5.1 for
more details). The general structure of a hypothesis test is always of the form out-
lined above. That is, (i) specify the hypothesis being tested, (ii) calculate a test statis-
tic and (iii) compare the test statistic to a critical value. The first of these three steps
is typically easy, but the second and third can be much harder. In particular, to obtain
the test statistic for more complicated hypothesis tests will typically require some extra
calculations beyond merely running the regression. Obtaining the critical value will
involve the use of statistical tables. Hence, if you wish to do more complicated
hypothesis tests you will have to resort to a basic statistics or econometrics textbook
(see endnote 1 of this chapter for some suggestions).

As a practical summary, note that regression techniques provide the following
information about b:

1. , the OLS point estimate, or best guess, of what b is.
2. The 95% confidence interval, which gives an interval where we are 95% confident

b will lie.
3. The standard deviation (or standard error) of , sb, which is a measure of how

accurate is. sb is also a key component in the mathematical formula for the con-
fidence interval and the test statistic for testing b = 0.

4. The test statistic, t, for testing b = 0.
5. The P-value for testing b = 0.

These five components, ( , confidence interval, sb, t and the P-value) are usually
printed out in a row in computer packages like Excel. In practice, the most impor-
tant are , the confidence interval, and the P-value. You can usually interpret your
empirical findings without explicit reference to t and sb. The following examples will
serve to illustrate how regression results are presented and can be interpreted.

b̂

b̂

b̂
b̂

b̂
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Example: The regression of executive compensation on profits

(continued from page 78)

If we regress Y = executive compensation on X = profit using Excel, the fol-
lowing output will be produced (other software packages will provide output of
a similar form):

The row labeled “Intercept” contains results for a, and the row labeled “X-
variable”, results for b. We will focus discussion on this latter row. The column
labeled “Coefficient” presents the OLS estimate and, as we have seen before,

= 0.000842, indicating that an increase in profit of 1 million dollars is asso-
ciated with an increase in executive pay of $842. The columns labeled “Lower
95%” and “Upper 95%” give the lower and upper bounds of the 95% confi-
dence interval. For this data set, and as discussed previously, the 95% confi-
dence interval for b is [0.00061, 0.001075]. Thus, we are 95% confident that the
marginal effect of profit on executive pay is between $610 and $1,075.

The columns labeled “Standard error” and “t-Stat” indicate that sb = 0.000117
and t = 7.227937. These numbers are not essential to carrying out a hypothesis
test of b = 0 when the P-value is given. For most purposes we can ignore these
two columns.5

The hypothesis test of b = 0 can be done in two equivalent ways. First, we
can find a 95% confidence interval for b of [0.00061, 0.001075]. Since this inter-
val does not contain 0, we can reject the hypothesis that b = 0 at the 5% level
of significance. In other words, there is strong evidence for the hypothesis that
b π 0 and that profit has significant power in explaining executive pay. Second,
we can look at the P-value which is 5.5 ¥ 10-10,6 and much less than 0.05. This
means that we can reject the hypothesis that profit has no effect on executive
pay at the 5% level of significance. In other words, we have strong evidence
that profit does indeed affect executive pay.

b̂

Table 5.2 The regression of executive compensation on profits.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.599965 0.112318 5.341646 1.15E – 06 0.375837 0.824093
X-variable 0.000842 0.000117 7.227937 5.5E – 10 0.00061 0.001075
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Example: The capital asset pricing model 

(continued from page 79)

With the CAPM, the hypothesis that b = 0 is rarely tested. It implies that the
excess return on the stock of a particular company is completely unrelated to
the market portfolio (something which rarely occurs in practice). However, if
you look back at our discussion of the CAPM in Chapter 4 you will note that
the original CAPM equation did not contain an intercept. Thus, the CAPM
implies that there should be no intercept in the regression of Y = the excess
returns on Company A’s stock on X = excess returns on a stock market index.
This motivates an interest in testing the hypothesis that a = 0. The hypothesis
test of a = 0 can be done in exactly the same manner as testing b = 0. That is,
you can look at the P-value corresponding to the intercept and check whether
it is less than 0.05. With our data set (CAPM.XLS) we find that the P-value is
0.052. Thus, it is (very slightly) larger than 0.05 and we can (very marginally)
accept the hypothesis that a = 0 at the 5% level of significance.

Exercise 5.4

Using the table above (or running a regression yourself using data set 
EXECUTIVE.XLS) test the hypothesis that a = 0.

Exercise 5.5

The Excel data set EXECUTIVE.XLS contains data on Y = executive compensa-
tion, X = profits, W = change in sales and Z = change in debt.

(a) Run a regression of Y on W and interpret your results. Can you reject the
hypothesis that changes in sales has an effect on executive compensation?

(b) Run a regression of Y on Z and interpret your results. Can you reject the
hypothesis that changes in debt have an effect on executive compensation?

Exercise 5.6

Use data sets FIG51.XLS, FIG52.XLS, FIG53.XLS and FIG54.XLS.

(a) Test whether b = 0 using the confidence interval approach for each of the
four data sets.



Hypothesis testing involving R2: the F-statistic

Most computer packages which include regression, such as Excel, also print out
results for the test of the hypothesis H0: R2 = 0. The definition and interpretation of
R2 was given in the previous chapter. Recall that R2 is a measure of how well the
regression line fits the data or, equivalently, of the proportion of the variability in Y
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(b) Test whether b = 0 using the P-value approach and the four data sets. Use
the 5% level of significance.

(c) Redo (a) and (b) for a.
(d) Redo parts (a), (b) and (c) using the 1% level of significance.
(e) Are your results sensible in light of the discussion in this chapter of the

factors affecting the accuracy of OLS estimates?

Example: The regression of lot size on house price 

(continued from page 78)

Previously, we found a 95% confidence interval in the regression of Y = house
price on X = lot size to be [5.27, 7.47]. Since this interval does not contain zero,
we can reject the hypothesis that b = 0 at the 5% level of significance. Lot size
does indeed seem to have a statistically significant effect on house prices.

Alternatively, the P-value is 6.77 ¥ 10-42, which is much less than 0.05. As
before, we can reject the hypothesis that b = 0 at the 5% level of significance.
Note also that, since, 6.77 ¥ 10-42 is less than 0.01 we can also reject the hypoth-
esis that b = 0 at the 1% level of significance. This is strong evidence indeed
that lot size affects house prices.

Exercise 5.7

The file ADVERT.XLS contains data on the sales and advertising expenditures of
84 companies. Set up and run a regression using this data and discuss your results
verbally as you would in a report. Include a discussion of the marginal effect of
advertising on sales and a discussion of whether this marginal effect is statisti-
cally significant.



that can be explained by X. If R2 = 0 then X does not have any explanatory power
for Y. The test of the hypothesis R2 = 0 can therefore be interpreted as a test of
whether the regression explains anything at all. For the case of simple regression, this
test is equivalent to a test of b = 0.

In the next chapter, we will discuss the case of multiple regression (where there
are many explanatory variables), in which case this test will be different. To preview
our discussion of the next chapter, note that the test of R2 = 0 will be used as a test
of whether all of the explanatory variables jointly have any explanatory power for
the dependent variable. In contrast, the t-statistic test of b = 0 will be used to inves-
tigate whether a single individual explanatory variable has explanatory power.

The strategy and intuition involved in testing R2 = 0 proceed along the same lines
as above. That is, the computer software calculates a test statistic which you must then
compare to a critical value. Alternatively, a P-value can be calculated which directly
gives a measure of the plausibility of the null hypothesis R2 = 0 against the alterna-
tive hypothesis, R2 π 0. Most statistical software packages will automatically calculate
the P-value and, if so, you don’t need to know the precise form of the test statistic
or how to use statistical tables to obtain a critical value. For completeness, though,
we present the test statistic, the F-statistic,7 which is calculated as:

This expression is calculated automatically by Excel and is labeled simply as “F ”. As
before, “large” values of the test statistic indicate R2 π 0 while “small” values indi-
cate R2 = 0. As for the test of b = 0, we use the P-value to decide what is “large” and
what is “small” (i.e. whether R2 is significantly different from zero or not). Note,
however, that Excel refers to the P-value for this test as “Significance F ”. The test is
performed according to the following strategy:

1. If Significance F is less than 5% (i.e. 0.05), we conclude R2 π 0.
2. If Significance F is greater than 5% (i.e. 0.05), we conclude R2 = 0.

The previous strategy provides a statistical test with a 5% level of significance. To
carry out a test at the 1% level of significance, merely replace 5% (0.05) by 1% (0.01)
in the preceding sentences. Other levels of significance (e.g. 10%) can be calculated
in an analogous manner.

Other computer packages might use a slightly different notation than Excel 
does. For instance, MicroFit labels the F-statistic “F-stat.” and puts the P-value in
brackets next to F.

F
N R

R
= -( )

-( )
2

1

2

2
.
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Example: The regression of executive compensation on profits

(continued from page 82)

In the case of the executive pay/profit data set, F = 52.24308. Is this “large”?
If you said yes you are right, since Significance F = 5.5 ¥ 10-10, which is less
than 0.05. We can conclude in light of this finding that executive compensation
does have explanatory power for Y. Formally, we can say that “R2 is significantly
different from zero at the 5% level”, or that “X has statistically significant
explanatory power for Y ” or that “The regression is significant”. Note that Sig-
nificance F is equal to the P-value in the test of b = 0, stressing the equivalence
of these two tests in the case of simple regression.

Exercise 5.8

Use data sets FIG51.XLS, FIG52.XLS, FIG53.XLS and FIG54.XLS.
Test whether R2 = 0 for each of the four data sets. Compare your results with

those of Exercise 5.6.

Chapter summary

1. The accuracy of OLS estimates depends on the number of data points, the
variability of the explanatory variable and the variability of the errors.

2. The confidence interval provides an interval estimate of b (i.e. an interval
in which you can be confident b lies). It is calculated in most computer soft-
ware packages.

3. The width of the confidence interval depends on the same factors as affect
the accuracy of OLS estimates. In addition, the width of the confidence
interval depends on the confidence level (i.e. the degree of confidence you
want to have in your interval estimate).

4. A hypothesis test of whether b = 0 can be used to find out whether the
explanatory variable belongs in the regression. The P-value, which is calcu-
lated automatically in most spreadsheet or statistical computer packages, is
a measure of how plausible the hypothesis is.

5. If the P-value for the hypothesis test of whether b = 0 is less than 0.05 then
you can reject the hypothesis at the 5% level of significance. Hence, you
can conclude that X does belong in the regression.



Appendix 5.1: Using statistical tables for 

testing whether b = 0

The P-value is all that you will need to know in order to test the hypothesis that 
b = 0. Most computer software packages (e.g. Excel, MicroFit, Stata or SHAZAM)
will automatically provide P-values. However, if you do not have such a computer
package or are reading a paper which presents the t-statistic, not the P-value, then it
is useful to know how to carry out hypothesis testing using statistical tables. Virtually
any statistics or econometrics textbook will describe the method in detail and will also
provide the necessary statistical table for you to do so. Here we offer only a brief dis-
cussion along with a rough rule of thumb which is applicable to the case when the
sample size, N, is large.

Remember that hypothesis testing involves the comparison of a test statistic to a
number called a critical value. If the test statistic is larger (in absolute value) than the
critical value, the hypothesis is rejected. Here, the test statistic is the t-stat given in the
body of the chapter. This must be compared to a critical value taken from the Student-
t statistical table. It turns out that this critical value is precisely what we have called tb

in our discussion of confidence intervals. If N is large and you are using the 5% level
of significance, then tb = 1.96. This suggests the following rule of thumb:

If the t-statistic is greater than 1.96 in absolute value (i.e. |t | > 1.96), then reject the hypothesis

that b = 0 at the 5% level of significance. If the t-statistic is less than 1.96 in absolute value, then

accept the hypothesis that b = 0 at the 5% level of significance.

If the hypothesis that b = 0 is rejected, then we say that “X is significant” or that “X

provides statistically significant explanatory power for Y ”.
This rule of thumb is likely to be quite accurate if the sample size is large. For-

mally, the critical value equals 1.96 if sample size is infinity. However, even moder-
ately large sample sizes will yield similar critical values. For instance, if N = 120,
the critical value is 1.98. If N = 40, it is 2.02. Even the quite small sample size of
N = 20 yields a critical value of 2.09 which is not that different from 1.96. However,

6. If the P-value for the hypothesis test of whether b = 0 is greater than 0.05
then you cannot reject the hypothesis at the 5% level of significance. Hence,
you cannot conclude that X belongs in the regression.

7. A hypothesis test of whether R2 = 0 can be used to investigate whether the
regression helps explain the dependent variable. A P-value for this test is
calculated automatically in most spreadsheet and statistical computer pack-
ages and can be used in a similar manner to that outlined in points 5 and 6.
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you should be careful when using this rule of thumb if N is very small or the t-
statistic is very close to 2.00. If you look back at the examples included in the body
of this chapter you can see that the strategy outlined here works quite well. That is,
both the P-value and confidence interval approaches lead to the same conclusion as
the approximate strategy described in this appendix.

The previous discussion related to the 5% level of significance. The large sample
critical value for the 10% level of significance is 1.65. For the 1% level of signifi-
cance, it is 2.58.

By far the most common hypothesis to test for is H0: b = 0. Using the techniques
outlined in this appendix we can generalize this hypothesis slightly to that of: H0:
b = c, where c is some number that may not be zero (e.g. c = 1). In this case, the 
test statistic changes slightly, but the critical value is exactly the same as for the test
of b = 0. In particular, the test statistic becomes:

This will not be produced automatically by a computer package, but it can be 
calculated quite easily in a spreadsheet or on a calculator. That is, and sb are
calculated by the computer, and you have to provide c, depending on the hypothesis
that you are interested in testing. These three numbers can be combined using the
equation above to give you a value for your test statistic. If this value is greater than
1.96 in absolute value, you will conclude that b π c at the 5% level of significance.
The caveats about using this rule of thumb if your sample size is very small apply
here.

Endnotes

1. As mentioned previously, a good basic statistics book is Introductory Statistics for Business and

Economics by Thomas Wonnacott and Ronald Wonnacott (Fourth edition, John Wiley &
Sons, Ltd, 1990). A good introductory econometrics textbook is that by Carter Hill, William
Griffiths and George Judge, Undergraduate Econometrics ( Second edition, John Wiley & Sons,
Ltd, 2000).

2. If you are having trouble grasping this point, draw a straight line with intercept = 0 and
slope = 1 through Figures 5.2 and 5.3 and then look at some of the resulting residuals
(constructed as in Figure 4.1). You should see that most of the residuals in Figure 5.2 will
be much bigger (in absolute value) than those in Figure 5.3. This will result in a larger SSR
(see the formula in Chapter 4) and, since residuals and errors are very similar things, a
bigger variance of the errors (see the formula for the standard deviation of a variable in
the descriptive statistics section of Chapter 2 and remember that the variance is just the
standard deviation squared).

3. The notation that “b lies between a and b” or “b is greater than or equal to a and less than
or equal to b” is expressed mathematically as “b lies in the interval [a, b]”. We will use this
mathematical notation occasionally in this book.

b̂

t
c

sb

=
-ˆ

.
b
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4. The choice of a 95% confidence interval is by far the most common one, and whenever
a confidence interval is not specified you can assume it is 95%.

5. In the examples in this book we never use sb and rarely use t. For future reference, the only
places we use t are in the Dickey-Fuller and Engle-Granger tests which will be discussed
in Chapters 9 and 10, respectively.

6. Note that 5.5E - 10 is the way most computer packages write 5.5 ¥ 10-10 which can also
be written as 0.00000000055.

7. Formally, the F-statistic is only one in an entire class of test statistics that take their criti-
cal values from the so-called “F-distribution”. Appendix 11.1 offers some additional dis-
cussion of this topic.
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C H A P T E R

Multiple regression

6

The discussion of simple regression in Chapter 5 involved two variables: the depen-
dent variable, Y, and the explanatory variable, X. As we discussed at the beginning
of Chapter 4, many analyses in business and finance involve many variables. Multi-
ple regression extends simple regression to the case where there are many explana-
tory variables. Fortunately, most of the intuition and statistical techniques of multiple
regression are very similar to those of simple regression.

The key elements of Chapters 4 and 5 were:

1. The development of graphical intuition for regression techniques as the fitting of
a straight line through an XY-plot.

2. The introduction of the regression coefficient as measuring a marginal effect.
3. The description of the OLS estimate as a best fitting line (in terms of minimiz-

ing the sum of squared residuals) through an XY-plot.
4. The introduction of R2 as a measure of fit of a regression model.
5. The introduction of statistical techniques such as confidence intervals and hypoth-

esis tests.

With some exceptions (highlighted below) these five elements do not differ for the
multiple regression model. You should look back on Chapters 4 and 5 if you are
having difficulty remembering the underlying intuition or statistical aspects of regres-
sion. This chapter covers these five elements for the multiple regression case very
briefly, summarizing similarities with and differences from the simple regression
model. Much of the chapter will involve the discussion of examples that illustrate
how to interpret multiple regression results.
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Example: Explaining house prices

Much research in finance and marketing focusses on the pricing of goods. One
common approach involves building a model in which the price of a good
depends on the characteristics of that good. Data set HPRICE.XLS contains data
on an application of this so-called hedonic pricing approach to the housing
market. We worked with part of this data set in previous chapters. Recall that
it contains data on N = 546 houses sold in Windsor, Canada. Our dependent
variable, Y, was the sales price of the house in Canadian dollars, and lot size
was our explanatory variable.

Of course, the price of a house is affected by more than just lot size. Any
serious attempt to explain the determinants of house prices must include more
explanatory variables than lot size. In this chapter, we focus on the following
four explanatory variables:

• X1 = the lot size of the property (in square feet)
• X2 = the number of bedrooms
• X3 = the number of bathrooms
• X4 = the number of storeys (excluding the basement).

The data set HPRICE.XLS also contains other explanatory variables that we will
use in later chapters and in exercises.

Exercise 6.1

(a) Create XY-plots using the four explanatory variables in the house pricing
example one at a time (i.e. plot Y and X1, then plot Y and X2, etc.).

(b) Perform simple regressions using the explanatory variables one at a time 
(i.e. regress Y on X1, then regress Y on X2, etc.).

(c) Comment on the relationships you find in (a) and (b).

Example: The capital asset pricing model 

(continued from page 83)

In contrast to the house price example, the CAPM implies that there should not
be a large number of explanatory variables in the regression. Remember that
this theory that implied that the excess return on the stock of a particular
company should depend on the excess return on the market portfolio – and
only on the excess return of market portfolio through the CAPM b. That is,



Regression as a best fitting line

As we saw in Chapter 4, the simple regression model can be thought of as a tech-
nique aimed at fitting a line through an XY-plot. Since multiple regression implies the
existence of more than two variables (e.g. X1, X2, X3, X4 and Y ), we cannot draw an
XY-plot in a two-dimensional graph, in which one variable is plotted on the vertical
axis and the other on the horizontal axis. Nevertheless, the same line-fitting intuition
holds (although this could only be illustrated if we could somehow create high-
dimensional graphs). For instance, if we had three explanatory variables, we could
show how multiple regression involves fitting a surface through a four-dimensional
graph, in which Y is plotted on one axis, X1 on the second, X2 on the third, and X3

on the fourth. The graph would be very messy and actually impossible to create 
(i.e. what does a four-dimensional graph look like?).

Ordinary least squares estimation of the multiple

regression model

The multiple regression model with k explanatory variables is written as:1

Y X X X ek k= + + + + +a b b b1 1 2 2 . . . .
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the only thing relevant for the investor should be the expected return and risk-
iness of the stock (as measured by the CAPM b ). CAPM suggests that any other
explanatory variables, such as the size of the company, its capital structure, etc.
should not matter. In Chapters 4 and 5, we discussed a regression of Y = the
excess returns on Company A’s stock on X = excess returns on a stock market
index using the data in CAPM.XLS. This file also contains data on the sales and
debt of Company A (measured in thousands of dollars). Theory tells us that
these need not be significant explanatory variables. However, a simple theory
such as CAPM may not be sophisticated enough to capture the true behavior
of investors. Hence, many researchers have investigated whether other variables
(such as sales, debt, etc.) do have explanatory power. In some cases researchers
have found that such explanatory variables are important, casting doubt on the
simple version of the CAPM and provoking development of extensions of the
CAPM model. In short, even though CAPM theory tells us that a simple regres-
sion should be adequate, the search to test the adequacy of this theory has lead
some researchers to be interested in multiple regression.



Instead of estimating just a and b, we now have a and b1, b2, . . . , bk. However, the
strategy for finding estimates for all these coefficients is exactly the same as for the
simple regression model. That is, we define the sum of squared residuals:

where X1i is the ith observation on the first explanatory variable (for i = 1, . . . , N

observations, e.g. lot size of house i for houses i = 1, . . . , 546). The other explana-
tory variables are defined in an analogous way. The OLS estimates (which can 
be interpreted as providing the best fitting line) are found by choosing the values 
of and 1, 2, . . . k that minimize the SSR. Conceptually, this is a straightforward
mathematical problem.2 The resulting formulae are complicated and are not listed
here.3 Note that computer software packages like Excel will calculate these OLS esti-
mates ( , 1, . . . , k) automatically.

Statistical aspects of multiple regression

As noted, the statistical aspects of multiple regression are essentially identical to the
simple regression case (see Chapter 5). In particular, the R2 is still a measure of fit
and is calculated in the same way. Note, however, that it should be interpreted as a
measure of the explanatory power of all the explanatory variables together rather
than as just the one explanatory variable in the simple regression model. Similarly, the
F-statistic for testing if R2 = 0, has a slightly different formula (N - 2 is replaced by
N - k - 1) but is essentially the same and you still look at “Significance F ” in the
Excel output. If we find that R2 π 0, then we can say that “The explanatory variables
in the regression, taken together, help explain the dependent variable”, whereas if we
find R2 = 0, we can say that “The explanatory variables are not significant and do not
provide any explanatory power for the dependent variable”.

The general formulae for calculating confidence intervals for the regression coef-
ficients and for testing whether they are equal to zero are the same as in the previ-
ous chapter. However, the actual numbers that comprise the formulae (e.g. sb) are
calculated in a slightly more complicated way. Nevertheless, the practical intuition
remains unchanged. In other words, a 95% confidence interval will provide an inter-
val estimate such that you can say that “I am 95% confident that my coefficient lies
in the 95% confidence interval”. In Excel, the “Lower 95%” and “Upper 95%”
columns are still the lower and upper bounds of the 95% confidence interval. If the
number in the “P-value” column is less than 0.05, we can conclude that the relevant
explanatory variable is significant at the 5% level. It is worth stressing that there 
is now a P-value and a confidence interval associated with each of the coefficients,
b1, . . . , bk rather than just the one b in the simple regression model. However, from
the point of view of a researcher wishing to interpret computer output for use in a

b̂b̂â
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report, the statistical aspects of multiple regression are essentially the same as for
simple regression.4

Interpreting OLS estimates

It is in the interpretation of OLS estimates that some subtle (and important) dis-
tinctions exist between the simple and multiple regression case. This section will
provide a few ways of thinking about or interpreting coefficients in the multiple
regression model. Before we begin, it is important to be clear about the notation we
will use.

When we speak of a property that holds generally for any of the coefficients we
will denote the coefficient by bj (i.e. the coefficient on the jth explanatory variable
where j could be any number between 1 and k). When we wish to talk about a 
specific coefficient we will give an exact number for j (e.g. b1 has j = 1 and is the 
coefficient on the first explanatory variable).

In the simple regression case we saw how b could be interpreted as a marginal
effect (i.e. as a measure of the effect that a change in X has on Y or as a measure of
the influence of X on Y). In multiple regression, bj still can be interpreted as a mar-
ginal effect, but in a slightly different way. In particular, bj is the marginal effect of
Xj on Y, holding all other explanatory variables constant. The Latin phrase for
this concept is ceteris paribus, which is commonly used. The ceteris paribus qualification
is of critical importance to the correct interpretation of regression results. For this
reason, we will spend some time illustrating precisely what we mean by it, by way of
consideration of our house price example.
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Example: Explaining house prices (continued from page 92)

Table 6.1 below contains results from the regression of Y = sale price on X1 =
lot size, X2 = number of bedrooms, X3 = number of bathrooms and X4 =
number of storeys. The table is organized in the form of an Excel output, but
other regression packages provide output organized in a similar way.

The first column lists the explanatory variables. In this example there are four
of them (plus the intercept). Each row contains the same information as in the
table for the simple regression model (i.e. the OLS estimate of the relevant coef-
ficient followed by its standard deviation, t-statistic, P-value for testing whether
bj = 0 and the lower and upper bounds of the 95% confidence interval for the
coefficient). As stressed above, each of these statistical results is now available
for each coefficient and they will all be different (e.g. the P-value for testing 
b1 = 0 will be different from the P-value for testing b3 = 0).
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Using the information in Table 6.1, we can write the fitted regression equa-
tion as:

As an example, consider the coefficient for the first explanatory variable, lot
size. It can be seen that 1 = 5.43. Below are some (very similar) ways of ver-
bally stating what this value means.

1. “An extra square foot of lot size will tend to add another $5.43 on to the
price of a house, ceteris paribus”.

2. “If we consider houses with the same number of bedrooms, bathrooms and
storeys, an extra square foot of lot size will tend to add another $5.43 onto
the price of the house”.

3. “If we compare houses with the same number of bedrooms, bathrooms 
and storeys, those with larger lots tend to be worth more. In particular,
an extra square foot of lot size is associated with an increased price of
$5.43”.

It is worth expanding on the motivation for the latter two expressions. We
cannot simply say that “houses with bigger lots are worth more” since this is
not the case (e.g. some nice houses on small lots will be worth more than poor
houses on large lots). However, we can say that “if we consider houses that vary
in lot size, but are comparable in other respects, those with larger lots tend
to be worth more”. The two expressions above explicitly incorporate the qual-
ification “but are comparable in other respects”. We did not have to include this
qualification in Chapter 4.

b̂
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Table 6.1 Regression of house price on lot size, number of bedrooms, number of
bathrooms and number of storeys.*

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -4009.5500 3603.109 -1.1128 0.266287 -11087.3 3068.248
X1 5.4291737 0.369250 14.70325 2.05E – 41 4.703835 6.154513
X2 2824.61379 1214.808 2.325153 0.020433 438.2961 5210.931
X3 17105.1745 1734.434 9.862107 3.29E – 21 13698.12 20512.22
X4 7634.897 1007.974 7.574494 1.57E – 13 5654.874 9614.92

*Note that in this table, as elsewhere, we write numbers as Excel produces them. That is, we include as many
decimal places as possible and use the “E” notation for exponents. In a report you probably would want to
use only a few decimal places and replace, say, 1.57E – 13 with 1.57 ¥ 10-13. Furthermore, R2 = 0.54 and the
P-value for testing R2 = 0 (which is labeled “Significance F” by Excel) is 1.18E – 88.
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Alternatively, let us consider 2 (the coefficient on the number of bedrooms),
which is 2842.61. This might be expressed as:

1. “Houses with an extra bedroom tend to be worth $2,842.61 more than those
without the extra bedroom, ceteris paribus”.

2. “If we consider comparable houses (e.g. those with 5,000 square foot lots,
two bathrooms and two storeys), those with three bedrooms tend to be
worth $2,842.61 more than those with two bedrooms”.

There are many different ways to express the interpretation of these coeffi-
cients. However, the general point we wish to make is as follows: In the case of
simple regression we can say that “b measures the influence of X on Y ”; in the
multiple regression we say that “bj measures the influence of Xj on Y all other

explanatory variables being equal”. The expressions above are just different
ways of verbally saying “all other explanatory variables being equal”.

The coefficients on the other explanatory variables can be interpreted in anal-
ogous ways. For instance, 3 = 17105.174. In words, we might say that “Houses
with an extra bathroom tend to be worth $17,105.17 more, ceteris paribus”. Since

4 = 7634.897, we might say “If we compare houses that are similar in all other
respects, those with an extra storey tend to be worth $7,634.90 more”.

Remember that in a discussion of the statistical properties of the regression
coefficients, the confidence interval and the P-value are the most important
numbers. These can be interpreted in the same way as for the simple regres-
sion. For instance, since the P-values for all of the explanatory variables (except
the intercept) are less than 0.05 we can say that “The coefficients b1, b2, b3 and
b4 are statistically significant at the 5% level”, or equivalently, that “We can reject
the four separate hypotheses that any of the coefficients is zero at the 5% level
of significance”.

By way of another example, let us consider the 95% confidence interval for
b2, which is [438.2761, 5210.931]. This information might be presented verbally
as: “Although our point estimate indicates that the marginal effect of number
of bedrooms on house prices is $2,842.61, this estimate is imprecise. The 95%
confidence interval indicates that we can only be confident that this marginal
effect lies somewhere between $438.28 and $5,210.93”. Alternatively, the con-
fidence interval for b4 is [5654.874, 9614.92] and we can say: “We are 95% 
confident that the marginal effect of the number of storeys on house price lies
between $5,654.87 and $9,614.92”.

The hypothesis test of whether R2 = 0 yields a P-value of much less than
5%, indicating that X1, X2, X3 and X4 have statistically significant explanatory
power for the dependent variable. In fact, variations in lot size and the number
of bedrooms, bathrooms and storeys account for 54% of the variability in
house prices.

b̂
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Pitfalls of using simple regression in a multiple

regression context

To emphasize the difference between simple and multiple regression, we will return
to the house price example and run a simple regression of Y = sales price on 
X2 = number of bedrooms. Table 6.3 contains the results from this regression. Since

= 13,269.98 in this simple regression, we are able to make statements of the kind:b̂
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Example: The capital asset pricing model 

(continued from page 93)

The data set CAPM.XLS contains the following variables:

• Y = the excess return on shares in Company A (a percentage)
• X1 = the excess return on a stock index (a percentage)
• X2 = the sales of Company A (thousands of dollars)
• X3 = the debt of Company A (thousands of dollars).

The theory underlying the CAPM implies that the explanatory variables sales
and debt should not be significant. And, indeed, if we use the 5% level of sig-
nificance we do find that these two explanatory variables are not significant.
However, since the P-value for testing whether b3 = 0 is less than 0.10, the debt
variable is significant at the 10% level. This illustrates how the choice of sig-
nificance level can have an important effect on the outcome of a hypothesis
test.

Remember that the coefficient on X1 is of crucial importance since it pro-
vides us with an estimate of the CAPM beta. The OLS estimate of the CAPM
beta is 1.747, which is very similar to the value we found in the previous chapter
(1.77) using a simple regression.

Table 6.2 Regression results for the CAPM example.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 2.530 1.335 1.895 0.061 -0.115 5.175
X1 1.747 0.202 8.631 3.73E – 14 1.346 2.148
X2 -0.0003 0.001 -0.323 0.748 -0.002 0.002
X3 -0.022 0.012 -1.867 0.064 -0.045 0.001

Furthermore, R2 = 0.41 and the P-value for testing R2 = 0 (which is labeled “Significance” by Excel) is 
2.83E – 13.



Note also that the coefficient on number of bedrooms in the simple regression is
much higher than for the multiple regression. Why is this the case? To answer this
question, first imagine that a friend in Windsor wanted to build an extra bedroom in
her house and asked you how much that extra bedroom would add to the value of
the house. How would you answer?

The simple regression here contains data only on house price and number of bed-
rooms. You can think of it as observing all the houses in the sample and concluding
that those with more bedrooms tend to be more expensive (e.g. those with three bed-
rooms tend to be worth $13,269.98 more than those with two bedrooms).

However, this does not necessarily mean that adding an extra bedroom to the house
will raise its price by $13,269.98. The reason is that there are many factors other than
the number of bedrooms that potentially influence house prices. Furthermore, these
factors may be highly correlated (i.e. in practice, big houses tend to have more bed-
rooms, more bathrooms, more storeys and larger lot size). To investigate the possi-
bility, let us first examine the correlation matrix (see Chapter 3) of all the variables in
this example (Table 6.4).

Since all the elements of the correlation matrix are positive, it follows that each
pair of variables is positively correlated with each other (e.g. the correlation between
the number of bathrooms and the number of bedrooms is 0.37, indicating that
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Table 6.3 Regression of sale price on number of bedrooms.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 28773.4327 4413.753 6.519 1.6E – 10 20103.34 37443.53
X2 13269.9801 1444.598 9.186 8.5E – 19 10432.30 16107.66

Table 6.4 Correlation matrix of variable in house price example.

Sale price Lot size #bedrooms #bath #storeys

Sale price 1
Lot size 0.535795 1
#bedrooms 0.366447 0.151851 1
#bath 0.516719 0.193833 0.373768 1
#storeys 0.421190 0.083674 0.407973 0.324065 1

“The marginal effect of number of bedrooms on house prices is $13,269.98”, or
“Houses with an extra bedroom tend to cost $13,269.98 more.” You should contrast
this statement with the ones we made above using the multiple regression. For the
simple regression we have left out the ceteris paribus conditions that are implicit in the
part of the sentence: “If we consider comparable houses (e.g. those with 5,000 square
foot lots, two bathrooms and two storeys) . . .”.



houses with more bathrooms also tend to have more bedrooms). In cases like this,
simple regression cannot disentangle the influences of the individual variables on
house prices. So when the simple regression method examines all the houses and
notes that those with more bedrooms cost more, this does not necessarily mean that
bedrooms are adding value to the house. Buyers may really be valuing bathrooms or
lot size over bedrooms. In other words, houses with more bathrooms may be worth
more. Yet, houses with more bathrooms also have more bedrooms. The simple
regression model simply looks at house price and number of bedrooms and sees that
those with more bedrooms tend to be worth more. What it does not realize is that it
is really the number of bathrooms that people value. Thus, if you advise your friend
that an extra bedroom is worth $13,269.98, you may be seriously misleading her. In
essence, in the simple regression model, we leave out important explanatory variables
such as lot size, the number of bathrooms and the number of storeys. The regres-
sion combines the contribution of all these factors together and allocates it to the
only explanatory variable it can: bedrooms. Hence is very big.5

In contrast, multiple regression allows us to disentangle the individual contribu-
tions of the four explanatory variables assumed to affect house prices. The figure of

2 = $2,842.61 comes closer to being a genuine measure of the effect of adding an
extra bedroom, although even this multiple regression is likely to be omitting some
important explanatory variables. By presenting this figure to your friend, you can be
confident that you are not making the error above. That is, you can be sure that it is
more likely to be the bedroom that is adding the value – and that you are not con-
founding the contributions of the various explanatory variables.

Omitted variables bias

The problems discussed in the previous section relate to a statistical issue called
omitted variables bias. We will not develop the statistical theory necessary to for-
mally explain what this means. Informally, however, we can say that if we omit
explanatory variables that should be present in the regression and if these omitted
variables are correlated with those that are included, then the coefficients on the
included variables will be wrong. In the previous example, the simple regression of
Y = sales price on X = number of bedrooms, omitted many variables that were impor-
tant for explaining house prices (e.g. lot size, number of bathrooms, etc.). These
omitted variables were also correlated with number of bedrooms. Hence the coeffi-
cient estimate = 13,269.98 is unreliable due to omitted variables bias.

In contrast, in the CAPM example the simple regression (see Chapter 5) and mul-
tiple regression provided very similar estimates of the CAPM b. In this case, the extra
explanatory variables in the multiple regression (sales and debt) did not have signifi-
cant explanatory power. Hence, the simple regression did not suffer from omitted
variables bias.

b̂

b̂

b̂
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The intuition behind why the omission of variables causes bias is provided in the
previous section. For instance, lot size is an important explanatory variable for house
prices, and thus “wants to” enter into the regression. If we omit it from the regres-
sion, it will try to enter in the only way it can – through its positive correlation with
the explanatory variable: number of bedrooms. In other words, the coefficient on
number of bedrooms will confound the effect of bedrooms and lot size on house
prices.

One practical consequence of omitted variables bias is that you should always try
to include all those explanatory variables that could affect the dependent variable.
Unfortunately, in practice, this is rarely possible. House prices, for instance, depend
on many other explanatory variables than those found in the data set HPRICE.XLS (e.g.
the state of repair of the house, how pleasant the neighbors are, closet and storage
space, whether the house has hardwood floors, the quality of the garden, etc.). In
practice, there are too many variables on which to collect data, and many will be sub-
jective (e.g. how do you measure “pleasantness of the neighbors”?). You will virtu-
ally always have omitted variables and there is little that can be done about it – other
than to hope that the omitted variables do not have much explanatory power and that
they are not correlated with the explanatory variables included in the analysis.

The previous paragraphs provide a justification for working with as many explana-
tory variables as possible. However, there is a counter argument to be made for using
as few explanatory variables as possible. It can be shown that the inclusion of irrele-
vant variables decreases the accuracy of the estimation of all the coefficients (even
the ones that are not irrelevant). This decrease in accuracy will be reflected in overly
large confidence intervals and P-values.

How should we trade off the benefits of including many variables (i.e. reducing
the risk of omitted variables bias) with the costs of possibly including irrelevant vari-
ables (i.e. reducing the accuracy of estimation)? A common practice is to begin with
as many explanatory variables as possible,6 then discard those that are not statistically
significant (and then re-run the regression with the new set of explanatory variables).
Statistical significance of an individual explanatory variable can, of course, be
assessed using the P-values produced by computer packages like Excel. Once you
have discarded the insignificant explanatory variables, you can run a new regression
involving fewer explanatory variables, in which the risk of including irrelevant vari-
ables is greatly reduced.
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Exercise 6.2

Use data set HPRICE.XLS and let Y = house price be the dependent variable and
consider the following potential explanatory variables:

• X1 = the lot size of the property (in square feet)
• X2 = the number of bedrooms



Multicollinearity

Multicollinearity is a statistical issue that relates to the previous discussion. It is a
problem that arises if some or all of the explanatory variables are highly correlated
with one another. If it is present, the regression model has difficulty telling which
explanatory variable(s) is influencing the dependent variables. A multicollinearity
problem reveals itself through low t-statistics and therefore high P-values. In these
cases, you may conclude that coefficients are insignificant and hence should be
dropped from the regression. In an extreme case, it is possible for you to find all the
coefficients are insignificant using t-statistics, while the R2 is quite large and signifi-
cant. Intuitively, this means that the explanatory variables together provide a great
deal of explanatory power, but that multicollinearity makes it impossible for the
regression to decide which particular explanatory variable(s) is providing the expla-
nation. (This is not important when doing prediction.)

There is not too much that can be done to correct this problem other than to drop
out some of the highly correlated variables from the regression. However, there are
many cases when you would not want to do so. For instance, in our house price
example, if number of bedrooms and number of bathrooms had been found to be
highly correlated, multicollinearity would be a problem. But you may hesitate to throw
out one of these variables since common sense indicates that both of them signifi-
cantly influence housing prices. The following example illustrates a case where a 
multicollinearity problem exists and how to correct for it by omitting an explanatory
variable.
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• X3 = the number of bathrooms
• X4 = the number of storeys (excluding the basement).

(a) Regress Y on X1, X2, X3 and X4 (i.e. recreate the example above) and discuss
your results.

(b) Regress Y on various subsets of X1, X2, X3 and X4 and discuss your results.
(c) Comparing your results for (a) and (b), examine the effect of omitting

explanatory variables.

Example: The effect of interest rates on the exchange rate

Suppose you want to examine the effect of interest rate policy on the exchange
rate. One way would be to select an exchange rate (e.g. the £/$ rate) as the
dependent variable and run a regression of it on the interest rate. But there are
many possible interest rates that could be used as explanatory variables (e.g. the
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bank prime rate, the Treasury bill rate, etc.). These interest rates are very similar
to one another and will be highly correlated. If you include more than one of
them you will likely run into a multicollinearity problem. The solution to this
problem is clear: include only one of the interest rates. Since the various inter-
est rates are essentially measures of the same phenomenon, common sense says
that throwing out all but one of the interest rate variables will not cause any
loss in explanatory power and will address the multicollinearity problem.
However, we will not give a numerical example here since interest rates and
exchange rates are time series data. As we shall see in future chapters, a naive
use of multiple regression techniques with time series data can yield misleading
results.

Example: Multicollinearity illustrated using artificial data

To illustrate the multicollinearity problem and how to address it, we first artifi-
cially generate N = 50 data points from the regression model:

We expect OLS estimates to be roughly = 0, 1 = 0.5 and 2 = 2 since these
values were used to create the data. However, the data generated have a corre-
lation between X1 and X2 that is extremely high. In fact, it equals 0.98, indicat-
ing multicollinearity is a likely problem. Table 6.5 gives regression results using
this data.

These results are very different from those we had hoped to get. The OLS
point estimates are very different from those used to generate the data. For
instance, 1 = 2.08 even though b1 = 0.5 was used to generate the data. In fact,
the OLS estimate for b1 is almost exactly the same as the true value for b2! This
result illustrates how OLS can get “confused” about the role played by indi-
vidual explanatory variables when they are highly correlated. Note also that one

b̂
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Table 6.5 Regression results using artificial data.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.166191 0.1025278 1.57859 0.121137 -0.045601 0.377983
X1 2.083733 0.952938 2.18664 0.033782 0.16667 4.00080
X2 0.147775 0.965767 0.153013 0.879043 -1.7951 2.09065

R2 = 0.76 and the P-value for testing R2 = 0 is 1.87E – 15.
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of the explanatory variables is not statistically significant at the 5% level and
that the other is only marginally significant. Furthermore, 95% confidence inter-
vals for all coefficients are very large. These results suggest that the explanatory
variables have only weak explanatory power. In contrast, the R2 is very large and
strongly statistically significant, suggesting that the explanatory variables have
excellent explanatory power.

Given the problem of multicollinearity, many researchers would advocate
omitting X2 from the regression. If we follow their advice and rerun the regres-
sion, we obtain the results shown in Table 6.6.

Note that these results look much better from a statistical point of view. b1

is strongly statistically significant and the confidence interval indicates it is esti-
mated quite precisely. So, in one sense, omitting X2 has solved the multi-
collinearity problem. The only problem is that 1 is nowhere near the true value
of 0.5 (and the confidence interval does not contain 0.5). Generally, since X2 is
omitted from the model, X1 attempts to take its place. Since X1 is so highly cor-
related with X2, the former can proxy for the latter quite well. Hence 1 com-
bines the effects of both explanatory variables. In other words, just as omitting
important explanatory variables in the house price example gave us a biased
view of the effect of bedrooms on house prices, omitting X2 here gives us a
biased view of the effect of X1 on Y. There is nothing you can really do about
this other than to note that it may occur if multicollinearity is present and inter-
pret your results with caution.

Note that multicollinearity involves correlations between explanatory 
variables, not the dependent variable. For it to be a problem, the correla-
tions between variables must be extremely high. If we return to the house
pricing example, we can see that the explanatory variables are moderately 
correlated with one another (e.g. some correlations are around 0.3 or 0.4). But
this moderate correlation does not lead to a multicollinearity problem since 
all the coefficients are significantly different from zero (see the P-values in 
Table 6.1).

b̂

b̂

Table 6.6 Regression results using artificial data omitting X2.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.166715 0.104146 1.60078 0.115989 -0.042685 0.376115
X1 2.22690 0.178806 12.4543 1.2E – 16 1.86739 2.58641

R2 = 0.76 and the P-value for testing whether it equals zero is 1.2E – 16.



Appendix 6.1: Mathematical interpretation of

regression coefficients

Readers who know some calculus can use this knowledge to obtain some mathemat-
ical intuition of the difference between simple and multiple regression. In the case
of the simple regression model, basic calculus can be used to derive the relationship:
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Exercise 6.3

For this question, use data set EXECUTIVE.XLS with Y = executive compensa-
tion, X = profits, W = change in sales and Z = change in debt. Carry out a mul-
tiple regression analysis of this data set addressing the issues raised in this
chapter. For instance, you may want to:

(a) Regress Y on X1, X2 and X3 and verbally interpret the coefficient estimates
you obtain.

(b) Discuss the statistical significance of the coefficients. Are there explanatory
variables that can be dropped?

(c) Discuss the fit of the regression.
(d) Calculate a correlation matrix. Through consideration of this and regression

results, discuss the issue of multicollinearity.

Chapter summary

1. The multiple regression model is very similar to the simple regression
model. The chapter emphasized only differences between the two.

2. The interpretation of regression coefficients is subject to ceteris paribus con-
ditions. For instance, bj measures the marginal effect of Xj on Y, holding

the other explanatory variables constant.
3. If important explanatory variables are omitted from the regression the 

estimated coefficients can be misleading, a condition known as the omitted
variables bias. The problem gets worse if the omitted variables are strongly
correlated with the included explanatory variables.

4. If the explanatory variables are highly correlated with one another, coeffi-
cient estimates and statistical tests may be misleading. This is referred to as
the multicollinearity problem.



That is, the regression coefficient, b, can be interpreted as a measure of how much
Y changes when X is changed a small amount. This is a total derivative.

In the case of the multiple regression model, we can say:

In other words, the coefficients are partial derivatives rather than total derivatives.
This partial derivative can be interpreted as measuring the effect of a small change
in Xj on Y, treating all the other explanatory variables as though they are 

constant.

Endnotes

1. Formally, we should put an “i ” subscript on all the variables to indicate each observation.
In other words, we should have written: Yi = a + b1X1i + b2X2i + . . . + bk Xki + ei. However,
adding so many subscripts is messy and makes the equation hard to read. So here, and
throughout this book, we will often drop the “i ” subscript (or “t ” subscript with time series
data) unless it is important to specify the individual observation.

2. Readers familiar with calculus should note that we can find OLS estimates in the multiple
regression model in the usual way. That is, we can take first derivatives with respect to a
and 1, 2, . . . , k, set these derivatives to zero, and then solve.

3. Matrix algebra is essential for theoretical derivations or proofs involving the multiple
regression model, since the formulae can be extremely complex without it. Matrix algebra
is beyond the scope of this book, but if you do further study in financial econometrics
you will come to see the value of its use.

4. The methods described for one explanatory variable in Appendix 5.1 also apply to the case
of many explanatory variables. That is, each coefficient will have a t-statistic that can be
compared to the critical value of 1.96 if the sample size is large. In cases where there are
many explanatory variables you might also want to test complicated hypotheses involving
several coefficients (e.g. H0: b1 + b2 = b3). These tests are more difficult to carry out than
those covered here. However, you may wish to consult Appendix 11.1, which has some
discussion of hypothesis testing in such cases.

5. If you find this reasoning confusing, think back to the chapter on correlation. There we
considered an example involving the variables cigarette smoking, alcohol drinking and lung
cancer. We pointed out there that scientific studies indicate that it is smoking which causes
lung cancer. However, smokers also tend to drink more alcohol than non-smokers. Hence,
the correlation between drinking and lung cancer is positive even though drinking does not
cause lung cancer. This type of issue is exactly of the sort we are getting at in this example.
That is, a simple regression involving only the lung cancer and drinking variables would

bbb

∂
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indicate that the effect of drinking on lung cancer is large, even though drinking does not
cause lung cancer. Why does this occur? Because we have left out the smoking variable
which is an important explanatory variable for lung cancer. This left-out explanatory vari-
able is correlated with the explanatory variable being used in the simple regression (i.e.
drinking).

6. But, if you put in too many irrelevant explanatory variables to begin with, you could find
virtually all explanatory variables to be insignificant. Hence, some common sense is
required about what a good initial regression might be.
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C H A P T E R

Regression with 

dummy variables

7

Previous chapters used quantitative data to demonstrate important statistical con-
cepts. However, some of the data financial analysts use is qualitative (see Chapter 2
for a discussion of the distinction between qualitative and quantive data). Dummy
variables, briefly described in Chapter 2, are a way of turning qualitative variables into
quantitative variables. Once the variables are quantitative, then the correlation and
regression techniques described in previous chapters can be used. Formally, a dummy
variable is a variable that can take on only two values, 0 or 1. We will demonstrate
how regression works when some of the explanatory variables are dummies using the
following examples.

Example: The determinants of market capitalization

We have discussed this example in previous chapters. However, an important
issue involving this data set was not discussed previously since it involved a
dummy explanatory variable. By way of motivating this issue, note that most of
the shares traded on the stock market are old shares in existing firms. However,
many old firms will issue some new shares in addition to those already trading
– what are referred to as “seasoned equity offerings” or SEOs. Furthermore,
some firms that have not traded shares on the stock market in the past may
decide to now issue such shares (e.g. a computer software firm owned by one
individual may decide to “go public” and sell shares in order to raise money for
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future investment or expansion). Such shares are called “initial public offerings”
or IPOs. Some researchers have argued on the basis of empirical evidence that
IPOs are undervalued relative to SEOs. Accordingly, in addition to all the
company characteristics we have used before, we also have a dummy variable
used to investigate this possibility.

To be precise, Excel file EQUITY.XLS contains data on N = 309 US firms in
1996. All variables except the dummy variable are measured in millions of US
dollars.

• MARKETCAP = the total value of all shares (new and old) outstanding just
after the firm issued the new shares. This is calculated as the price per share
times the number of shares outstanding.

• DEBT = the amount of long-term debt held by the firm.
• SALES = total sales of the firm.
• INCOME = net income of the firm.
• ASSETS = book value of the assets of the firm.
• SEO = a dummy variable that equals 1 if the new share issue is an SEO and

equals 0 if it is an IPO.

Example: Explaining house prices

In the previous chapter, we worked through an extended example that investi-
gated the factors influencing housing prices in Windsor, Canada. Recall that the
explanatory variables we used in that chapter were all quantitative (e.g. lot size
of property measured in square feet, the number of bathrooms). However,
there are other factors that might influence housing prices that are not directly
quantitative. Examples include the presence of: a driveway, air conditioning, a
recreation room, a basement, and gas central heating. All these variables are
Yes/No qualitative variables (e.g. Yes = the house has a driveway/No = the
house does not have a driveway).

In order to carry out a regression analysis using these explanatory variables,
we first need to transform them into dummy variables by changing the Yes/No
into 1/0. Using the letter D to indicate dummy explanatory variables, we can
define:

• D1 = 1 if the house has a driveway (= 0 if it does not).
• D2 = 1 if the house has a recreation room (= 0 if not)
• D3 = 1 if the house has a basement (= 0 if not)
• D4 = 1 if the house has gas central heating (= 0 if not)
• D5 = 1 if the house has air conditioning (= 0 if not)



Once qualitative explanatory variables have been transformed into dummy vari-
ables, regression can be carried out in the standard way and all the theory and intu-
ition developed in previous chapters can be used.

Why, then, are we allocating an entire chapter to this topic? There are two answers
to this question. First, regression with dummy explanatory variables is quite common
and the interpretation of coefficient estimates is somewhat different. For this reason
it is worthwhile discussing the interpretation in detail. Second, regression with dummy
explanatory variables is closely related to another set of techniques called Analysis of
Variance (or ANOVA for short). ANOVA is not used that often by financial
researchers (although in the field of corporate finance it is sometimes used), but it is
an extremely common tool in other social and physical sciences such as sociology,
education, medical statistics and epidemiology.

While most computer software packages such as Excel have ANOVA capabilities,
the terminology of ANOVA is quite different from that used by financial analysts, so
ANOVA may seem confusing and unfamiliar to you (e.g. the Excel Tools/Data 
Analysis menu has several ANOVA choices referring to “Single factor”, “Two-factor
with replication”, “Two-factor without replication”). What we should note here,
however, is that regression with dummy explanatory variables can do anything ANOVA can.
In fact, regression with dummy variables is a more general and more powerful tool
than ANOVA. For instance, the terms “Single factor ANOVA” or “Two-factor
ANOVA” refer to the number of dummy explanatory variables. Excel (and most
common computer packages that perform ANOVA), can handle no more than two.
However, Excel allows for up to 16 explanatory variables in its multiple regression
facilities and, thus, can handle very complicated ANOVA models. In short, if you
know how to use and understand regression, then you have no need to learn about
ANOVA.
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For instance, a house with a driveway, basement and gas central heating, but no
air conditioning nor recreation room would have values for these variables of
D1 = 1, D2 = 0, D3 = 1, D4 = 1 and D5 = 0. These variables (and many others)
are in data set HPRICE.XLS.

Exercise 7.1

Using the data set HPRICE.XLS, calculate and interpret descriptive statistics and
a correlation matrix for the five dummy variables listed in the example above.
How can you interpret the mean of a dummy variable?



Simple regression with a dummy variable

We begin by considering a regression model with one dummy explanatory variable,
D:

If we carry out OLS estimation of the above regression model, we obtain and .
We can look at confidence intervals for a or b; examine P-values to test whether the
coefficients are statistically significant; calculate R2; perform an F-test for the signif-
icance of the regression; etc., exactly as before. Refer back to Chapters 4, 5 and 6 if
you are still unfamiliar with any of this material. An important topic at this stage for
discussion, however, is the interpretation of the coefficients.

The straight-line relationship between Y and D gives a fitted value for the ith obser-
vation of:

Note, since Di is either 0 or 1, i = or i = + . Two examples will serve to
illustrate how this fact can be used to interpret regression results.

b̂âŶâŶ

ˆ ˆ ˆ .Y Di i= +a b

b̂â

Y D e= + +a b .
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Example: Explaining house prices (continued from page 111)

Table 7.1 gives computer output from a regression of Y = house prices on 
D = air conditioning dummy using data from HPRICE.XLS. Note that an exam-
ination of the P-value or the confidence interval (i.e. Upper 95%, Lower 95%)
shows us that b is strongly significant. Furthermore, = 59,885 and = 25,996.
How can we interpret these numbers? We can, of course, use the same mar-
ginal effect intuition as we used in Chapter 4. That is, we can say that b is a
measure of how much Y tends to change when X is changed by one unit. But,
with the present dummy explanatory variable a “one unit” change implies a
change from “No air conditioner” to “Having an air conditioner”. That is, we
can say “houses with an air conditioner tend to be worth $25,996 more than
houses without an air conditioner”.

b̂â

Table 7.1 Regression of house prices on air conditioning dummy.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 59884.85 1233.50 48.55 7.1E – 200 57461.84 62307.86
D 25995.74 2191.36 11.86 4.9E – 29 21691.18 30300.32
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However, there is another, closely related, way of thinking about regression
results when the explanatory variable is a dummy. In the case of houses without
air conditioning Di = 0 and hence i = 59,885. In other words, our regression
model finds that houses without air conditioning are worth on average $59,885.
In the case of houses with air conditioning, Di = 1 and the regression model
finds that i = + = 85,881. Thus, houses with air conditioning are worth
on average $85,881. This is one attractive way of presenting the information
provided by the regression. Alternatively, we could focus on directly and say
that houses with air conditioners tend to be worth $25,996 more than houses
without them.

To provide more intuition, note that if we had not carried out a regression,
but simply calculated the average price for houses with air conditioning, we
would have found this figure to be $85,881. If we had then calculated the
average price for houses without air conditioning, we would have found them
to be worth $59,885. That is, we would have found exactly the same results as
in the regression analysis.

Remember, however, the discussion of the omitted variables bias in Chapter
6. The simple regression in this example is omitting many important explana-
tory variables. We definitely cannot use the results of this simple regression to
make statements like “Adding an air conditioner to your house will raise its value
by $25,996”. Since air conditioners cost a few hundred dollars, the previous
statement is clearly ridiculous.

b̂

b̂âŶ

Ŷ

Example: The determinants of market capitalization

(continued from page 110)

Table 7.2 gives computer output from a regression of Y = market capitalization
on SEO = the dummy variable which equals 1 for SEOs (= 0 for IPOs) from
EQUITY.XLS.

Using similar reasoning as for the house price example, we can say that the
companies issuing SEOs do tend to be worth more ($637.78 million more) than

Table 7.2 Regression of market capitalization on SEO.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 191.795 253.642 0.756 0.450 -307.301 690.891
SEO 637.780 296.583 2.150 0.032 54.188 1221.371



Multiple regression with dummy variables

Now, consider the multiple regression model with several dummy explanatory 
variables:

OLS estimation of this regression model and statistical analysis of the results can be
carried out in the standard way. To aid in interpretation, we return to the house-pricing
example.

Y D D ek k= + + + +a b b1 1 . . . .
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IPO companies and that this result is statistically significant (since the P-value
is less than 0.05). However, this regression may too suffer from omitted vari-
ables bias. It is possible that the companies issuing SEOs have a greater market
capitalization simply because they tend to be bigger, more established and more
profitable than the IPO companies.

Example: Explaining house prices (continued from page 113)

Consider the case where we have two dummy explanatory variables, D1 = 1 if
the house has a driveway (= 0 if not) and D2 = 1 if the house has a recreation
room (= 0 if not). These dummy variables implicitly classify the houses in the
data set into four different groups:

1. Houses with a driveway and recreation room (D1 = 1 and D2 = 1).
2. Houses with a driveway, but no recreation room (D1 = 1 and D2 = 0).
3. Houses with no driveway, but with a recreation room (D1 = 0 and D2 = 1).
4. Houses with no driveway and no recreation room (D1 = 0 and D2 = 0).

Keep this classification in mind as we interpret Table 7.3, which contains results
from a regression of house price (Y ), on D1 and D2.

Table 7.3 Regression of house price on driveway and recreation room dummies.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 47099.08 2837.62 16.60 2.42E – 50 41525.02 52673.14
D1 21159.91 3062.44 6.91 1.37E – 11 15144.22 27175.60
D2 16023.69 2788.63 5.75 1.52E – 08 10545.86 21501.51
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Putting in either 0 or 1 values for the dummy variables, we obtain the fitted
values for Y for the four categories of houses:

1. If D1 = 1 and D2 = 1, then = + 1 + 2 = 47,099 + 21,160 + 16,024 =
84,283. In other words, the average price of houses with a driveway and
recreation room is $84,283.

2. If D1 = 1 and D2 = 0, then = + 1 = 47,099 + 21,160 = 68,259. In other
words, the average price of houses with a driveway but no recreation room
is $68,259.

3. If D1 = 0 and D2 = 1, then = + 2 = 47,099 + 16,024 = 63,123. In words,
the average price of houses with a recreation room but no driveway is
$63,123.

4. If D1 = 0 and D2 = 0, then = = 47,099. In words, the average price of
houses with no driveway and no recreation room is $47,099.

In short, multiple regression with dummy variables may be used to classify the
houses into different groups and to find average house prices for each group.
Alternatively, results may be presented directly as coefficient estimates. For
instance, 1 is a measure of the extra value of a house with a driveway relative
to a house with no driveway holding the other features of the house (in this
case the presence or absence of a recreation room) constant.

b̂

âŶ

b̂âŶ

b̂âŶ

b̂b̂âŶ

Exercise 7.2

Interpret the statistical information in the above example. Are all of the explana-
tory variables statistically significant?

Exercise 7.3

For this question use Y = the price of a house and the dummy variables D1 = 1
if the house has a driveway (= 0 otherwise) and D2 = 1 if the house has a recre-
ation room (= 0 otherwise) from the house price example (it can be obtained
from HPRICE.XLS). Without using regression techniques, calculate the average
price of the four types of houses listed in the previous example (e.g. a house
with a driveway and a rec. room, etc.). Hint: What do you obtain if you multi-
ply a dummy variable by Y? How do these average price numbers relate to the
regression coefficients and results in the previous example?



Multiple regression with both dummy and 

non-dummy explanatory variables

In the previous discussion, we have assumed that all the explanatory variables are
dummies but, in practice, you may often have a mix of different types of explana-
tory variables. The simplest such case is one where there is one dummy variable (D)
and one quantitative explanatory variable (X ) in a regression:

The interpretation of results from such a regression can be illustrated in the context
of an example.

Y D X e= + + +a b b1 2 .

116 Analysis of financial data

Exercise 7.4

For this question use data set HPRICE.XLS and the five dummy variables, D1 to
D5, listed at the beginning of the chapter (i.e. the dummy variables for whether
a house has a driveway, recreation room, basement, gas central heating and air
conditioning).

(a) With five dummy variables, how many classes of houses are possible? 
(e.g. houses with a driveway, recreation room, basement and gas 
central heating but no air conditioning comprise one class.) What implica-
tions does this have for interpreting regression results as in the previous
example?

(b) How would you calculate the number of houses in each group using a com-
puter package like Excel? For instance, of the 546 houses in the data set,
how many have a driveway, gas central heating and air conditioning, but no
recreation room and no basement?

(c) Run a regression of Y = house price on the five dummies.
(d) Discuss the statistical significance of the explanatory variables.
(e) Calculate the average price for a few chosen types of housing (e.g. those

with a driveway, recreation room and basement but no gas central heating
and no air conditioning).

(f ) Which house characteristic tends to raise the price of a house the 
most?



We can extend the previous discussion to the case of many dummy and non-dummy
explanatory variables. An example having two dummy and two non-dummy explana-
tory variables is the following regression model:

The interpretation of results from this regression model combines elements from all
the previous examples in this chapter.

Y D D X X e= + + + + +a b b b b1 1 2 2 3 1 4 2 .
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Example: Explaining house prices (continued from page 115)

If we regress Y = house price on D = air conditioner dummy and X = lot size,
we obtain = 32,693, 1 = 20,175 and 2 = 5.638. Above we noted that the
dummy can take on only the values 0 or 1, and demonstrated that the fitted
value for Y can take on a different value for each group of houses. Hence regres-
sion results could be interpreted as revealing the average price of a house in
each possible group.

Here things are not quite so simple since we obtain i = 52,868 + 5.638Xi if
Di = 1 (i.e. the ith house has an air conditioner) and i = 32,693 + 5.638Xi if Di

= 0 (i.e. the house does not have an air conditioner). In other words, there are
two different regression lines depending on whether the house has an air con-
ditioner or not. Contrast this point with the discussion in example above where
we had only one dummy explanatory variable. In that case, the regression
implied that the average price of the house differed between houses with and
without air conditioners. Here we are saying a wholly different regression line
exists. In other words, we cannot simply state (as we did in examples in previ-
ous examples in this chapter) what the average value of different groups of
houses will be.

We can, however, say that 1 = 20,175 is a measure of the extra value that
an air conditioner will add to the value of a house, ceteris paribus. In other words,
if we compare two houses with the same value of X (in this case, lot size), i

will always be $20,175 higher for the house with an air conditioner relative to a
house with no air conditioner.

It is worthwhile to examine more closely the two different regression lines
that exist for houses with and without air conditioners. Note that they both have
the same slope, 2 = 5.638 and differ only in the intercept (i.e. if Di = 1 the
intercept is 52,868, if Di = 0 the intercept is 32,693). Since they have the same
slope (and the slope is the marginal effect), the marginal effect of lot size on
house price is the same for houses with and without air conditioning. For
instance, we can say “An extra square foot of lot size is associated with adding
an extra $5.63 on the price of a house”.

b̂

Ŷ

b̂

Ŷ
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b̂b̂â
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Example: Explaining house prices 

(continued from page 117)

If we regress Y = house price on D1 = dummy variable for driveway, D2 =
dummy variable for recreation room, X1 = lot size and X2 = number of bed-
rooms we obtain: = -2736, 1 = 12,598, 2 = 10,969, 3 = 5.197 and 4 =
10,562. We can interpret these results by figuring out what the fitted regression
lines (i.e. ) are for the different possible values of the dummy variables.

1. If D1 = 1 and D2 = 1, then = + 1 + 2 + 3X1 + 4X2 = 20,831 +
5.197X1 + 10,562X2. This is the regression line for houses with a driveway
and recreation room.

2. If D1 = 1 and D2 = 0, then = 9,862 + 5.197X1 + 10,562X2. This is the
regression line for houses with a driveway but no recreation room.

3. If D1 = 0 and D2 = 1, then = 8,233 + 5.197X1 + 10,562X2. This is the
regression line for houses with a recreation room but no driveway.

4. If D1 = 0 and D2 = 0, then = -2,736 + 5.197X1 + 10,562X2. This is the
regression line for houses with no driveway and no recreation room.

That is, with two dummy variables we have four different regression lines. All
of these lines have the same slopes but different intercepts. The coefficients on
the dummy variables, 1 and 2, measure the additional value associated with
having a driveway and a recreation room, respectively. The coefficients on the
non-dummy variables, 3 and 4, can be interpreted as the marginal effects of
lot size and of number of bedrooms, respectively.

The following are a few of the types of verbal statements that we can make
about the regression results:

1. “Houses with driveways tend to be worth $12,598 more than similar houses
with no driveway”.

2. “If we consider houses with the same number of bedrooms, then adding an
extra square foot of lot size will tend to increase the price of a house by
$5.20”.

3. “An extra bedroom will tend to add $10,562 to the value of a house, ceteris

paribus”.

We should stress, however, that all such statements assume that omitted vari-
ables bias is not a problem in the regression. Furthermore, statements which
imply causality (e.g. “adding an extra square foot of lot size will tend to increase

the price of the house by $5.20”) are only valid if it is truly the case that the
explanatory variable causes the dependent variable (see Chapters 4 and 6 for
further discussion of causality in regression).

b̂b̂

b̂b̂
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Exercise 7.5

For this question use data set HPRICE.XLS, the five dummy variables, D1 to D5,
listed in Exercise 7.4 and the following four non-dummy explanatory variables:

• X1 = the lot size of the property (in square feet)
• X2 = the number of bedrooms
• X3 = the number of bathrooms
• X4 = the number of storeys (excluding the basement).

(a) Run a regression of Y on D1, . . . , D5, X1, . . . , X4.
(b) Discuss which variables are statistically significant.
(c) Which of the characteristics measured by the dummies has the largest effect

on housing prices?
(d) Choose particular configurations of the dummy variables (e.g. one indicat-

ing a house with: a driveway, no recreation room, a basement, no gas central
heating and no air conditioner) and write out the formula for the regression
line.

(e) Discuss results relating to the non-dummy explanatory variables, paying par-
ticular reference to the ceteris paribus conditions.

Table 7.4 Regression of house price on ASSETS and SEO.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 191.728 254.047 0.755 0.451 -308.172 691.628
ASSETS 0.0008 0.006 0.153 0.879 -0.01 0.012
SEO 635.79 297.340 2.138 0.033 50.7 1220.881

Example: The determinants of market capitalization

(continued from page 114)

Table 7.4 presents results from a regression of market capitalization on a regular
explanatory variable, ASSETS and the SEO dummy variable. Somewhat sur-
prisingly, it seems that the book value of assets has little effect on market 
capitalization (since this variable is statistically insignificant). The SEO 
dummy variable is positive and significant. Hence, our finding from the simple
regression that IPOs did seem to be undervalued is holding up in this multiple
regression.



Interacting dummy and non-dummy variables

We used the dummy variables above in a way that allowed for different intercepts in
the regression line, but the slope of the regression line was always the same. We can,
however, allow for different slopes by interacting dummy and non-dummy variables.
To understand this consider the following regression model:

D and X are dummy and non-dummy explanatory variables, as above. How-
ever, here we have added a new variable Z into the regression and we define 
Z = DX.

How do we interpret results from a regression of Y on D, X and Z ? This ques-
tion can be answered by noting that Z is either 0 (for observations with D = 0) or X
(for observations with D = 1). If, as before, we consider the fitted regression lines
with D = 0 and D = 1 we obtain:

• If D = 1 then = ( + 1) + ( 2 + 3)X.
• If D = 0, then = + 2X.

In other words, two different regression lines corresponding to D = 0 and D = 1 exist
and have different intercepts and slopes. One implication is that the marginal effect
of X on Y is different for D = 0 and D = 1. In a written report, you could write up
each of the regression lines separately using the terminology and interpretation of
Chapters 4 and 6.

b̂âŶ

b̂b̂b̂âŶ

Y D X Z e= + + + +a b b b1 2 3 .
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Example: Explaining house prices (continued from page 118)

If we regress Y = house price on three explanatory variables: D = air condi-
tioner dummy, X = lot size and Z = DX, we obtain = 35,684, 1 = 7,613,

2 = 5.02 and 3 = 2.25. This implies that the marginal effect of lot size on
housing is 7.27 (i.e. adding an extra square foot of lot size is associated with a
$7.27 increase in house prices) for houses with air conditioners and only $5.02
for houses without. Furthermore, since the p-value corresponding to 3 is 0.02,
the difference in marginal effects is statistically significant. This finding indicates
that increasing lot size will tend to add more to the value of a house if it has
an air conditioner than if it does not.

b̂

b̂b̂
b̂â



What if the dependent variable is a dummy?

Thus far, we have focussed on the case where the explanatory variables can be
dummies. However, in some cases the dependent variable may be a dummy. For
instance, a researcher in the field of corporate finance might be interested in inves-
tigating why some companies go bankrupt and others do not, or why some raise
money by issuing equity and others use debt, etc. An empirical analysis might involve
collecting data from many different companies. Potential explanatory variables might
include company characteristics such as debt, sales, profit, and so on. The dependent
variable, however, would be qualitative (e.g. for each company data would be of the
form “It went bankrupt”/“It did not go bankrupt” or “The company expanded
through debt financing”/“The company did not use debt to finance its expansion”)
and the researcher would have to create a dummy dependent variable.

The techniques for working with dummy dependent variables1 are beyond the
scope of this book. However, there are two facts worth noting:
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Exercise 7.6

For this question use data set HPRICE.XLS, the five dummy variables, D1 to D5

and the four non-dummies X1, . . . , X4 discussed in Exercise 7.4. Experiment
with different configurations of these explanatory variables with some interac-
tion terms (e.g. try including 10 explanatory variables: D1 to D5 and the four
non-dummies X1, . . . , X4 plus an interaction term D1X2, say). Can you find any
interaction terms (i.e. Zs) that are statistically significant? Explain in words what
your findings are.

Exercise 7.7

For this question use data set EQUITY.XLS containing the SEO dummy DEBT,
SALES, INCOME and ASSETS (see the example at the beginning of this
chapter for precise definitions of variables). Construct four new explanatory
variables which interact the SEO dummy with each of the four other explana-
tory variables. Using these nine explanatory variables (i.e. the original five
explanatory variables and four interactions), construct and justify a regression
model. Begin by running a regression with all explanatory variables, then exper-
iment with dropping out insignificant variables until you find a specification
where all explanatory variables are significant (and you are not omitting any sig-
nificant variables). Write a short report interpreting the results from the regres-
sion model you end up with.



1. There are some problems with using OLS estimation in this case. However, these
problems are not enormous, so that OLS estimation might be adequate in many
circumstances.

2. Nevertheless, there are better estimation methods than OLS. The two main alter-
natives are termed Logit and Probit. Computer software packages with only basic
statistical capabilities (e.g. Excel) do not have the capability to perform these esti-
mation methods. Thus, if you ever need to do extensive work with dummy depen-
dent variable models, you will have to use another software package (e.g. Stata).
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Chapter summary

1. Dummy variables can take on a value of either 0 or 1. They are often used
with qualitative data.

2. The statistical techniques associated with the use of dummy explanatory
variables are exactly the same as with non-dummy explanatory variables.

3. A regression involving only dummy explanatory variables implicitly classi-
fies the observations into various groups (e.g. houses with air conditioning
and those without). Interpretation of results is aided by careful considera-
tion of what the groups are.

4. A regression involving dummy and non-dummy explanatory variables
implicitly classifies the observations into groups and says that each group
will have a regression line with a different intercept. All these regression
lines have the same slope.

5. A regression involving dummy, non-dummy and interaction (i.e. dummy
times non-dummy variables) explanatory variables implicitly classifies the
observations into groups and says that each group will have a different
regression line with a different intercept and slope.

6. If the dependent variable is a dummy, then other techniques which are not
covered in this book should be used.

Endnote

1. To introduce some jargon, such models are called “limited dependent variable” models.
That is, the dependent variable can take on a limited range of values.



C H A P T E R

Regression with lagged

explanatory variables

8

Most applications in finance are concerned with the analysis of time series data.
However, most of the examples in Chapters 3 to 7 used cross-sectional data. This
allowed us to build up the basic ideas underlying regression, including statistical con-
cepts such as hypothesis testing and confidence intervals, in a simple manner. When
working with time series variables, knowledge of such ideas is essential. However,
some additional issues arise when working with time series data. The purpose of this
chapter is to offer an introduction to these issues and to familiarize the reader with
some concepts and notation used with time series models. After this introductory
material, we take one step away in the direction of developing the models and
methods that are used with financial time series.

The goal of the researcher working with time series data does not differ too much
from that of the researcher working with cross-sectional data: both aim to develop a
regression relating a dependent variable to some explanatory variables. However, the
analyst using time series data will face two problems that the analyst using cross-
sectional data will not encounter: (1) one time series variable can influence another
with a time lag; and (2) if the variables are nonstationary, a problem known as spu-

rious regression may arise.
At this stage, you are not expected to understand the second of these problems.

The terms nonstationary, stationary and spurious regression will be discussed in
detail in subsequent chapters of this book. But keep in mind this general rule: If you

have nonstationary time series variables then you should not include them in

a regression model. The appropriate route is to transform the variables before
running a regression in order to make them stationary. There is one exception to this
general rule, which we shall discuss later, and which occurs where the variables in a



regression model are cointegrated. We will elaborate on what we mean by these
terms later. If you find it confusing for them to be introduced now without defini-
tions, just think in the following terms: Some problems arise with time series data
that do not arise with cross-sectional data. These problems make it risky to naively
use multiple regression in the manner of Chapters 4 to 7. The purpose of this and
the following chapters is to show you how to correctly modify regression techniques
with time series data.

In this chapter, we will assume all variables in the regression are stationary. The
next chapter explains what this means. At this point, note only that the second
problem will not occur and that we can therefore focus on the first problem.

The first problem can be understood intuitively with some simple examples. When
we estimate a regression model we are interested in measuring the effect of one or
more explanatory variables on the dependent variable. In the case of time series data
we have to be very careful in our choice of explanatory variables since their effect on
the dependent variable may take time to manifest itself.

For instance, in previous chapters we worked with cross-sectional regressions
involving company data. In one example, our dependent variable was market capi-
talization and explanatory variables were company characteristics (e.g. income, assets,
sales, etc.). In another, our dependent variable was executive compensation which we
sought to explain using variables like profits and debt. However, all our dependent
and explanatory variables referred to the same year. In practice, this may not be rea-
sonable. The value that the stock market places on a firm might depend not only on
current income, but on historical income as well. After all, current income could be
affected by short-term factors and may not be a totally reliable guide to long-run per-
formance. For instance, an ice cream company might suffer a short-term fall in
income due to an unusually cold summer. Looking at data based on this one unusual
event could give an unreliable view of the long-run potential of this company. Similar
considerations hold for our executive compensation example where compensation
might be determined not only on current profits, but also on past profits. In short,
there are good reasons to include not only current values of explanatory variables,
but also past values.

To put this concept in the language of regression, we say that the value of the
dependent variable at a given point in time should depend not only on the value of
the explanatory variable at that time period, but also on values of the explanatory
variable in the past. A simple model to incorporate such dynamic effects has the
form:1

This is precisely the same as the multiple regression model in Chapter 6, with the
exception that the “explanatory variables” are not entirely different (e.g. lot size,
number of bathrooms, number of bedrooms, etc.) but are just one explanatory vari-
able that is observed at different time periods. In this model, the right-hand side vari-
ables are referred to as lagged variables and q, the lag order or lag length. We will

Y X X X et t t q t q t= + + + + +- -a b b b0 1 1 . . . .
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focus on the case where the dependent variable depends on one explanatory variable
and its lags. However, everything we say can be generalized in a straightforward
fashion to several explanatory variables, all having time lags. Since the effect of the
explanatory variable on the dependent variable does not happen all at once, but rather
is distributed over several time periods, this model is sometimes referred to as a dis-

tributed lag model.
Since the regression model with time lags is a regression model, everything we said

in Chapters 4 to 6 about regression is relevant here. For instance, computer packages
like Excel can provide OLS estimates of coefficients, confidence intervals and P-
values for testing whether coefficients are equal to zero. Coefficients can be inter-
preted as measures of the influence of the explanatory variable on the dependent
variable. In this case, we have to be careful with timing. For instance, we interpret
results as: “b2 measures the effect of the explanatory variable two periods ago on
the dependent variable, ceteris paribus”. Other than these minor differences, both the
statistical methods and interpretation are very similar to the tools we described pre-
viously. Nevertheless, it is worth discussing this class of models separately, as it will
help us to develop some time series terminology and introduce ideas that we will build
on in subsequent chapters.

Before turning to an illustrative example of how to work with regression models
with lagged variables, we will make two brief detours. One of these describes what
lagged variables are and how to calculate them in a spreadsheet software package. The
other clarifies the notation that will be used in this and subsequent chapters.

Aside on lagged variables

The concept of a lagged variable is fundamental to time series data, so we will describe
in some detail what it means and how to construct and work with lagged variables
on a computer spreadsheet. We do this mostly because it really helps to understand
what lagged variables are by seeing how they are constructed. However, we partly
work with a spreadsheet to begin to show you that it is awkward to work with spread-
sheets when you have time series variables. It is possible to do almost everything in
this book (with the exception of models involving volatility which we will discuss
later) with a spreadsheet such as Excel. However, it is much more convenient to use
a specialized computer package for financial econometrics such as E-views, MicroFit
or Stata.

Suppose we have time series data for t = 1, . . . , T periods on a variable X. As
before, we denote individual observations by Xt for t = 1, . . . , T. Consider creating
a new variable W which has observations Wt = Xt for t = 2, . . . , T and a new vari-
able Z which has observations Zt = Xt-1 for t = 2, . . . , T. Why do we write t = 2, . . . ,
T instead of t = 1, . . . , T ? If we had written t = 1, . . . , T then the first observation
of the variable Z, Z1, would be set equal to X0. Yet we do not know what X0 is since
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variable X is observed only from t = 1, . . . , T. In other words, W and Z have only 
T - 1 observations. Note also that had we written Zt = Xt-2 then the new variable Z
would have observations from t = 3, . . . , T and only T - 2 observations.

The new variables W and Z both have T - 1 observations. If we imagine W and
Z as two columns containing T - 1 numbers each (as in an Excel spreadsheet), we
can see that the first element of W will be X2 and the first element of Z will be X1.
The second element of W and Z will be X3 and X2, etc. In words, we say that W con-
tains X and Z contains X one period ago or lagged one period. In general, we can
create variables “X lagged one period – or “lagged X ” for short – “X lagged two
periods” – or, in general, “X lagged j periods”.

You can think of “X ”, “X lagged one period”, “X lagged two periods”, etc. as dif-
ferent explanatory variables in the same way as you can of “house price”, “lot size”,
or “number of bedrooms” as different explanatory variables.

Note, however, that if you want to include several explanatory variables in a mul-
tiple regression model, all variables must have the same number of observations. Let
us consider the implication of this statement, in the present context. Suppose a
regression includes X = the interest rate lagged j periods as an explanatory variable.
If you began with t = 1, . . . , T observations on the interest rate, then X lagged j

periods will contain only T - j observations. Since this variable contains only T - j

observations you must make sure that all the other variables in the model also contain
exactly T - j observations. In words, each variable in a time series regression must
contain the number of observations equal to T minus the maximum number of lags
that any variable has.

Many of the more sophisticated statistical software packages (e.g. E-views, Stata
or MicroFit,) will create lagged variables automatically with a simple command, but
not most spreadsheet packages like Excel. This is a key reason why, when working
with time series data, you might want to learn such a software package and not work
with a spreadsheet such as Excel. When working with a spreadsheet you will have to
create lagged variables yourself before running a regression involving them. A brief
explanation of how to do this will be both useful when you work with spreadsheets
and will provide a practical way to illustrate the material above.

As an example, suppose we have 10 observations on variables Y and X (i.e.
t = 1, . . . , 10) and we wish to run a regression model that includes X, lagged X, X

lagged two periods and X lagged 3 periods. That is, we wish to estimate the regres-
sion model:

Table 8.1 shows how the data would look in a spreadsheet format.
Note that spreadsheets label each observation by row and column, as in Table 8.1.

Each column contains a variable (e.g. Column C contains the variable X lagged one
period) and each row contains observations. Note that each of the variables contains
7 observations, which is T minus maximum number of lags (i.e. 10 - 3 = 7). Looking
across any row (e.g. Row 4) you can see that: (a) Y and X contain data at a particular

Y X X X X et t t t t t= + + + + +- - -a b b b b1 2 1 3 2 4 3 .
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point in time (e.g. Y7 and X7 or t = 7); (b) X lagged will contain the observation from
one period previously (e.g. X6); (c) X lagged two periods will contain the observation
from two periods previously (e.g. X5); and (d) X lagged three periods will contain the
observation from three periods previously (e.g. X4).

You can create this table in Excel. First use the Cut/Paste commands in the spread-
sheet containing the original data on Y and X (i.e. the one that contained the 10 orig-
inal observations on the two variables) to create a spreadsheet that looks like Table
8.1. Then run the regression by using the Excel regression menu in the standard way
and specifying A1:A7 in the box labeled “Input Y-range”, and B1:E7 in the box
labeled “Input X-range”.

This section on lagged variables may seem of little direct relevance for under-
standing and interpreting results. However, it is important not to forget this material
if you are at the computer, working with a spreadsheet.

Aside on notation

It is also important to make sure that our notation is clear. Consider a variable, X (e.g.
executive compensation). After collecting data on X we will have observations Xi for
i = 1, . . . , N for cross-sectional data and Xt for t = 1, . . . , T for time series data (see
Chapter 2).

In other words, X is a generic notation for the variable and Xi or Xt indicates a par-
ticular observation of the variable (e.g. Xi = executive compensation in the ith
company or Xt = executive compensation in the tth time period). In our discussion
of regression in Chapters 4 to 7 we often wrote equations of the form:

Y X e= + +a b .
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Table 8.1 Creating lagged variables.

Column C Column D Column E
Column A Column B X lagged X lagged X lagged

Y X one period two periods three periods

Row 1 Y4 X4 X3 X2 X1

Row 2 Y5 X5 X4 X3 X2

Row 3 Y6 X6 X5 X4 X3

Row 4 Y7 X7 X6 X5 X4

Row 5 Y8 X8 X7 X6 X5

Row 6 Y9 X9 X8 X7 X6

Row 7 Y10 X10 X9 X8 X7



Expressed in words, the above implies that “the dependent variable Y depends on
the explanatory variable X in a linear fashion”. When we have actual data we can
write,

Expressed in words, “observation i of Y depends on observation i of X ”. For
instance, “executive compensation in company i depends on profits in company i”.
Both of these equations are perfectly correct. But, since the subscript i in the latter
equation is a little obvious (e.g. it is obvious that executive compensation in Company
A depends on profits in Company A – it certainly will not depend on profits in
Company B), you often see the i subscript dropped out from the latter equation for
simplicity’s sake.

We complicated our notation even more in Chapter 6 in our discussion of multi-
ple regression, in which X1, X2, . . . , Xk were k different explanatory variables. Here
the subscript on X indicated which explanatory variable we were referring to, not
which observation. In the rare cases when we wanted to be more explicit we wrote,
for example, X2i, to indicate the ith observation of the second explanatory variable.
However, since it is usually obvious in the multiple regression case that Yi (e.g. exec-
utive compensation in company i ) depends on X1i (e.g. profits in company i ) and
on X2i (e.g. change in sales in company i ), the i subscript was often dropped from
the equation.

In short, throughout this book our subscript notation, which distinguishes between
a variable and a particular observation of a variable, has been a little loose. This is
okay (and common in textbooks), since the meaning is fairly obvious from the context
and the alternative is to clutter up equations with numerous subscripts. In the time
series chapters of this book, we will show similar informality, using the notation 
Xt-j to indicate both a particular observation (e.g. if t = 1968 and j = 3, then Xt-j is
the value of variable X in 1965) and the variable X lagged j periods. It will be obvious
from the context which is which. Quite frankly, in virtually any equation in this book
it will not matter which way you interpret it.

Y X ei i i= + +a b .
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Example: Long-run prediction of a stock market price index

The issue of whether stock market returns are predictable is a very important
one in finance. After all, if an investor could predict stock market behavior, she
could make a lot of money. Of course, in practice, predicting which stocks will
increase in value tomorrow is extremely difficult. We will return to the issue of
short-run prediction of stock prices in the next chapter, when we discuss
random walk behavior. In this example, we focus on long-run prediction of the
stock market.



Regression with lagged explanatory variables 129

This is not a book on financial theory and, hence, we will not describe the
theoretical model which motivates the regressions we will run in any detail. In
general, many researchers have studied the relationship between stock prices,
dividends and returns. The basic equation relating these three concepts was
given in Chapter 2 as:

where Rt is the return on holding a share from period t - 1 through t, Pt is the
price of the stock at the end of period t and Dt is the dividend earned between
period t - 1 and t. This basic relationship, along with various assumptions about
how these variables might evolve in the future, can be used to develop various
theoretical financial models.2 A particularly useful such model implies that the
ratio of dividends to stock price should have some predictive power for future
returns, particularly at long horizons.

How does such a theory relate to our regression model with lagged explana-
tory variables? It implies a model where the dependent variable (Y ) is the total
return on the stock market index over a future period (let us say h months, where
h denotes the forecasting horizon) but the explanatory variable (X ) is the
current dividend-price ratio. Thus, we have a regression model of the form:

where the dependent variable, Yt+h, is calculated using the returns Rt+1,
Rt+2, . . . , Rt+h. Or, equivalently, we can write this regression as:

This is a specialized version of our general regression with lagged explanatory
variables described above.

The theory developed by financial researchers suggests that the explanatory
power for this regression should be poor at short horizons (e.g. h = 1 or 2) but
improve at longer horizons. The file LONGRUN.XLS contains monthly data for
a hundred years on Y = 12 month returns (i.e. h = 12) from a stock market along
with X the dividend-price ratio (12 months ago).

Table 8.2 contains results from the regression. Since the P-value for the coef-
ficient on Xt-12 is less than 0.05, the coefficient is significant. We can conclude
that the dividend-price ratio does have explanatory power for 12 month returns.
This supports the theory that the dividend-price ratio does have some predic-
tive power for long-run returns. However, we also find R2 = 0.019 indicating
that this predictive power is weak (although it is statistically significant). Only
1.9% of the variation in 12 month returns can be explained by the dividend-
price ratio.

Y X et t h t= + +-a b .
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Table 8.2 Regression results for the long-run prediction of stock returns example.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.003 0.005 -0.662 0.508 -0.013 0.006
Xt–12 0.022 0.005 4.833 1.5E – 6 0.013 0.032

Example: The effect of bad news on market capitalization

The share price of a company can be sensitive to bad news. Suppose that
Company B is in an industry which is particularly sensitive to the price of oil.
If the price of oil goes up, then the profits of Company B will tend to go down
and some investors, anticipating this, will sell their shares in Company B driving
its price (and market capitalization) down. However, this effect might not
happen immediately. For instance, if Company B holds large inventories pro-
duced with cheap oil, it can sell these and maintain its profits for a while. But
when new production is required, the higher oil price will lower profits. Fur-
thermore, the effect of the oil price might not last forever, since Company B
also has some flexibility in its production process and can gradually adjust to
higher oil prices. Hence, news about the oil price should affect the market cap-
italization of Company B, but the effect might not happen immediately and
might not last too long.

The file BADNEWS.XLS contains data collected on a monthly basis over five
years (i.e. 60 months) on the following variables:

• Y = market capitalization of Company B ($000)
• X = the price of oil (dollars per barrel).3

Since this is time series data4 and it is likely that previous months’ news about
the oil price will affect current market capitalization, it is necessary to 
include lags of X in the regression. Table 8.3 contains OLS estimates of the
coefficients in a distributed lag model in which market capitalization is allowed
to depend on present news about the oil price and news up to four months ago.
That is,

What can we conclude about the effect of news about the oil price on Company
B’s market capitalization? Increasing the oil price by one dollar per barrel in a
given month is associated with:

Y X X X X X et t t t t t t= + + + + + +- - - -a b b b b b0 1 1 2 2 3 3 4 4 .
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1. An immediate reduction in market capitalization of $145,000, ceteris paribus.
2. A reduction in market capitalization of $462,140 one month later, ceteris

paribus.
3. A reduction in market capitalization of $424,470 two months later, ceteris

paribus.

4. A reduction in market capitalization of $199,550 three months later, ceteris

paribus.
5. A reduction of market capitalization of $36,900 four months later, ceteris

paribus.

Confidence intervals can be interpreted in the standard way. For instance, we
are 95% confident that the immediate reduction in market capitalization is at
least $49,300 and at most $240,700, ceteris paribus.

To provide some intuition about what the ceteris paribus condition implies in
this context note that, for example, we can also express the second of these
statements as: “Increasing the oil price by one dollar in a given month will tend
to reduce market capitalization in the following month by $462,120, assuming

that no other change in the oil price occurs”.

If we examine the statistical results in the preceding table, we can see that all
of the coefficients are statistically significant, except for b4. The P-value for this
last coefficient is 0.44 which is not less than 0.05. Also we note that the confi-
dence interval for b4 includes zero. Hence we cannot reject the hypothesis that
b4 = 0. In words, we cannot reject the hypothesis that changes in the oil price
four months ago have no effect on current market capitalization.

In general the effect of changes in the oil price on market capitalization
exhibits a hump-shaped pattern over time: the immediate effect is fairly small
($145,000). The effect then increases to over $400,000 for each of the two sub-
sequent months, falls to roughly $200,000 three months later, and then drops
to about zero four months later. If we add up the effects of an increase of one
dollar in the oil price in each period (i.e. $145,000 + $462,140 + $424,470 +

Table 8.3 Regression results for the effect of news on market capitalization example.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 92001.51 2001.71 45.96 5.86E – 42 87978.91 96024.11
Xt -145.00 47.62 -3.04 0.0037 -240.70 -49.30
Xt–1 -462.14 47.66 -9.70 5.52E – 13 -557.91 -366.38
Xt–2 -424.47 46.21 -9.19 3.12E – 12 -517.33 -331.62
Xt–3 -199.55 47.76 -4.18 0.00012 -295.52 -103.58
Xt–4 -36.90 47.45 -0.78 0.44 -132.25 58.45



Selection of lag order

When working with distributed lag models, we rarely know a priori exactly how many
lags we should include. In the previous example, why did we assume that market cap-
italization depends on movements in the oil price up to four months ago? Why not
three or six or even eight? That is, unlike most of the regression models considered
in Chapters 4 to 7, we don’t know which explanatory variables in a distributed lag
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$199,550 + $36,900 = $1,268,060)5 we receive a measure of the total effect of
this increase on market capitalization. In other words, we can say that: “After
four months, the effect of adding one dollar to the price of oil is to decrease
market capitalization by $1,268,060”.

By calculating this total effect and examining the pattern of the coefficients
over time, the company and the investor gain important information. Such
results, however, assume that the distributed lag model is not missing any
explanatory variables. For instance, we are implicitly assuming that Xt-5 has no
effect on current market capitalization. If this assumption is incorrect, our esti-
mates of the total effect of a change in oil prices may be incorrect. This issue
relates closely to the problem of omitted variables bias discussed in Chapter 6,
and emphasizes the importance of correct choice of lag length (i.e. q in the dis-
tributed lag model), a topic to which we now turn.

Exercise 8.1

Use the data set, BADNEWS.XLS, discussed in the previous example for this ques-
tion. This data set contains T = 60 observations on Y = market capitalization
and X = oil price.

(a) Create the explanatory variables you would use in a distributed lag model
with lag length equal to 4. How many observations do the explanatory vari-
ables have?

(b) Using your answer to (a), recreate Table 8.3 in the example above.
(c) Create the explanatory variables you would use in a distributed lag model

with lag length equal to 2. How many observations do the explanatory vari-
ables have?

(d) Using your answer to (c), estimate the distributed lag model with q = 2.
(e) Compare your answers to part (d) and part (b). Discuss why they differ,

paying particular attention to the question of omitted variables bias (see
Chapter 6 if you have forgotten what this is).



model belong in the regression before we actually sit down at the computer and start
working with the data. Appropriately, the issue of lag length selection becomes a data-
based one where we use statistical means to decide how many lags to include.

There are many different approaches to lag length selection in the econometrics
literature. Here we outline a common one that does not require any new statistical
techniques beyond those developed in Chapter 5. This method uses t-tests for
whether bq = 0 to decide lag length. A common strategy is to: (a) Begin with a fairly
large lag length,6 qmax, and test whether the coefficient on the maximum lag is equal
to zero (i.e. test whether bqmax

= 0). (b) If it is, drop the highest lag and re-estimate
the model with maximum lag equal to qmax - 1. (c) If you find bqmax-1 = 0 in this new
regression, then lower the lag order by one and re-estimate the model. (d) Keep on
dropping the lag order by one and re-estimating the model until you reject the hypoth-
esis that the coefficient on the longest lag is equal to zero.

This informal description of lag length selection can be formalized in the follow-
ing series of steps:

Step 1. Choose the maximum possible lag length, qmax, that seems reasonable to you.
Step 2. Estimate the distributed lag model:

If the P-value for testing bqmax
= 0 is less than the significance level you choose

(e.g. 0.05) then go no further. Use qmax as lag length. Otherwise go on to the
next step.

Step 3. Estimate the distributed lag model:

If the P-value for testing bqmax-1 = 0 is less than the significance level you
choose (e.g. 0.05) then go no further. Use qmax - 1 as lag length. Otherwise
go on to the next step.

Step 4. Estimate the distributed lag model:

If the P-value for testing bqmax-2 = 0 is less than the significance level you
choose (e.g. 0.05) then go no further. Use qmax - 2 as lag length. Otherwise
go on to the next step, etc.

As an aside of practical relevance to note when you are working with a spreadsheet,
the number of observations used in a distributed lag model is equal to the original
number of observations, T, minus the maximum lag length. This means that, in Step
2, we are working with T - qmax observations; in Step 3, with T - qmax + 1 observa-
tions; in Step 4 with T - qmax + 2, observations; etc. Each step will require some cutting
and pasting in the spreadsheet to create variables with the appropriate number of

Y X X X et t t q t q t= + + + + +- - - +a b b b0 1 1 2 2. . . .
max max

Y X X X et t t q t q t= + + + + +- - +-a b b b0 1 1 11
. . . .

max max

Y X X X et t t q t q t= + + + + +- -a b b b0 1 1 . . . .
max max
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observations. Alternatively, some researchers simply use T - qmax observations for all
regressions. This has the advantage that, at each step, the researcher uses the same
observations. However, this strategy may mean using a smaller data set than neces-
sary. Remember from Chapter 5 that having more observations increases the accu-
racy of OLS estimates.
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Example: The effect of bad news on market capitalization

(continued from page 132)

Suppose we have selected qmax = 4 in the regression of market capitalization on
oil prices. In other words, we believe that four months is the maximum time
period that we can reasonably expect news about the oil price to impact on
market capitalization. The strategy outlined above says we should begin by esti-
mating a distributed lag model with lag length equal to 4. Results are given in
Table 8.3. Since the P-value corresponding to the explanatory variable Xt-4 is
greater than 0.05 we cannot reject the hypothesis that b4 = 0 at the 5% level of
significance. Accordingly, we drop this variable from the model and re-estimate
with lag length set equal to 3, yielding the results in Table 8.4.

The P-value for testing b3 = 0 is 0.0003, which is much less than 0.05. We
therefore conclude that the variable Xt-3 does indeed belong in the distributed
lag model. Hence q = 3 is the lag length we select for this model. In a formal
report, we would present this table of results. Since these results are similar to
those discussed above, we will not repeat the interpretation of them.

Exercise 8.2

Use the data set, BADNEWS.XLS. Suppose you believe that six months is the
maximum time that the oil price might affect market capitalization and accord-
ingly, you set qmax = 6. Using the strategy described above, select the lag length
of the distributed lag model.

Table 8.4 Lag length set equal to 3.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 90402.22 1643.18 55.02 9.19E - 48 87104.94 93699.51
Xt -125.90 46.24 -2.72 0.0088 -218.69 -33.11
Xt-1 -443.49 45.88 -9.67 3.32E - 13 -535.56 -351.42
Xt-2 -417.61 45.73 -9.13 2.18E - 12 -509.38 -325.84
Xt-3 -179.90 46.25 -3.89 0.0003 -272.72 -87.09



Endnotes

1. We can, of course, label our coefficients using any convention we want. The convention
chosen here relates the subscript on b to the number of periods ago to which the explana-
tory variables refers. For instance, b1 is the coefficient on Xt-1, which is the value of the
explanatory variable one period ago.

2. The interested reader is referred to Chapter 7 of Campbell, Lo and MacKinlay, The

Econometrics of Financial Markets, for details.
3. Formally, this is a price relative to a benchmark price which accounts for the zeros in the

data set.
4. Note that we are assuming this data to be stationary. In a real empirical exercise involving

market capitalization, this may be a poor assumption. However, this data set is a fictitious
one, created so as to be stationary, so we will not worry about this issue here.

5. The value $1,268,060 is the estimate of the total effect. It is possible to calculate a confi-
dence interval as well, but this would require a more complicated formula and is beyond
the scope of this book.

6. Although not too large! Remember that each variable in a distributed lag model will have
number of observations equal to T minus the maximum number of lags. If you set the
maximum number of lags too large, you will be left with very few observations.
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Chapter summary

1. Regressions with time series variables involve two issues we have not dealt
with in the past. First, one variable can influence another with a time lag.
Second, if the variables are non-stationary, the spurious regressions problem
can result. The latter issue will be dealt with in Chapter 10.

2. Distributed lag models have the dependent variable depending on an
explanatory variable and time lags of the explanatory variable.

3. If the variables in the distributed lag model are stationary, then OLS esti-
mates are reliable and the statistical techniques of multiple regression (e.g.
looking at P-values or confidence intervals) can be used in a straightforward
manner.

4. The lag length in a distributed lag model can be selected by sequentially
using t-tests beginning with a reasonably large lag length.





C H A P T E R

Univariate time series analysis

9

In the previous chapter we discussed regression models with lagged explanatory vari-
ables. Remember that they assume that the dependent variable, Yt, depends on an ex-
planatory variable, Xt, and lags of the explanatory variable, Xt-1, . . . , Xt-q. Such models
are a useful first step in understanding important concepts in time series analysis.

In many cases, distributed lag models can be used without any problems; however,
they can be misleading in cases where either: (1) the dependent variable Yt depends
on lags of the dependent variable as well, possibly, as Xt, Xt-1, . . . , Xt-q; or (2) the
variables are nonstationary.

Accordingly, in this chapter and the next, we develop tools for dealing with both
issues and define what we mean by “nonstationary”. To simplify the analysis, in this
chapter we ignore X, and focus solely on Y. In statistical jargon, we will concentrate
on univariate time series methods. As the name suggests, these relate to one vari-
able or, in the jargon of statistics, one series (e.g. Y = a stock price index). As we
shall see, the properties of individual series are often important in their own right
(e.g. as relating to market efficiency). Furthermore, it is often important to under-
stand the properties of each individual series before proceeding to regression mod-
eling involving several series.

Example: Stock prices on the NYSE

NYSE.XLS contains monthly data from 1952 through 1995 on a major stock price
index provided by the New York Stock Exchange (NYSE). The price index is
a value-weighted one (see Chapter 2 for a discussion of index numbers). Figure



138 Analysis of financial data

9.1 is a time series plot of the natural logarithm of this series.1 In other words,
Yt is the stock price index for t = 1952M1, . . . , 1995M12. The data is available
in Excel file NYSE.XLS.

Note that the stock price index tends to be increasing over time. You can see
some variation (e.g. there are some falls in the stock price index corresponding
to the bear market of the mid-1970s), but overall, the time series plot is roughly
a straight line with a positive slope. This sustained (in this case upward) move-
ment is referred to as a trend. Many financial variables (e.g. stock prices, the
price level, measures of personal income and wealth, etc.) exhibit trends of this
sort.

It is convenient at this point to introduce the concept of differencing. For-
mally, if Yt (t = 1, . . . , T ) is a time series variable, then DYt = Yt - Yt-1 is the
first difference of Yt.2 DYt measures the change or growth in a variable over
time. If we take natural logarithms of the original series, Yt, then DYt measures
the percentage change in the original variable between time t-1 and t. DYt is
often called “DY ”, “delta Y ” or “the change in Y ”. Moreover, it is common to
refer to Yt-1 as “Yt lagged one period” or “the stock price lagged one period”
or “lagged Y ”, and so on. Figure 9.2 plots the change in the log of the stock
price index using the data in NYSE.XLS. Note that this can be interpreted as the
return on the stock market (exclusive of dividends).

Note that Figure 9.2 looks very different from Figure 9.1. The trend behav-
ior noted in Figure 9.1 has disappeared completely (we will return to this point
later). The figure indicates that the change in the stock price each month tends
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Fig. 9.1 Log of stock price index.



Another property of time series data, not usually present in cross-sectional data,
is the existence of correlation across observations. The stock price index today, for
example, is highly correlated with its value last month.3 In the jargon of Chapter 8,
the variable “stock price” is correlated with the variable “stock price lagged one
period”. In fact, if we calculate the correlation between the stock price and lagged
stock price we obtain 0.999044. Yet, if we calculate the correlation between the
change in the stock price index and the change in the stock price index lagged once,
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Exercise 9.1

The file INTERESTRATES.XLS contains data on a long-term and a short-term
interest rate (measured as a percentage).

(a) Calculate and interpret descriptive statistics for both the long-term interest
rate and its change. Do the same for the short-term interest rate and its
change.

(b) Plot and interpret figures analogous to Figures 9.1 and 9.2 using both of
these interest rates and their changes.

to be small, although there is considerable variability to this growth rate over
time. In some of the months, the NYSE stock price index increased by over
5%. In October 1987, it fell by over 20%.
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Fig. 9.2 Stock price return.



we obtain 0.039. These findings make intuitive sense. Stock markets change only
slowly over time; even in bear markets they rarely fall by more than a few percent per
month. Consequently, this month’s stock price tends to be quite similar to last month’s
and both are highly correlated. Yet, the return on the stock market is more erratic.
This month’s and last month’s return can be quite different, as reflected in the near-
zero correlation between them.

Figures 9.1 and 9.2 and the correlation results discussed in the previous paragraph
were calculated using a stock market index. But other financial time series exhibit very
similar types of behavior. Y, in other words, tends to exhibit trend behavior and to
be highly correlated over time, but DY tends to the opposite, i.e. exhibits no trend
behavior and is not highly correlated over time. These properties are quite important
to regression modeling with time series variables as they relate closely to the issue of
nonstationarity. Appropriately, we will spend the rest of this chapter developing
formal tools and models for dealing with them.

The autocorrelation function

The correlations discussed above are simple examples of autocorrelations (i.e. cor-
relations involving a variable and a lag of itself ). The autocorrelation function is a
common tool used by researchers to understand the properties of a time series. Based
on the material in the “Aside on lagged variables” and the “Aside on notation” from
Chapter 8, we will use expressions like “the correlation between Y and lagged Y ”.
We denote this as r1.
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Exercise 9.2

The file INTERESTRATES.XLS contains data on a long-term and a short-term
interest rate.

(a) For each of these two series individually create an XY-plot between the 
variable and the variable lagged one period.

(b) For each of these variables, calculate r1.
(c) First difference each of these variables and repeat (a) and (b). How would

you interpret the data you have constructed and the correlations and XY-
plots?

In general, we may be interested in the correlation between Y and Y lagged p

periods. For instance, our stock market data is observed monthly, so the correlation
between Y and Y lagged p = 12 periods is the correlation between the stock price
now and the stock price a year ago (i.e. a year is 12 months). We will denote this cor-



relation by rp and refer to it as “the autocorrelation at lag p”. The autocorrelation

function treats rp as a function of p (i.e. it calculates rp for p = 1, . . . , P ). P is the
maximum lag length considered and is typically chosen to be quite large (e.g. P = 12
for monthly data). The autocorrelation function is one of the most commonly used
tools in univariate time series analysis, precisely because it reveals quite a bit of infor-
mation about the series.

Aside

1. rp is the correlation between a variable (say, Y ) and Y lagged p periods. In our dis-
cussion of r1 we noted Y1 lagged one period was Y0, which did not exist. For this
reason, we used data from t = 2, . . . , T to define lagged Y and calculate r1. An
even more extreme form of the problem occurs in the calculation of rp. Consider
creating a new variable W which has observations Wt = Yt for t = p + 1, . . . , T and
a new variable Z which has observations Zt = Yt-p for t = p + 1, . . . , T. The cor-
relation between W (i.e. Y ) and Z (i.e. Y lagged p periods) is rp. Note that each of
the new variables contains T - p observations. So when we calculate rp we are
implicitly “throwing away” the first p observations. If we considered extremely
long lags, we would be calculating autocorrelations with very few observations. In
the extreme case, if we set p = T we have no observations left to use. This is a jus-
tification for not letting p get too big. The issues raised in this paragraph are very
similar to those raised in distributed lag models (see Chapter 8, “Aside on lagged
variables”).

2. The autocorrelation function involves autocorrelations with different lag lengths.
In theory, we can use data from t = 2, . . . , T to calculate r1; data from t = 3, . . . ,
T to calculate r2; etc., ending with data from t = P + 1, . . . , T to calculate rP. But,
note that this means that each autocorrelation is calculated with a different number
of data points. For this reason, it is standard practice to select a maximum lag (P )
and use data from t = P + 1, . . . , T for calculating all of the autocorrelations.
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Example: Stock prices on the NYSE (continued from page 139)

Table 9.1 presents the autocorrelation functions for Y = stock price index and
DY = the return to the stock price index (using data from NYSE.XLS) using a
maximum lag of 12 (i.e. P = 12). This information can also be presented graph-
ically by making a bar chart with the lag length on the X-axis and the auto-
correlation on the Y-axis, as in Figures 9.3 and 9.4.

A striking feature of Table 9.1 and Figures 9.3 and 9.4 is that autocorrela-
tions tend to be virtually one for stock price variable even in the case of high
lag lengths. In contrast, the autocorrelations for the change in the stock price



142 Analysis of financial data

are very small and exhibit a pattern that looks more or less random; the auto-
correlations, in other words, are essentially zero. This pattern is common to
many financial time series: the series itself has autocorrelations near one, but
the change in the series has autocorrelations that are much smaller (often near
zero). Below are a few ways of thinking about these autocorrelations:

1. Y is highly correlated over time. Even the stock price index a year ago (i.e.
p = 12) is highly correlated with the stock price index today. DY does not
exhibit this property. Stock returns this month are essentially uncorrelated
with returns in previous months.
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Table 9.1 Autocorrelation functions.

Lag length (p) Stock price Change in stock price

1 0.9990 0.0438
2 0.9979 -0.0338
3 0.9969 0.0066
4 0.9958 0.0297
5 0.9947 0.0925
6 0.9934 -0.0627
7 0.9923 -0.0451
8 0.9912 -0.0625
9 0.9902 -0.0113

10 0.9893 -0.0187
11 0.9885 -0.0119
12 0.9876 0.0308

Fig. 9.3 Autocorrelation function for stock prices.
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2. If you knew past values of the stock price index, you could make a very
good estimate of what the stock price index was this month. However,
knowing past values of stock returns will not help you predict the return this
month.

3. Y “remembers the past” (i.e. it is highly correlated with past values of itself ).
This is an example of long memory behavior. DY does not have this 
property.

4. Y is a nonstationary series while DY is stationary. We have not formally
defined the words “nonstationary” and “stationary”, but they are quite
important in time series econometrics. We will have more to say about them
later, but note for now that the properties of the autocorrelation function
for Y are characteristic of nonstationary series.
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Fig. 9.4 Autocorrelation function for stock returns.

Exercise 9.3

Use the data on Y = the long-term interest rate given in INTERESTRATES.XLS.

(a) Calculate the autocorrelation function for Y and DY with a maximum lag of
4 (i.e. P = 4).

(b) Plot these autocorrelation functions in a bar chart.
(c) Interpret the results you have obtained in (a) and (b).



The autoregressive model for univariate time series

The autocorrelation function is a useful tool for summarizing the properties of a time
series. Yet, in Chapters 3 and 4, we argued that correlations have their limitations and
that regression was therefore a preferable tool. The same reasoning holds here: auto-
correlations, in other words, are just correlations, and for this reason it may be desir-
able to develop more sophisticated models to analyze the relationships between a
variable and lags of itself. Many such models have been developed in the statistical
literature on univariate time series analysis but the most common model, which can
also be interpreted as a regression model, is the so-called autoregressive model. As
the name suggests, it is a regression model where the explanatory variables are lags
of the dependent variable (i.e. “auto” means “self ” and hence an autoregression is a
regression of a variable on lags of itself). The word “autoregressive” is usually short-
ened to “AR”.

We begin by discussing the autoregressive model with the explanatory variable
being the dependent variable lagged one period. This is called the AR(1) model:

for t = 2, . . . , T. It looks exactly like the regression model discussed in previous chap-
ters,4 except that the explanatory variable is Yt-1. The value of f in the AR(1) model
is closely related to the behavior of the autocorrelation function and to the concept
of nonstationarity.

In order to understand the types of behavior characteristic of the AR(1) series, let
us artificially simulate three different time series using three different choices for f :
f = 0, 0.8 and 1. All three series have the same values for a (i.e. a = 0.01) and the
same errors. Figures 9.5, 9.6 and 9.7 provide time series plots of the three data sets.

Note that Figure 9.5 (with f = 0) exhibits random-type fluctuations around an
average of about 0.01 (the value of a). In fact, it is very similar to Figure 9.2, which
contains a time series plot of stock returns. Figure 9.7 (with f = 1) exhibits trend
behavior and looks very similar to Figure 9.1, which plots the stock price level. Figure
9.6 (with f = 0.8) exhibits behavior that is somewhere in-between the random fluc-
tuations of Figure 9.5 and the strong trend of Figure 9.7.

Figures 9.5–9.7 illustrate the types of behavior that AR(1) models can capture and
show why they are commonly used. For different values of f, these models can allow
for the randomly fluctuating behavior typical of growth rates of many financial time
series; for the trend behavior typical of the financial series themselves; or for inter-
mediate cases between these extremes.

Note also that f = 1 implies the type of trend behavior we have referred to as non-
stationary above, while the other values of f imply stationary behavior. This allows
us to provide a formal definition of the concepts of stationarity and nonstation-

arity, at least for the AR(1) model: For the AR(1) model, we can say that Y is sta-

tionary if |f| < 1 and is nonstationary if f = 1. The other possibility, |f| > 1, is
rarely considered in finance. The latter possibility implies that the time series is

Y Y et t t= + +-a f 1 ,
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Fig. 9.5 AR(1) time series with f = 0.
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Fig. 9.6 AR(1) time series with f = 0.8.

exhibiting explosive behavior over time. Since such explosive behavior is only
observed in unusual cases, it is of little empirical relevance and we shall not discuss
it here. Mathematical intuition for the properties of the AR(1) model and how it
relates to the issue of nonstationarity is given in Appendix 9.1.



Nonstationary versus stationary time series

Above we introduced the terms “nonstationary” and “stationary” without providing
any formal definition (except for the AR(1) model). As we shall see, the distinction
between stationary and nonstationary time series is an extremely important one. To
formally define these concepts requires that we get into statistical issues that are
beyond the scope of this book. But we provide some general intuition for these 
concepts below.

Formally, “nonstationary” merely means “anything that is not stationary”. Econo-
mists usually focus on the one particular type of nonstationarity that seems to be
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Fig. 9.7 AR(1) time series with f = 1.

Exercise 9.4

Use the data in files FIG95.XLS, FIG96.XLS and FIG97.XLS, which were used to
create Figures 9.5–9.7, respectively.

(a) Calculate the autocorrelation function for each time series using a maximum
lag of 4.

(b) Relate your findings in (a) to your answers to Exercise 9.3. Focus in partic-
ular on the question of whether the AR(1) model is capable of generating
the types of behavior observed in the financial time series.



present in many financial time series: unit root nonstationarity. We will generalize this
concept later, but at this stage it is useful to think of a unit root as implying f = 1 in
the AR(1) model. Following are different ways of thinking about whether a time series
variable, Y, is stationary or has a unit root:

1. In the AR(1) model, if f = 1, then Y has a unit root. If |f| < 1 then Y is
stationary.

2. If Y has a unit root then its autocorrelations will be near one and will not drop
much as lag length increases.

3. If Y has a unit root, then it will have a long memory. Stationary time series do not
have long memory.

4. If Y has a unit root then the series will exhibit trend behavior (especially if a is
non-zero).

5. If Y has a unit root, then DY will be stationary. For this reason, series with unit
roots are often referred to as difference stationary series.

The final point can be seen most clearly by subtracting Yt-1 from both sides of the
equation in the AR(1) model, yielding:

where r = f - 1. Note that, if f = 1, then r = 0 and the previous equation can be
written solely in terms of DYt, implying that DYt fluctuates randomly around a. For
future reference, note that we can test for r = 0 to see if a series has a unit root.
Furthermore, a time series will be stationary if -1 < f < 1 which is equivalent to 
-2 < r < 0. We will refer to this as the stationarity condition.

By way of providing more intuition (and jargon!) for the AR(1) model, let us con-
sider the case where f = 1 (or, equivalently, r = 0). In this case we can write the AR(1)
model as:

This is referred to as the random walk model. More precisely, the random 
walk model has no intercept (i.e. a = 0), while the preceding equation is referred 
to as a random walk with drift. The presence of the intercept allows for changes 
in variables to be, on average, non-zero. So, for instance, if Y is (the log of ) a 
stock price of a particular company then the random walk with drift model can be
written as:

Since the left-hand of this equation is the stock return (exclusive of dividends), then
the model says stock returns are equal to a (e.g. a benchmark return relevant for this
company taking into account its risk, etc.) plus a random error.

In the random walk model, since f = 1, Y has a unit root and is nonstationary. This
model is commonly thought to hold for phenomena like stock prices, a point we will
elaborate on next.

Y Y et t t- = +-1 a .

Y Y et t t= + +-a 1 .

DY Y et t t= + +-a r 1 ,
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Example: Market efficiency and the random walk hypothesis

A simple version of the random walk hypothesis is that the price of a stock
today is the price of a stock yesterday plus an (unpredictable) error term. Thus
the return to holding the stock is unpredictable. If stock returns were pre-
dictable, then investors would instantly buy up the stocks expected to rise and
sell the stocks expected to fall. The price of the former would instantly rise and
the latter would instantly fall to the points where returns were no longer pre-
dictable. This is an example of a market efficiency argument: that efficient stock
markets should not allow for abnormal profits and should instantly adjust to all
available news or information relevant for stock prices. There is a huge litera-
ture on market efficiency (with different researchers using slightly different def-
initions of this concept). However, the market efficiency argument outlined in
this paragraph is commonly used to argue that stock prices should behave as a
random walk with drift and this hypothesis is investigated in many research
papers.

Example: Stock prices on the NYSE (continued from page 143)

The AR(1) model is a regression model. Accordingly, we can use OLS to regress
the variable Y on lagged Y.5 If we do this, we find = 0.00773 and f̂ = 0.99986.
Since the OLS estimate, f̂ , and the true value of the AR(1) coefficient, f, will
rarely if ever be identical, it is quite possible that f = 1 since the OLS estimate
is extremely close to one. So the random walk model is plausible for this 
data set.

If we regress DYt on Yt-1, we obtain an OLS estimate of r which is -0.00014.
Note that we are finding r̂ = f̂ - 1, just as we would expect.

â

Exercise 9.5

Use the data in files FIG95.XLS, FIG96.XLS and FIG97.XLS, which were used to
create Figures 9.5–9.7, respectively.

(a) Calculate OLS estimates of r and f in the two variants of the AR(1) model.
(b) Relate your results in (a) to the question of whether any of the series contain

a unit root.
(c) Repeat (a) and (b) using the short-term interest rate data in INTER-

ESTRATES.XLS.



Extensions of the AR(1) model

We have argued above that the AR(1) model can be interpreted as a simple regres-
sion model where last period’s Y is the explanatory variable. However, it is possible
that more lags of Y should be included as explanatory variables. This can be done by
extending the AR(1) model to the autoregressive of order p, AR( p), model:

for t = p + 1, . . . , T. We will not discuss the properties of this model, other than to
note that they are similar to the AR(1) model but are more general in nature. That is,
this model can generate the trend behavior typical of financial time series and the
randomly fluctuating behavior typical of their growth rates.

In discussing unit root behavior it is convenient to subtract Yt-1 from both sides
of the previous equation. With some rearranging6 we obtain:

where the coefficients in this regression, r, g1, . . . , gp-1 are simple functions of f1,
. . . , fp. For instance, r = f1 + . . . + fp - 1. Note that this is identical to the AR(p)
model, but is just written differently. Hence we refer to both previous equations as
AR(p) models. In case you are wondering where the Yt-p term from the first equation
went to in the second, note that it appears in the second equation in the DYt-p+1 term
(i.e. DYt-p+1 = Yt-p+1 - Yt-p). Note also that both variants have the same number of
coefficients, p + 1 (i.e. the first variant has a, f1, . . . , fp while the second variant has
a, r, g1, . . . , gp-1). However, in the second variant the AR( p) model has last coeffi-
cient gp-1. Don’t let this confuse you, it is just a consequence of the way we have
rearranged the coefficients in the original specification.

The key points to note here are that the above equation is still in the form of a
regression model; and r = 0 implies that the AR(p) time series Y contains a unit

root; if -2 < r < 0, then the series is stationary. Looking at the previous equation
with r = 0 clarifies an important way of thinking about unit root series which we
have highlighted previously: if a time series contains a unit root then a regression
model involving only DY is appropriate (i.e. if r = 0 then the term Yt-1 will drop out
of the equation and only terms involving DY or its lags appear in the regression). It
is common jargon to say that “if a unit root is present, then the data can be differ-
enced to induce stationarity”.

As we will discuss in the next chapter, with the exception of a case called cointe-
gration, we do not want to include unit root variables in regression models. This sug-
gests that, if a unit root in Y is present, we will want to difference it and use DY. In
order to do so, we must know first if Y has a unit root. In the past, we have empha-
sized that unit root series exhibit trend behavior. Does this mean that we can simply
examine time series plots of Y for such trending to determine if it indeed has a unit
root? The answer is no. To explain why, let us introduce another model.

D D DY Y Y Y et t t p t p t= + + + + +- - - - +a r g g1 1 1 1 1. . . ,

Y Y Y et t p t p t= + + + +- -a f f1 1 . . . ,
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We showed previously that many financial time series contain trends and that AR
models with unit roots also imply trend behavior. However, there are other models
that also imply trend behavior. Imagine that Figure 9.1 (or Figure 9.7) is an XY-plot
where the X-axis is labeled time, and that we want to build a regression model using
this data. You might be tempted to fit the following regression line:

where the coefficient on the explanatory variable, time, is labeled d to distinguish it
from the f in the AR(1) model. Note that you can interpret the previous regression
as involving the variable Y and another variable with observations 1, 2, 3, 4, . . . , T.
This is another regression model which yields trend behavior. To introduce some
jargon, the term dt is referred to as a deterministic trend since it is an exact (i.e.
deterministic) function of time. In contrast, unit root series contain a so-called sto-

chastic trend (justification for the term “stochastic trend” is given in Appendix 9.1).
We can even combine this model with the AR(1) model to obtain:

Figure 9.8 is a time series plot of artificial data generated from the previous model
with a = 0, f = 0.2 and d = 0.01. Note that this series is stationary since |f| < 1. Yet,
Figure 9.8 looks much like Figure 9.7 (or Figure 9.1). Stationary models with a deter-
ministic trend can yield time series plots that closely resemble those from non-

Y Y t et t t= + + +-a f d1 .

Y t et t= + +a d ,
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Fig. 9.8 Trend stationary series.



stationary models having a stochastic trend. Thus, you should remember that look-

ing at time series plots alone is not enough to tell whether a series has a unit

root.
The discussion in the previous paragraph motivates jargon that we will use and

introduce in the context of the following summary:

1. The nonstationary time series variables on which we focus are those containing
a unit root. These series contain a stochastic trend. But if we difference these
time series, the resulting time series will be stationary. For this reason, they are also
called difference stationary.

2. The stationary time series on which we focus have -2 < r < 0 in the AR(p)
model. However, these series can exhibit trend behavior through the incor-
poration of a deterministic trend. In this case, they are referred to as trend 

stationary.
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Exercise 9.6

The data in FIG98.XLS was used to create Figure 9.8.

(a) Calculate the autocorrelation function for this trend stationary series.
(b) In light of your answer to a), discuss whether the autocorrelation function

is a useful tool for testing for a unit root.

If we add a deterministic trend to the AR(p) model, we obtain a very general model
that is commonly used in univariate time series analysis:

We refer to the above as the AR(p) with deterministic trend model and use it later.
You may wonder why we don’t just use the original AR(p) specification introduced
at the beginning of this section (i.e. the one where the explanatory variables are Yt-1,
. . . , Yt-p). There are two reasons. First, we are going to test for a unit root. With the
present specification, this is simply a test of r = 0. Testing for whether regression
coefficients are zero is a topic which we have learned previously (refer to Chapter 5).
With the original AR(p) model, testing for a unit root is more complicated. Second,
Yt-1, Yt-2, . . . , Yt-p are often highly correlated with each other (see the autocorrela-
tion function in Figure 9.3). If we were to use them as explanatory variables in our
regression we might run into serious multicollinearity problems (see Chapter 6).
However, in the present model we use Yt-1, DYt-1, . . . , DYt-p+1 as explanatory vari-
ables, which tend not to be highly correlated (see Figure 9.4), thereby avoiding the
problem.

D D DY Y Y Y t et t t p t p t= + + + + + +- - - - +a r g g d1 1 1 1 1. . . .



Testing in the AR(p) with deterministic trend model

In Chapters 5 and 6, we described how to test whether regression coefficients were
equal to zero. These techniques can be used in the AR(p) with deterministic trend
model (i.e. if you wish to omit explanatory variables whose coefficients are not sig-
nificantly different from zero). In particular, testing is usually done to help choose lag
length (p) and to decide whether the series has a unit root. In fact, it is common to
first test to select lag length (using hypothesis tests as described in Chapter 8), and
then test for a unit root.

However, there is one important complication that occurs in the AR(p) model that
was not present in earlier chapters. To understand it, let us divide the coefficients in
the model into two groups: (1) a, g1, . . . , gp-1, and d, and (2) r. In other words, we con-
sider hypothesis tests involving r separately from those involving the other coefficients.

Testing involving a, g1, . . . , gp-1, and d
Many sophisticated statistical criteria and testing methods exist to determine the
appropriate lag length in an AR(p) model. Nonetheless, simply looking at the t-
statistics or P-values in regression outputs can be quite informative. For instance, an
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Example: Stock prices on the NYSE (continued from page 148)

The following table contains output from an OLS regression of DYt on Yt-1,
DYt-1, DYt-2, DYt-3 and a deterministic time trend, created by using the data on
stock prices from NYSE.XLS. In other words, it provides regression output for
the AR(4) with deterministic trend model. We suspect that stock prices may
contain a unit root, a supposition supported somewhat by the table. In partic-
ular, a unit root is present if r (the coefficient on Yt-1) is zero. As we can see,
the estimate of r is indeed very small (i.e. r̂ = -0.016).

Table 9.2 AR(4) with deterministic trend model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.082 0.039 2.074 0.039 0.004 0.161
Yt-1 -0.016 0.008 -1.942 0.053 -0.033 0.0002
DYt-1 0.051 0.044 1.169 0.243 -0.035 0.138
DYt-2 -0.027 0.044 -0.623 0.534 -0.114 0.059
DYt-3 0.015 0.044 0.344 0.731 -0.071 0.101
time 1E - 4 5E - 5 1.979 0.048 7E - 7 0.0002



examination of Table 9.2 reveals that the P-values associated with the coefficients on
the lagged DY terms are insignificant, and that they may be deleted from the regres-
sion (i.e. the P-values are greater than 0.05). Alternatively, a more common route is to
proceed sequentially, as we did in Chapter 8; that is, to choose a maximum lag length,
pmax, and then sequentially drop lag lengths if the relevant coefficients are insignificant.

More specifically, begin with an AR( pmax). If the pmaxth lag is insignificant, we 
reduce the model to an AR( pmax - 1). If the ( pmax - 1)th lag is insignificant in the
AR( pmax - 1) then drop it and use an AR( pmax - 2), etc. Generally, you should start
with a fairly large choice for pmax.

In the AR(p) with deterministic trend model we also have to worry about testing
whether d = 0. This can be accomplished in the standard way by checking whether
its P-value is less than the level of significance (e.g. 0.05). This test can be done at
any stage, but it is common to carry it out after following the sequential procedure
for choosing p.

A short summary of this testing strategy is outlined below:

Step 1. Choose the maximum lag length, pmax, that seems reasonable to you.
Step 2. Estimate using OLS the AR( pmax) with deterministic trend model:

If the P-value for testing gpmax-1 = 0 is less than the significance level you
choose (e.g. 0.05) then go to Step 5, using pmax as lag length. Otherwise go
on to the next step.

Step 3. Estimate the AR( pmax - 1) model:

If the P-value for testing gpmax-2 = 0 is less than the significance level you
choose (e.g. 0.05) then go to Step 5, using pmax - 1 as lag length. Otherwise
go on to the next step.

Step 4. Repeatedly estimate lower order AR models until you find an AR(p) model
where gp-1 is statistically significant (or you run out of lags).

Step 5. Now test for whether the deterministic trend should be omitted; that is, if
the P-value for testing d = 0 is greater than the significance level you choose
then drop the deterministic trend variable.

D D DY Y Y Y t et t t p t p t= + + + + + +- - - - +a r g g d1 1 1 2 2. . . .max max

D D DY Y Y Y t et t t p t p t= + + + + + +- - - - +a r g g d1 1 1 1 1. . . .max max
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Example: Stock prices on the NYSE (continued from page 152)

If we carry out the preceding strategy on the NYSE stock price data, beginning
with pmax = 4, the model reduces to:

DY Y et t t= + +-a r 1 .



Table 9.3 shows the table of results you might report in a paper or empirical project,
including a brief but coherent explanation of the strategy that you used to arrive at
this final specification.

These results lead us to the next, most important, testing question: does Y contain
a unit root? Remember that, if r = 0, then Y contains a unit root. In this case, the
series must be differenced in the regression model (i.e. it is difference stationary). You
may think that you can simply test r = 0 in the same manner as you tested the sig-
nificance of the other coefficients. For instance, you might think that by comparing
the P-value to a significance level (e.g. 0.05), you can test for whether r = 0. SUCH

A STRATEGY IS INCORRECT! In hypothesis testing, r is different from other
coefficients and, thus, we must treat it differently.

Testing involving r
To fully understand why you cannot carry out a unit root test of r = 0 in the same
manner as we would test other coefficients requires that you have knowledge of sta-
tistics beyond that covered in this book. Suffice it to note here that most regression
packages like Excel implicitly assume that all of the variables in the model are sta-
tionary when they calculate P-values. If the explanatory variable Yt-1 is nonstation-
ary, its P-value will be incorrect. A correct way of testing for a unit root has been
developed by two statisticians named Dickey and Fuller and is known as the
Dickey–Fuller test.7 They recommend using the t-statistic for testing r = 0, but cor-
recting the P-value.
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That is, we first estimated an AR(4) with deterministic trend (see Table 9.2) and
found the coefficient on DYt-3 to be insignificant. Accordingly, we estimated an
AR(3) with deterministic trend and found the coefficient on DYt-2 to be insignif-
icant. We then dropped the latter variable and ran an AR(2), etc. Eventually,
after finding the deterministic trend to be insignificant, we settled on the AR(1)
model. OLS estimation results for this model are given in Table 9.3.

Table 9.3 AR(1) model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.00763 0.0123 0.6188 0.5363 -0.0166 0.0318
Yt-1 -0.00012 0.0019 -0.0631 0.9497 -0.0039 -0.0037



We can motivate the Dickey–Fuller test in terms of the following: in Chapter 5,
we said that testing could be done by comparing a test statistic (here the t-stat) to a
critical value to determine whether the former was either “small” (in which case the
hypothesis was accepted) or “large” (in which case the hypothesis was rejected). In
the standard (stationary) case, the critical values are taken from statistical tables of
the Student-t distribution. Dickey and Fuller demonstrated that in the unit root case,
this is incorrect. They calculated the correct statistical tables from which to take crit-
ical values.

The previous paragraphs were meant to motivate why the standard testing proce-
dure was incorrect. Admittedly, they are not very helpful in telling you what to do in
practice. If you are going to work extensively with time series data, it is worthwhile
to either:

1. Use a computer software package that is more suitable for time series analysis than
Excel. Packages such as Stata, E-views, MicroFit or SHAZAM will automatically
provide you with correct critical values or P-values for your unit root test. As
before, you will reject the unit root if the P-value is less than 0.05 or if the t-stat
is greater than the critical value (in an absolute value sense).

2. Read further in time series econometrics and learn how to use the Dickey–Fuller
statistical tables.8

However, a rough rule of a thumb can be used that will not lead you too far wrong
if your number of observations is moderately large (e.g. T > 50). This approximate
rule is given in the following strategy for testing for a unit root:

1. Use the strategy outlined in Steps 1 to 5 above to estimate the AR( p) with deter-
ministic trend model. Record the t-stat corresponding to r (i.e. the t-stat for the
coefficient on Yt-1).

2. If the final version of your model includes a deterministic trend, the
Dickey–Fuller critical value is approximately -3.45. If the t-stat on r is more neg-
ative than -3.45, reject the unit root hypothesis and conclude that the series is 
stationary. Otherwise, conclude that the series has a unit root.

3. If the final version of your model does not include a deterministic trend, the
Dickey–Fuller critical value is approximately -2.89. If the t-stat on r is more neg-
ative than -2.89, reject the unit root hypothesis and conclude that the series is 
stationary. Otherwise, conclude that the series has a unit root.9

In the previous example, the final version of the AR( p) model did not include a
deterministic trend. The t-stat on r is -0.063, which is not more negative than -2.89.
Hence we can accept the hypothesis that NYSE stock prices contain a unit root and
are, in fact, a random walk. Be careful using this crude rule of thumb when your 
t-stat is close to the critical values listed here.
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Example: Long-term interest rates

If we carry out the preceding strategy on the long-term interest rate data (from
INTERESTRATES.XLS), beginning with pmax = 4 and sequentially deleting insignif-
icant lagged variables, we end up with an AR(1) model:

OLS estimation results for this model are given in Table 9.4.
We are interested in testing for a unit root and this occurs if r = 0. A naïve

researcher who did not know about the Dickey–Fuller test would incorrectly
say: “Since the P-value for r (which is 0.035) is less than 0.05, we can conclude
that r is significant. Thus, the long-term interest rate variable does not contain
a unit root”. However, a researcher who knew about the Dickey–Fuller test
would say: “The final version of the AR(p) model I used did not include a deter-
ministic trend. Hence, I must use the Dickey–Fuller critical value of -2.89. The
t-stat on r is -2.13, which is not more negative than -2.89. Hence we can accept

the hypothesis that long-term interest rates contain a unit root”.

DY Y et t t= + +-a r 1 .

Table 9.4 AR(1) model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.039 0.014 2.682 0.008 0.010 0.067
Yt-1 -0.004 0.002 -2.130 0.035 -0.0077 -0.0003

Exercise 9.7

In this chapter we have recommended a strategy according to which you begin
with an AR(p) with deterministic trend model, choose lag length (p), decide
whether the deterministic trend should be included or excluded, and then test
for a unit root. Carry out this strategy using the following series:

(a) Those in FIG95.XLS and FIG96.XLS (which you know are stationary).
(b) That in FIG97.XLS (which you know has a unit root).
(c) That in FIG98.XLS (which is trend stationary, but exhibits strong trending

behavior).
(d) The short term interest rate variable in INTERESTRATES.XLS.



Some words of warning about unit root testing: The Dickey–Fuller test exhibits
what statisticians refer to as low power. In other words, the test can make the mistake
of finding a unit root even when none exists. Intuitively, trend stationary series can
look a lot like unit root series (compare Figures 9.7 and 9.8) and it can be quite hard
to tell them apart. Furthermore, other kinds of time series models can also appear to
exhibit unit root behavior, when in actuality they do not have unit roots. A prime
example is the time series model characterized by abrupt changes or breaks. These
structural breaks can occur in time series models, and can be precipitated by events
such as wars or crises in supply (e.g. the OPEC oil embargo). Stock prices can exhibit
structural breaks due to market crashes; and commodity prices, due to droughts and
other natural disasters. All in all, structural breaks are potentially a worry for many
types of time series data and some caution needs to be taken when interpreting the
results of Dickey–Fuller tests. There are many other tests for a unit root. To explain
these would require a long technical digression which would distract from the main
focus of this book. However, depending on which software package you have avail-
able, a little bit of extra study should enable you to use them in practice. Remember
the structure of any hypothesis testing procedure involves your knowing the hypoth-
esis being tested (here the unit root hypothesis) as well as a P-value (or a test statis-
tic with critical value to compare it to). Many software packages provide these
automatically. For instance, Stata allows you to do another popular unit root test called
the Phillips–Perron test (as well as others) in this manner.
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Exercise 9.8

In Exercise 9.7, we tested for unit roots in many series. We noted that if a time
series has one unit root, then its difference will be stationary. Verify that this is
true for the series having unit roots in Exercise 9.7. That is, discuss how you
would test to see if the change in the series has a unit root. Then carry out this
test.

Exercise 9.9

This exercise could actually be interpreted as an empirical project and could be
short or long, depending on what the student is interested in achieving. The
book Nonlinear Time Series Models in Empirical Finance by Philip Hans Franses and
Dick van Dijk (Cambridge University Press) is one you may use in your future
studies. It uses more sophisticated tools in statistics than the present book, so
at this stage you might find it difficult. However, it does have a website con-
taining a rich collection of data sets from several countries on stock prices 
and exchange rates which you can download (see http://www.few.eur.nl/few/
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people/djvandijk/nltsmef/nltsmef.htm). In particular, stock price indices from
Amsterdam (EOE), Frankfurt (DAX), Hong Kong (Hang Seng), London
(FTSE100), New York (S&P500), Paris (CAC40), Singapore (Singapore All
Shares) and Tokyo (Nikkei) are provided. The exchange rates are the Australian
dollar, British pound, Canadian dollar, German DeutschMark, Dutch guilder,
French franc, Japanese yen and the Swiss franc, all expressed as number of units
of the foreign currency per US dollar. The sample period for the stock indexes
runs from 6 January 1986 until 31 December 1997, whereas for the exchange
rates the sample covers the period from 2 January 1980 until 31 December 1997.
Investigate the random walk hypothesis using this data. Do stock prices appear
to follow a random walk in every country? Do exchange rates?

Note that this data is available at a daily frequency. You may want to work
with the data at this frequency or at a weekly (e.g. by just using data every
Wednesday) or monthly frequency (e.g. by just using data from the last day of
each month). Do your results for the unit root tests depend on whether you use
daily, weekly or monthly data?

Chapter summary

1. Many financial time series exhibit trend behavior, while their differences do
not exhibit such behavior.

2. The autocorrelation function is a common tool for summarizing the rela-
tionship between a variable and lags of itself.

3. Autoregressive models are regression models used for working with time
series variables. Such models can be written in two ways: one with Yt as the
dependent variable, the other with DYt as the dependent variable.

4. The distinction between stationary and nonstationary models is a crucial
one.

5. Series with unit roots are the most common type of nonstationary series
considered in financial research.

6. If Yt has a unit root then the AR(p) model with DYt as the dependent vari-
able can be estimated using OLS. Standard statistical results hold for all coef-
ficients except the coefficient on Yt-1.10

7. The Dickey–Fuller test is a test for the presence of a unit root. It involves
testing whether the coefficient on Yt-1 is equal to zero (in the AR(p) model
with DYt being the dependent variable). Software packages such as Excel do
not print out the correct P-value for this test.



Appendix 9.1: Mathematical intuition for 

the AR(1) model

Mathematical insight into the properties of the AR(1) model can be gained by writing
it in a different way. For simplicity, we will set a = 0 in order to focus on the role that
lagged Y plays. Note that the AR(1) model will hold at any point in time so we can
lag the whole AR(1) equation given in the body of the chapter and write:

If we substitute this expression for Yt-1 into the original AR(1) model we obtain:

Note that the previous expression depends on Yt-2, but we can write:

and substitute this expression for Yt-2 in the other equation. If this procedure is
repeated we end up with an alternative expression for the AR(1) model:

This expression looks complicated, but we can consider two special cases as a means
of understanding its implications. In the first of these we assume f = 1 and the pre-
vious equation reduces to:

The important point to note about the two terms on the right hand side of the pre-
vious equation is that they illustrate a long memory property; the value of the time
series starts at Y1, which always enters the expression for Yt, even if t becomes very
large. That is, the time series “never forgets” where it started from. It also “never
forgets” past errors (e.g. e1 always enters the above formula for Yt even if t gets very
large). It can be shown that the trending behavior of this model arises as a result of
the second term, which says that current Y contains the sum of all past errors. Sta-
tisticians view these errors as random or “stochastic” and this model is often referred
to as containing a stochastic trend. This is a key property of nonstationary series.

A second special case stands in contrast to the properties described above. If we
suppose |f| < 1, we can see that f t-1 will be decreasing as t increases (e.g. if f = 0.5,
then f2 = 0.25, f10 = 0.001 and f100 = 7.89 ¥ 10-31, etc.). The influence of Y1 and past
errors on Yt will gradually lessen as t increases and Y slowly “forgets the past”. Y will
not exhibit the long memory property we observed for the case where f = 1. This is
a key property of stationary series.
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Endnotes

1. Details about logarithms are discussed in Chapters 1, 2 and 4 (see especially the discus-
sion on Nonlinearity in Regression). This footnote is intended to refresh your memory
of this material. It is common to take the natural logarithm of the time series if it seems
to be growing over time. If a series, Y, is growing at a roughly constant rate, then the time
series plot of ln(Y ) will approximate a straight line. In this common case, ln(Y ) will gen-
erally be well-behaved. Note also that in regressions of logged variables, the coefficients
can be interpreted as elasticities. It can also be shown that ln(Yt) - ln(Yt-1) is approxi-
mately equal to the percentage change in Y between periods t - 1 and t.

For all these reasons, it is often convenient to work with logged series. Note that this
log transformation is so common that many reports and papers will initially explain that
the variables are logged, but thereafter drop the explicit mentioning of the log transfor-
mation. For instance, an author might refer to “the natural log of wealth” as “wealth” for
brevity. We will follow this tradition in the examples in this book.

2. Since Y0 is not known, DYt runs from t = 2, . . . , T rather than from t = 1, . . . , T. We
focus on the empirically useful case of first-differencing but we can define higher orders
of differencing. For instance, the second difference of Yt is defined as: D2Yt = DYt -
DYt-1.

3. Put another way, if you knew what the stock price index was today (let’s say, in January it
is 2,000), you could make a pretty good guess about roughly what it would be next month.
That is, it might go up or down a couple percentage points to 2,100 or 1,900, but it is
highly unlikely to be, say, 100 or 5,000. This ability to predict well is evidence of high 
correlation.

4. It is common practice to use Greek letters to indicate coefficients in regression models.
We can, of course, use any Greek symbol we want to denote the slope coefficient in a
regression. Here we have called it f rather than b. We will reserve b (perhaps with a sub-
script) to indicate coefficients relating to the explanatory variable X.

5. Some statistical problems arise with OLS estimation of this model, if the model is non-
stationary or nearly so (i.e. f is close to one or, equivalently, r is close to zero). Never-
theless, OLS is still a very common estimation method for AR models (especially if f is
not that close to 1), so you will probably not go far wrong through sticking with OLS
when working with AR models. If you take courses in financial econometrics or time
series statistics in the future, you will undoubtedly learn about other estimators.

6. Each step in the derivation of this equation involves only simple algebra (e.g. subtracting
the same thing from both sides of the equation, etc.). However, there are many steps
involved and the derivation of this equation is a bit messy.

7. Some authors use the term “Dickey–Fuller test” for testing for r = 0 in the AR(1) model
and use the term “Augmented Dickey–Fuller test” for testing in the AR(p) model (i.e. the
basic unit root test is “augmented” with extra lags).

8. Undergraduate Econometrics by Carter Hill, William Griffiths and George Judge (second
edition, John Wiley & Sons, Ltd, 2000), chapter 16 is a good place to start.

9. Formally, -3.45 and -2.89 are the critical values for T = 100 using a 5% level of signifi-
cance. Critical values for values of T between 50 and infinity are within 0.05 of these values.

10. Formally, standard hypothesis tests can be conducted on coefficients on stationary 
variables.
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C H A P T E R

Regression with time 

series variables

10

In regression analysis, researchers are typically interested in measuring the effect of
an explanatory variable or variables on a dependent variable. As mentioned in Chapter
8, this goal is complicated when the researcher uses time series data since an explana-
tory variable may influence a dependent variable with a time lag. This often necessi-
tates the inclusion of lags of the explanatory variable in the regression. Furthermore,
as discussed in Chapter 9, the dependent variable may be correlated with lags of
itself, suggesting that lags of the dependent variable should also be included in the
regression.

As we shall see, there are also several theories in finance which imply such a regres-
sion model. This is not a book which derives financial theories to motivate our regres-
sion models. However, to give you a flavor of the kind of things financial researchers
do with time series data, it is useful briefly to mention a few classic articles in finance
and the time series data sets they use. An influential paper by Campbell and Ahmer
called “What moves the stock and bond markets? A variance decomposition for long-
term asset returns”1 used American data on excess stock returns, various interest rates,
the yield spread (defined using the difference between long- and short-term inter-
est rates) and the dividend-price ratio. Another influential paper by Lettau and 
Ludvigson called “Consumption, aggregate wealth and expected stock returns”2

investigated an important relationship in financial economics using data on excess
stock returns, asset wealth, labor income and consumption. In Chapter 8, we pre-
sented an example involving the prediction of long-run stock returns using the 
dividend-price ratio. Such regressions grew out of influential work such as “Stock



prices, earnings and expected dividends” by Campbell and Shiller.3 Examples such as
these abound in finance. Exact details about why these researchers chose the partic-
ular variables they did is not important for present purposes (indeed you need not
even worry about precisely what all these variables are). The key thing to note is that
important financial theories involve several time series variables and imply models
such as the ones discussed in this chapter and the next.

These considerations motivate the commonly used autoregressive distributed lag
(or ADL) model:

In this model, the dependent variable, Y, depends on p lags of itself, the current value
of an explanatory variable, X, as well as q lags of X. The model also allows for a
deterministic trend (t). Since the model contains p lags of Y and q lags of X we denote
it by ADL( p, q).4 In this chapter, we focus on the case where there is only one explana-
tory variable, X. Note, however, that we could equally allow for many explanatory
variables in the analysis.

Estimation and interpretation of the ADL( p, q) model depend on whether the
series, X and Y, are stationary or not. We consider these two cases separately here.
Note though, that we assume throughout that X and Y have the same stationarity
properties; that is, that they either must both be stationary or both have a unit root.
Intuitively, regression analysis involves using X to explain Y. If X ’s properties differ
from Y ’s it becomes difficult for X to explain Y. For instance, it is hard for a sta-
tionary series to explain the stochastic trend variation in a unit root series. In prac-
tice this means that, before running any time series regression, you should examine
the univariate properties of the variables you plan to use. In particular, you should
carry out unit root tests along the lines described in Chapter 9 for every variable in
your analysis.

Time series regression when X and Y are stationary

When X and Y are stationary, OLS estimation of the ADL( p, q) regression model
can be carried out in the standard way described in Chapters 4–8. Testing for the sig-
nificance of variables can be done using the t-stats and P-values provided by com-
puter packages like Excel. Such tests can in turn be used to select p and q, the number
of lags of the dependent and explanatory variables, respectively. You should note,
however, that the verbal interpretation of results is somewhat different from the stan-
dard case, as elaborated below.

In the case of the AR( p) model in Chapter 9, it proved convenient, both for OLS
estimation and interpretation of results, for us to rewrite the model with DY as the
dependent variable. Similar considerations hold for the ADL( p, q), which can be
rewritten as:

Y t Y Y X X X et t p t p t t q t q t= + + + + + + + + +- - - -a d f f b b b1 1 0 1 1. . . . . . .
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It should be emphasized that this model is the same as that in the original form of
the ADL( p, q); it has merely undergone a few algebraic manipulations. Just as we had
two different variants of the AR( p) model in Chapter 9, we now have two variants
of the ADL( p, q) model. As before, we use new Greek letters for the coefficients in
the regression to distinguish them from those in the original variant of the 
ADL( p, q) model.5 This model may look complicated, but it is still nevertheless just
a regression model. That is, no new mathematical techniques are required for this
model, which is, after all, still based on the simple equation of a straight line.

As discussed in Chapter 9, financial time series are often highly correlated with
their lags. This implies that the original form of the ADL model frequently runs into
multicollinearity problems. With the rewritten form we will typically not encounter
such problems. Most importantly, as we shall see, it has a further benefit, one that lies
in the interpretation of the coefficients. For these reasons we will work mainly with
this second variant of the ADL( p, q) model.

In Chapter 6, we discussed how to interpret regression coefficients, placing special
emphasis on ceteris paribus conditions. Recall that we made statements of the form:
“The coefficient measures the influence of lot size on the sales price of a house, ceteris

paribus”. In the ADL( p, q) model, such an interpretation can still be made, but it is
not that commonly done. How then can we interpret the coefficients in the ADL
model? In economics, a common way is through the concept of a multiplier. The
use of multipliers is not that common in finance. However, we introduce the concept
anyway since it relates to important concepts we will discuss later.

It is common to focus on the long run or total multiplier, which is what we will
do here. To motivate this measure, suppose that X and Y are in an equilibrium or
steady state, i.e. are not changing over time. All of a sudden, X changes by one unit,
affecting Y, which starts to change, eventually settling down in the long run to a new
equilibrium value. The difference between the old and new equilibrium values for Y

can be interpreted as the long run effect of X on Y and is the long run multiplier.
This multiplier is often of great interest for policymakers who want to know the even-
tual effects of their policy changes in various areas.

It is worth stressing that the long run multiplier measures the effect of a perma-

nent change in X. That is, the story in the previous paragraph had X being at some
value, then X changed permanently to a new level one unit higher than the original
value. The long run multiplier measures the effect of this sort of change. In some
cases, you might be interested in the effect of a temporary change in X (i.e. X starts
at some original level, then increases by one unit for one period before going back to
the original level the next). The long run multiplier does not measure the effect of
this type of change. We can use the traditional “marginal effect” interpretation of
regression coefficients for such temporary changes. The example in Chapter 8, which
discussed the effect of news on the stock market, illustrates some ways of reporting
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the effect of a temporary change in the explanatory variable (e.g. there we were inter-
ested in the effect of news in one particular month on market capitalization. We did
not discuss the effect of increasing news relating to the stock price of the company
permanently as not making sense in that example).

It can be shown, (although we will not prove it here),6 that the long run multiplier
for the ADL( p, q) model is:

In other words, only the coefficients on Xt and Yt-1 in the rewritten ADL model matter
for long run behavior. This means that we can easily obtain an estimate of the long
run multiplier.

It is worth stressing that we are assuming X and Y are stationary. In Chapter 9, we
discussed how r = 0 in the AR( p) model implied the existence of a unit root. The
ADL model is not the same as the AR model, but to provide some rough intuition,
note that if r = 0 then the long run multiplier is infinite. In fact, it can be shown that
for the model to be stable, then we must have r < 0.7 In practice, if X and Y are
stationary, this condition will be satisfied.

- q
r

.
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Example: The effect of financial liberalization on 

economic growth

Researchers in the field of international finance and development are interested
in whether financial factors can play an important role in encouraging growth
in a developing country. The purpose of this example is to investigate this issue
empirically using time series data from a single country. Data set LIBERAL.XLS

contains data from Country A for 98 quarters on GDP growth and a variable
reflecting financial liberalization: the expansion of the stock market. In partic-
ular, the dependent and explanatory variables are:

• Y = the percentage change in GDP.
• X = the percentage change in total stock market capitalization.

The mean of these two variables is 0.30% and 0.01% per quarter, indicating
that stock markets in Country A have not expanded by much on average. Note,
however, that this average hides wide variation. In some quarters market capi-
talization increased considerably, while in other quarters it decreased. Assum-
ing that both variables are stationary, we can estimate an ADL(2, 2) model using
OLS. Remember that, if the variables in a model are stationary, then the stan-
dard regression quantities (e.g. OLS estimates, P-values, confidence intervals)
can be calculated in the same way as in Chapters 4–8. Table 10.1 contains the
results of this procedure.
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Using the formula for the long run multiplier, we can see that its OLS estimate
is -(.125/-.120) = 1.042. There are different ways of expressing this informa-
tion verbally (remember that the dependent and explanatory variables are per-
centage changes):

1. On average, market capitalization in Country A has been increasing by 0.01%
per quarter and GDP by 0.30% per quarter. If Country A’s total stock market
capitalization increases by 1.01% in each month (i.e. increase by one unit
from 0.01 to 1.01), then in the long run its GDP should start increasing by
1.342% per quarter (i.e. the initial 0.30 plus the long run multiplier of 1.042).8

2. The long run multiplier effect of financial liberalization on GDP growth is
1.042%.

3. If X permanently increases by 1%, the equilibrium value of Y will increase
by 1.042%.

The statistical information, though, indicates that this might not be a good
model, since some of the explanatory variables are not significant (e.g. the P-
values for the coefficients on DXt-1 and the time trend both imply insignificance
at the 5% level). This raises the issue of lag length selection in the ADL( p, q)
model. We will not discuss this topic here, other than to note that the strategy
for selecting q in the regression model with lagged explanatory variables (see
Chapter 8) and the strategy for selecting p in the AR( p) model (see Chapter 9)
can be combined. There is no general convention about whether you should
first select p, then q, then decide whether the deterministic trend should be
included, or make another ordering (e.g. select q, then p then trend or select q
then trend then p, etc.). As long as you are careful, you will not be led too far
wrong in selecting a good model.

Table 10.1 ADL(2, 2) with deterministic trend model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.028 0.041 -0.685 0.495 -0.110 0.054
Yt-1 -0.120 0.013 -9.46 4.11E - 15 -0.145 -0.095
DYt-1 0.794 0.031 25.628 7.41E - 43 0.733 0.856
Xt 0.125 0.048 2.605 0.011 0.030 0.221
DXt 0.838 0.044 19.111 2.96E - 33 0.750 0.925
DXt-1 0.002 0.022 0.103 0.918 -0.041 0.046
time 0.001 0.001 0.984 0.328 -0.001 0.002



Aside for Excel users

In Chapter 8 we described how to create lagged variables in Excel using copy/paste
commands. Similar techniques can be used here. Note, however, that when you create
DYt and DXt you will be using formulae. If you want to manipulate DYt and DXt later,
e.g., to create DYt-1 and DXt-1, you have to be careful to copy and paste the values in
the cells and not the formulae. You can do so using the “Paste Special” option in
Excel. You are probably noticing by now that Excel is not a very convenient software
package for time series analysis. As mentioned previously, there are many other sta-
tistical software packages (e.g. Stata, E-views, MicroFit, etc.) which are much more
suitable for time series analysis and you might wish to consider learning how to use
one of them if you plan on doing extensive work with financial time series.
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Exercise 10.1

Use the variables Y = percentage change in GDP growth and X = percentage
change in total stock market capitalization in data set LIBERAL.XLS to decide
whether the model estimated in Table 10.1 is a good one. In particular,

(a) Establish whether Y and X really do not have unit roots as was assumed in
the example.

(b) Beginning with an ADL(3, 3) model with deterministic trend, perform sta-
tistical tests to choose suitable lag lengths. Were good choices for p and q

made in the example? Should we have included a deterministic trend?
(c) If you found the variables do not have unit roots and made different choices

for p and q than the ones in the example, calculate the long run multiplier
and compare to the result in the example.

Exercise 10.2

Data set LIBERAL1.XLS contains variables of the same form as LIBERAL.XLS,
however for a different country.

(a) Repeat the analysis of Exercise 10.1 using the data in LIBERAL1.XLS.
That is, verify that Y and X are stationary and then test to find a suitable
ADL( p, q) specification.

(b) Calculate the long run multiplier for the model estimated in (a).



Time series regression when Y and X have unit

roots: spurious regression

For the remainder of this chapter, we will assume that Y and X have unit roots. In
practice, of course, you would have to test whether this was the case using the
Dickey–Fuller test of the previous chapter (or any other unit root test available in
your software package). We begin by focussing on the case of regression models
without lags, then proceed to similar models to the ADL( p, q) model.

Suppose we are interested in estimating the following regression:

If Y and X contain unit roots, then OLS estimation of this regression can yield results
which are completely wrong. For instance, even if the true value of b is 0, OLS 
can yield an estimate, , which is very different from zero. Statistical tests (using the 
t-stat or P-value) may indicate that b is not zero. Furthermore, if b = 0, then the 
R2 should be zero. In fact, the R2 will often be quite large.

To put it another way: if Y and X have unit roots then all the usual regression

results might be misleading and incorrect. This is the so-called spurious regres-

sion problem. We do not have the statistical tools to prove that this problem occurs,9

but it is important to stress the practical implication. With the one exception of coin-
tegration that we note below, you should never run a regression of Y on X if the

variables have unit roots.

Time series regression when Y and X have 

unit roots: cointegration

The one time where you do not have to worry about the spurious regression problem
occurs when Y and X are cointegrated. This case not only surmounts the spurious
regression problem, but also provides some nice financial intuition. Cointegration has
received a great deal of attention recently in the financial literature and many theo-
retical finance models imply cointegration should occur, so it is worthwhile to discuss
the topic in detail here.

Some intuition for cointegration can be obtained by considering the errors in the
above regression model: et = Yt - a - bXt. Written in this way, it is clear that the errors
are just a linear combination of Y and X. However, X and Y both exhibit nonsta-
tionary unit root behavior such that you would expect the error to also exhibit non-
stationary behavior. (After all, if you add two things with a certain property together
the result generally tends to have that property.) The error does indeed usually have
a unit root. Statistically, it is this unit root in the error term that causes the spurious

b̂

Y X et t t= + +a b .
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regression problem. However, it is possible that the unit roots in Y and X “cancel
each other out” and that the resulting error is stationary. In this special case, called
cointegration, the spurious regression problem vanishes and it is valid to run a
regression of Y on X. To summarize: if Y and X have unit roots, but some 

linear combination of them is stationary, then we can say that Y and X are

cointegrated.10

The intuition behind cointegration is clearest for the case where a = 0 and b = 1.
Keep this in mind when you read the following statements. Remember also that vari-
ables with unit roots tend to exhibit trend behavior (e.g. they can be increasing steadily
over time and therefore can become very large).

1. If X and Y have unit roots then they have stochastic trends. However, if they are
cointegrated, the error does not have such a trend. In this case, the error will not
get too large and Y and X will not diverge from one another; Y and X, in other
words, will trend together. This fact motivates other jargon used to refer to coin-
tegrated time series. You may hear them referred as either having common trends

or co-trending.
2. If we are talking about a financial model involving an equilibrium concept, e is the

equilibrium error. If Y and X are cointegrated then the equilibrium error stays
small. However, if Y and X are not cointegrated then the equilibrium error will
have a trend and departures from equilibrium become increasingly large over time.
If such departures from equilibrium occur, then many would hesitate to say that
the equilibrium is a meaningful one.

3. If Y and X are cointegrated then there is an equilibrium relationship between them.
If they are not, then no equilibrium relationship exists. (This is essentially just a
restatement of the previous point.)

4. In the real world, it is unlikely that a financial system will ever be in precise equi-
librium since shocks and unexpected changes to it will always occur. However,
departures from equilibrium should not be too large and there should always be
a tendency to return to equilibrium after a shock occurs. Hence, if a financial
model which implies an equilibrium relationship exists between Y and X is correct,
then we should observe Y and X as being cointegrated.

5. If Y and X are cointegrated then their trends will cancel each other out.

To summarize: if cointegration is present, then not only do we avoid the spurious
regression problem, but we also have important financial information (e.g. that an
equilibrium relationship exists or that two series are trending together).

A brief mention of a few theories motivating why cointegration should occur
between various financial time series should aid in understanding the importance of
this concept.

Common sense tells you that, if two assets are close substitutes for one another,
then their prices should not drift too far apart. After all, if one asset becomes much
more expensive than a similar asset, then investors will sell the first asset in order to
buy the cheaper alternative. But if many investors are selling the expensive asset, then
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its price should drop. And if many investors are buying the cheap asset its price would
rise. Thus, the prices of the expensive and cheap assets would move closer to one
another. Many financial theories formalize this intuition to imply different cointe-
grating relationships.

Cointegration often arises in models of the term structure of interest rates and
the yield curve. A detailed discussion of these terms is beyond the scope of this
book. However, the basic idea is that bonds can have different maturities or repay-
ment periods. So you can have a bond which promises to pay a fixed interest rate for
one year, or two years, or 10 years, etc. The interest rates paid on bonds of different
maturities can be different since investors have different time preferences and long
maturities are less flexible since they lock the investor in for a longer time period.
That is, an investor could either buy a five-year bond, or a sequence of one-year bonds
each year for five years. The latter strategy would be more flexible since the investor
could always change her mind after each year. Hence, long-term interest rates often
tend to be higher than short-term interest rates to compensate the buyer for a loss
of flexibility. The exact shape of the relationship between interest rates at different
maturities is called the term structure of interest rates or the yield curve (a yield is
the return to holding the bond for the entire time until it matures). This provides
much useful information about investor’s beliefs about the future and is, thus incor-
porated in many financial theories some of which imply cointegrating relationships.
For instance, Campbell, Lo and MacKinlay in their book The Econometrics of Financial

Markets (Chapter 10), outline an argument where yield spreads (i.e. the difference
between the yield of a bond with an N period maturity and the yield of a bond with
a 1 period maturity) are stationary time series variables and show how this implies
yields of different maturities should be cointegrated.

In futures markets, theories involving investors having rational expectations tend
to imply cointegrating relationships. For instance, in foreign exchange markets you
can buy any major currency (e.g. the $ or the £ ) in the conventional manner (i.e. for
immediate delivery at a specified rate). For instance, at the time I am writing this I
could purchase $1.90 for £1. This is referred to as the spot exchange rate or spot

rate. However, it also possible to agree an exchange rate now, but carry out the actual
trade at some future date (e.g. a deal might have the form “I will guarantee that one
year from now, I will give you $2.00 for your £1”). Such an exchange rate, agreed now
but with the actual trade to be carried out later, is called the forward exchange rate

or forward rate. Similar contracts (and much more complicated ones) can be written
in stock markets and, indeed, such financial derivatives play a huge role in modern
financial markets. Many financial theories, involving market efficiency and rational
expectations of investors, imply that forward rates should be good predictors of
future spot rates. Empirically, as we have discussed before, it seems that prices of
assets (and an exchange rate is a price of an asset) often have unit roots in them (with
returns being stationary). If we combine the financial theory with this empirical reg-
ularity, it turns out that they imply that spot and forward rates should be cointegrated.
In foreign exchange markets, there are many theories which imply such cointegrating
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relationships. We will not explain them here, but just drop a few of names such as
purchasing power parity, uncovered interest parity and covered interest parity.11

As we have touched on previously, there are also many financial theories which
come out of basic present value relationships which imply cointegration. For instance,
one such theory implies that stock prices and dividends should be cointegrated.
Another financial theory (the Lettau–Ludvigson paper which we mentioned above
and explore below) implies that consumption (c), assets (a) and income ( y) should be
cointegrated. Such so-called cay relationships have received a great deal of attention
in the recent empirical finance literature. Furthermore, theory suggests that the coin-
tegrating error from the cay relationship plays a very important role: it should have
predictive power for future stock returns.

In short, financial theory suggests cointegrating relationships between many dif-
ferent financial time series should exist. Hence, it is important to test whether coin-
tegration is present (i.e. to see whether financial theory holds in practice) and, if it is
present, to estimate models involving cointegrated variables (e.g. to estimate the coin-
tegrating error from the cay relationship). Accordingly, we now address these issues,
beginning with an empirical example.

170 Analysis of financial data

Estimation and testing with cointegrated variables

As mentioned above, if Y and X are cointegrated, then the spurious regression
problem does not apply; consequently, we can run an OLS regression of Y on X and
obtain valid results. Furthermore, the coefficient from this regression is the long run
multiplier. Thus, insofar as interest centers on the long run multiplier, then estima-
tion with cointegrated variables is very easy.

Before using results from this so-called cointegrating regression, it is important
to verify that Y and X are in fact cointegrated. Remember that if they are not coin-
tegrated, then the spurious regression problem holds and the results you obtain can
be completely meaningless. An examination of time series plots like Figure 10.1, can

Example: Cointegration between the spot and forward rates

We have discussed previously how financial theory suggests spot and forward
rates should be cointegrated. As an example, FOREX.XLS contains time series
data for 181 months on the spot and one-month forward exchange rates of a
certain foreign currency (both variables are measured in foreign currency units
per dollar).

Figure 10.1 plots these two series and provides strong visual evidence that
the spot and forward rates are indeed cointegrated. That is, even though they
are not identical to one another, the general trend behavior in the two variables
looks quite similar.



be quite informative, but remember that visual examinations of graphs should not
be considered substitutes for a statistical test!

Many tests for cointegration exist and some computer software packages (e.g. Stata
and MicroFit) allow you to perform very sophisticated procedures at a touch of the
button. We will discuss some of these in the next chapter. However, spreadsheets like
Excel do not allow you to carry out these tests. Fortunately, using the regression capa-
bilities of these spreadsheet packages coupled with some data manipulation, we can
carry out at least one test for cointegration.

The test for cointegration described here is referred to as the Engle–Granger test,
after the two econometricians who developed it. It is based on the regression of Y

on X. Remember that, if cointegration occurs, then the errors from this regression
will be stationary. Conversely, if cointegration does not occur, then the errors will
have a unit root. Given the close relationship between the errors and the residuals,12

it is reasonable to examine the properties of the residuals in order to investigate the
presence of cointegration. In Chapter 9 we discussed testing for a unit root in a time
series variable. Here, we test for a unit root in the residuals using the same techniques.
In particular, the test for cointegration involves the following steps:

1. Run the regression of Y on X and save the residuals.13

2. Carry out a unit root test on the residuals (without including a deterministic trend).
3. If the unit root hypothesis is rejected then conclude that Y and X are cointegrated.

However, if the unit root is accepted then conclude cointegration does not occur.
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It is worthwhile to stress that the Engle–Granger test is based on a unit root test,
so that the problems described at the end of Chapter 9 will arise. In other words,
although the cointegration test is based on the t-statistic from a regression (in this
case, one involving the residuals from a preliminary regression), you cannot use the
P-value printed out by non-specialist packages like Excel. The correct critical values
are published in many places (and are slightly different from the critical values for the
Dickey–Fuller test). If you are going to do a great deal of work with time series data
it is a good idea for you to spend the time to learn more about cointegration testing
and look up these correct critical values or use a computer package such as Stata or
MicroFit. However, for many purposes it is acceptable to use the same rules of thumb
recommended in Chapter 9. A more sophisticated cointegration test, called the
Johansen test, is described in Chapter 11. In many cases, the Johansen test performs
better than the Engle–Granger test. However, the Johansen test is more complicated
and cannot easily be done using a spreadsheet such as Excel.

Note that, when testing for a unit root in the residuals, it is rare to include a deter-
ministic trend. If such a trend were included it could mean the errors could be
growing steadily over time. This would violate the idea of cointegration (e.g. the idea
that the system always returns to equilibrium and, hence, that errors never grow too
big). Hence, we do not consider this case in this book.

In light of these considerations, when carrying out the unit root test on the resid-
uals (see Step 2 above), use -2.89 as a critical value against which to compare the 
t-statistic. If the t-statistic on r in the unit root regression involving the residuals is
more negative than -2.89, conclude that the errors do not have a unit root and hence
that Y and X are cointegrated.

Note also that in the Dickey–Fuller test, we test the hypothesis that r = 0 (i.e. the
null hypothesis is the unit root). In the cointegration test, we use the Dickey–Fuller
methodology but cointegration is found if we reject the unit root hypothesis for 
the residuals. In other words, the null hypothesis in the Engle–Granger test is “no
cointegration” and we conclude “cointegration is present” only if we reject this
hypothesis.

It is also worth stressing that, since the Engle–Granger test is based on the
Dickey–Fuller test, it suffers from the difficulties noted at the end of Chapter 9. That
is, the Engle–Granger test has low power and can be misleading if structural breaks
occur in the data.
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Example: Cointegration between the spot and forward rates

(continued from page 170)

Let us suppose that spot and forward rates both have unit roots. If we run a
regression of Y = the spot rate on X = the forward rate using the data in
FOREX.XLS we obtain the following fitted regression model:
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The strategy above suggests that we should next carry out a unit root test on
the residuals, ut (which computer packages like Excel allow you to create) from
this regression. The first step in doing this is to correctly select the lag length
using the sequential strategy outlined in Chapter 9. Suppose we have done so
and conclude that an AR(1) specification for the residuals is appropriate. The
Dickey–Fuller strategy suggests we should regress Dut on ut-1. The results are
shown in Table 10.2.

Our rule of thumb says that we should compare the t-stat for the coefficient
on ut-1, which is -14.5, to a critical value of -2.89. Since the former is more
negative than the latter we reject the unit root hypothesis and conclude that the
residuals do not have a unit root. In other words, we conclude that the spot and
forward rates are indeed cointegrated.

Since we have found cointegration we do not need to worry about the spu-
rious regressions problem. Hence, we can proceed to an interpretation of our
coefficients without worrying that the OLS estimates are meaningless. The coef-
ficient on the forward rate is 0.996 which is very close to the value of 1 pre-
dicted by financial theory (i.e. financial theory says that spot and forward rates
should on average be the same as the latter should be an optimal predictor for
the former). Alternatively, we can interpret this coefficient estimate as saying
that the long run multiplier is 0.996.

ˆ . . .Y Xt t= +0 774 0 996

Table 10.2 AR(1) using the errors from the cointegrating regression.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept 0.024 0.292 0.083 0.934 -0.552 0.600
ut-1 -1.085 0.075 -14.500 5.8E - 32 -1.233 -0.938

Exercise 10.3

Use the data in FOREX.XLS to complete the previous example. In particular,

(a) Do a Dickey–Fuller test to verify that spot and forward rates have unit roots.
(b) Do a sequential test to verify that the Dickey–Fuller test on the residuals

was done correctly. That is, is an AR(1) model for the residuals appropriate?



Time series regression when Y and X are

cointegrated: the error correction model

In empirical work, it is often vital to establish that Y and X are cointegrated. As
emphasized above, cointegration can be related to the idea of Y and X trending
together or bearing an equilibrium relationship to each other. A second important
task is to estimate the long run multiplier or the long run influence of X on Y. Both
cointegration testing and estimation of the long run multiplier can be done using the
regression of Y on X. Accordingly, in many empirical projects you may never need
to move beyond this simple regression. However, in some cases, you may be inter-
ested in understanding short run behavior in a manner that is not possible using only
the regression of Y on X. In such cases, we can estimate an error correction model

(or ECM for short).
An important theorem, known as the Granger Representation Theorem, says

that if Y and X are cointegrated, then the relationship between them can be expressed
as an ECM. In this section, we will assume Y and X are cointegrated. Error correc-
tion models have a long tradition in time series econometrics, and the Granger Rep-
resentation Theorem highlights their popularity. In order to understand the properties
of ECMs let us begin with the following simple version:

where et-1 is the error obtained from the regression model with Y and X (i.e. et-1 =
Yt-1 - a - bXt-1) and et is the error in the ECM model. Note that, if we knew et-1,
then the ECM would be just a regression model (although we introduce some new
Greek letters to make sure that the coefficients and error in this model do not get
confused with those in other regression models). That is, DYt is the dependent vari-
able and et-1 and DXt are explanatory variables. Furthermore, we assume that l < 0.15

D DY e Xt t t t= + + +-j l w e1 0 ,
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Exercise 10.4

Use the data on Y = long-term interest rates and X = short-term interest rates
in INTERESTRATES.XLS used in previous chapters.

(a) Use Dickey–Fuller tests to verify that Y and X have unit roots.
(b) Run a regression of Y on X and save the errors.
(c) Carry out a unit root test on the residuals using an AR(1) model.
(d) Carry out a unit root test on the residuals using an AR(2) model.
(e) Carry out a unit root test on the residuals using an AR(3) model.
(f ) What can you conclude about the presence of cointegration between Y and

X ?14



To aid in interpreting the ECM, consider the implications of DYt being its depen-
dent variable. As emphasized throughout this book, the regression model attempts
to use explanatory variables to explain the dependent variable. With this in mind, note
that the ECM says that DY depends on DX – an intuitively sensible point (i.e. changes
in X cause Y to change). In addition, DYt depends on et-1. This latter aspect is unique
to the ECM and gives it its name.

Remember that e can be thought of as an equilibrium error (e.g. the difference
between the spot and forward rates). If it is non-zero, then the model is out of equi-
librium. Consider the case where DXt = 0 and et-1 is positive (e.g. the spot rate is higher
than the forward rate). The latter implies that Yt-1 is too high to be in equilibrium (i.e.
Yt-1 is above its equilibrium level of a + bXt-1). Since l < 0 the term let-1 will be neg-
ative and so DYt will be negative. In other words, if Yt-1 is above its equilibrium level,
then it will start falling in the next period and the equilibrium error will be “corrected”
in the model; hence the term “error correction model” (e.g. if the spot rate is too
much above the forward rate, investors will find it cheap to buy forward driving up
the forward rate).16 In the case where et-1 < 0 the opposite will hold (i.e. Yt-1 is below
its equilibrium level, hence let-1 > 0 which causes DYt to be positive, triggering Y to
rise in period t).

In sum, the ECM has both long run and short run properties built into it.
The former properties are embedded in the et-1 term (remember b is still the long 
run multiplier and the errors are from the regression involving Y and X ). The 
short run behavior is partially captured by the equilibrium error term, which says 
that, if Y is out of equilibrium, it will be pulled towards it in the next period.
Further aspects of short run behavior are captured by the inclusion of DXt

as an explanatory variable. This term implies that, if X changes, the equilibrium value
of Y will also change, and that Y will also change accordingly. All in all, the ECM 
has some very sensible properties that are closely related to financial equilibrium 
concepts.

The ECM also has some nice statistical properties which mean that we do not have
to worry about the spurious regression problem. Y and X both have unit roots; hence
DY and DX are stationary. Furthermore, since Y and X are cointegrated, the equilib-
rium error is stationary. Hence, the dependent variable and all explanatory variables
in the ECM are stationary. This property means that we can use OLS estimation and
carry out testing using t-statistics and P-values in the standard way described in
Chapter 5.

The only new statistical issue in the ECM arises due to the inclusion of et-1 as an
explanatory variable. Of course, the errors in a model are not directly observed. This
raises the issue of how they can be used as an explanatory variable in a regression.
Some sophisticated statistical techniques have been developed to estimate the ECM,
but the simplest thing to do is merely to replace the unknown errors by the residu-
als from the regression of Y on X (i.e. replace et-1 by ut-1). That is, a simple technique
based on two OLS regressions proceeds as follows:
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Step 1. Run a regression of Y on X and save the residuals.
Step 2. Run a regression of DY on DX and the residuals from Step 1 lagged one

period.

It should be emphasized that before carrying out this two-step estimation proce-
dure for the ECM, you must verify that Y and X have unit roots and are cointegrated.

So far we have discussed the simplest error correction model. In practice, just as
the ADL( p, q) model has lags of the dependent and explanatory variables, the ECM
may also have lags.17 It may also have a deterministic trend. Incorporating these fea-
tures into the ECM yields:

This expression is still in the form of a regression model and can be estimated
using the two-step procedure described above. The adjustment to equilibrium intu-
ition also holds for this model. The decisions on whether to include a deterministic
trend and on which precise values for p and q are appropriate can be made using 
t-statistics and P-values in the same manner as for the ADL model. In fact, the ECM
is closely related to the ADL model in that it is a restricted version of it.

D D D D DY t e Y Y X Xt t t p t p t q t q t= + + + + + + + + +- - - -j d l g g w w e1 1 1 0. . . . . . .
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Example: Cointegration between the spot and forward rates

(continued from page 173)

In the previous part of this example, we found that the variables, Y = the spot
rate and X = the forward rate, were cointegrated. This suggests that we can esti-
mate an error correction model. To do so, we begin by running a regression of
Y on X and saving the residuals (which was done in the previous part of the
example). The residuals, ut, can then be included in the following regression (in
lagged form):

Table 10.3 gives results from OLS estimation of this model. The statistical infor-
mation can be interpreted in the standard way. We can say that (with the excep-
tion of the intercept) all the coefficients are strongly statistically significant
(since their P-values are much less than 0.05).

D DY u Xt t t t= + + +-j l w e1 0 .

Table 10.3 Simple error correction model.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.023 0.342 -0.068 0.946 -0.700 0.654
ut-1 -1.085 0.075 -14.458 8.69E - 32 -1.233 -0.937
DXt 1.044 0.182 5.737 4.11E - 08 0.685 1.403



Time series regression when Y and X have 

unit roots but are not cointegrated

You may encounter instances where unit root tests indicate that your time series have
unit roots, but the Engle–Granger test indicates that the series are not cointegrated.
That is, the series may not be trending together and may not have an equilibrium 
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We noted before that = 0.996 and this is the estimate of the long run multi-
plier. The point estimates in the table of l and w0 summarize the short run
properties. To aid in interpretation note that all variables in the model are per-
centages. The coefficient on ut-1 of -1.085 measures how much Y responds to
equilibrium errors. Since this coefficient is negative, positive errors tend to cause
DY to be negative and hence Y to fall. In particular, an equilibrium error of one
unit tends to cause the spot rate to fall by 1.085 units in the next period, ceteris

paribus. This is a very quick adjustment to an equilibrium error! The coefficient
on DXt = 1.044. Imagine, in other words, what would happen if the forward
rate were to remain unchanged for some time (DX = 0), but then suddenly were
to change by one unit. The ECM implies that Y would instantly change by 1.044
units. In other words, the spot rate responds very quickly to changes in the
forward rate.

b̂

Exercise 10.5

Use the data in FOREX.XLS to check the previous example. In particular, does
the ECM have enough lags of both DX and DY ?

Exercise 10.6

Use the data on Y = long-term interest rates and X = short-term interest 
rates in INTERESTRATES.XLS. Assume (perhaps incorrectly) that Y and X are
cointegrated.

(a) Estimate an error correction model. Begin with a model containing a deter-
ministic trend and p = q = 4 and then carry out statistical tests to find an
appropriate ECM.

(b) Discuss your results. Pay particular attention to your estimate of l and
discuss what it tells you about the speed of adjustment to equilibrium.



relationship. In these cases, you should not run a regression of Y on X due to the
spurious regression problem. The presence of such characteristics suggests that you
should rethink your basic model and include other explanatory variables. Instead of
working with Y and X themselves, for example, you could difference them. (Remem-
ber that if Y and X have one unit root, then DY and DX should be stationary.)

In this case, you could work with the changes in your time series and estimate the
ADL model using the techniques described at the beginning of this chapter. In other
words, you may wish to estimate the original ADL model, but with changes in the
variables:

For most time series variables, this specification should not suffer from multi-
collinearity problems. Alternatively, you may wish to estimate the second variant of
the ADL model based on the differenced data. But if you are working with the dif-
ferences of your time series and then use the variant of the ADL that involves dif-
ferencing the data you end up with second differenced data:

where D2Yt = DYt - DYt-1. OLS estimation and testing can be done in either of these
models in a straightforward way. Whatever route is chosen, it is important to empha-
size that the interpretation of regression results will likewise change.

More specifically, let us suppose Y = exchange rates and X = interest rates. If Y

and X are cointegrated, or if both are stationary, we can obtain an estimate of the
long run effect of a small change in interest rates on exchange rates. If Y and X are
neither stationary nor cointegrated and we estimate either of the two preceding equa-
tions, we can obtain an estimate of the long run effect of a small change in the change of

interest rates on the change in exchange rates. This may or may not be a sensible thing to
measure depending on the particular empirical exercise.

Note that, in the example at the beginning of this chapter on the effect of finan-
cial liberalization on growth, the variables were already in percentage changes. If we
had begun with Y = GDP and X = total stock market capitalization we would have
found they had unit roots but were not cointegrated. Hence, we would have run into
the spurious regressions problem. This was why we worked with percentage changes.
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Exercise 10.7

Excel data set STOCKPAB.XLS contains monthly data of the most important
stock price indices in Countries A and B. The data are logged. One topic that
financial researchers are interested in is whether movements in stock prices in
one country can affect those in another country (e.g. bad news in one market
is “contagious” and can spill over to a neighboring stock market). In light of



this, you wish to investigate whether there are relationships between Y = the
(logged) stock price in Country A and X = the (logged) stock price in Country
B. In particular,

(a) Construct a time series plot of X and Y. Do they both seem to be trending?
Do they seem to be trending together?

(b) Carry out unit root tests on X and Y. You should find evidence that they
both have unit roots.

(c) Carry out a cointegration test on X and Y. You should find evidence that
they are not cointegrated.

(d) Difference the data to obtain DX and DY. Repeat parts (a) and (b) with these
new variables. You should find that they do not have unit roots.

(e) Specify and estimate an ADL( p, q) model using the new variables, DX and
DY. Discuss your results. Note that the change in the log of a stock price
index is the percentage change. That is, DX and DY can be interpreted as
returns (exclusive of dividends).

Chapter summary

1. If all variables are stationary, then an ADL( p, q) model can be estimated
using OLS. Statistical techniques are all standard.

2. A variant on the ADL model is often used to avoid potential multi-
collinearity problems and provide a straightforward estimate of the long run
multiplier.

3. If all variables are nonstationary, great care must be taken in the analysis
due to the spurious regression problem.

4. If all variables are nonstationary but the regression error is stationary, then
cointegration occurs.

5. If cointegration is present, the spurious regression problem does not occur.
6. Cointegration is an attractive concept for financial researchers since it

implies that an equilibrium relationship exists.
7. Cointegration can be tested using the Engle–Granger test. This test is a

Dickey–Fuller test on the residuals from the cointegrating regression.
8. If the variables are cointegrated then an error correction model can be used.

This model captures short run behavior in a way that the cointegrating
regression cannot.

9. If the variables have unit roots but are not cointegrated, you should not
work with them directly. Rather you should difference them and estimate
an ADL model using the differenced variables. The interpretation of these
models can be awkward.
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1. Campbell, J.Y. and Ammer, J. (1993). “What moves the stock and bond markets? A vari-
ance decomposition for long-term asset returns”, Journal of Finance, 48, 3–37.

2. Lettau, M. and Ludvigson, S. (2001). “Consumption, aggregate wealth and expected stock
returns”, Journal of Finance, 56, 815–49.

3. Campbell, J. and Shiller, R. (1988). “Stock prices, earnings and expected dividends”, Journal

of Finance, 43, 661–76.
4. Formally, we should call this the ADL( p, q) with deterministic trend model. However, we

will omit the latter phrase for the sake of simplicity. In practice, you will find that the
deterministic trend is often insignificant and will be omitted from the model anyway. Note
also that some textbooks abbreviate “autoregressive distributed lag” as ARDL instead of
ADL.

5. The coefficients involving the lags of the dependent variable, r, g1, . . . , gp-1 are exactly
the same functions of f1, . . . , fp as in Chapter 9. The q + 1 coefficients q, w1, . . . , wq

are similar functions of b0, b1, . . . , bq.
6. Deriving the long run multiplier from an ADL model is not difficult, and you should try

it as an exercise. Here are some hints: assume that the model has been in equilibrium for
a long time, and that equilibrium values of X and Y are given by X* and Y*, respectively.
Now assume X is increased permanently to X* + 1 and figure out what happens to Y.

7. “Stable” is a statistical term that we will not formally define in this book. It can, however,
be interpreted in a common sense way: if a model is stable, it implies that the time series
variables will not be exploding or stochastically trending over time. In essence, it is a very
similar concept to stationarity.

8. It is worth emphasizing that 1.042 is an estimate of the long run multiplier. A confidence
interval could be calculated, but this would involve derivations beyond the scope of this
book.

9. You may think that the spurious regression problem occurs as a result of an omitted vari-
able bias when lags are left out of an ADL model. But there is more to it than this. Even
when no lags belong in the model, the spurious regression problem arises.

10. To motivate the word “cointegration”, note that if X and Y have unit roots, then it is
common jargon to say that they are integrated. Adding the word “co” to emphasize that
the unit roots are similar or common in X and Y yields “cointegration”.

11. Chapters 11 through 13 of Quantitative Financial Economics by Keith Cuthbertson ( John
Wiley & Sons, Ltd) is a good place for further reading on these topics.

12. Remember that the errors are deviations from the true regression line while residuals are
deviations from the estimated regression line (see Chapter 4). Our notation for OLS resid-
uals is ut.

13. In Excel, you can do it by clicking on the box labeled “Residuals” and following 
instructions.

14. If you have done this question correctly, you will find that cointegration does seem to be
present for some lag lengths, but not for others. This is a common occurrence in practi-
cal applications, so do not be dismayed by it. Financial theory and time series plots of the
data definitely indicate that cointegration should occur between Y and X. But the
Engle–Granger test does not consistently indicate cointegration. One possible explana-
tion is that the Engle–Granger and Dickey–Fuller tests are known to have low power.
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15. We will not formally prove why this condition must hold except to say that it is a stabil-
ity condition of the sort discussed in the context of the ADL( p, q) model.

16. This intuition motivates the stability condition l < 0, which ensures that equilibrium
errors are corrected. If l is positive then equilibrium errors will be magnified.

17. Note that we do not include more lags of et-1 as explanatory variables due to an implica-
tion of the Granger Representation Theorem, which we will not discuss here.
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C H A P T E R

Regression with time 

series variables with 

several equations

11

Chapters 8–10 developed several different regression models for time series variables.
For many cases, knowledge of these models and the relevant techniques (e.g. cointe-
gration tests) is enough to allow you to write a report and gain a good basic under-
standing of the properties of the data. However, in some cases, a knowledge of
slightly more sophisticated methods is necessary. Fortunately, many such cases can be
shown to be simple extensions of the methods learned in earlier chapters. In this
chapter and the next we discuss two important such extensions. In the present
chapter, we discuss methods which involve more than one equation. In the next, we
discuss financial volatility. To motivate why multiple equation methods are important,
we begin by discussing Granger causality before discussing the most popular class
of multiple-equation models: so-called Vector Autoregressive (VAR)1 models. VARs
can be used to investigate Granger causality, but are also useful for many other things
in finance. Using financial examples, we will show their importance. Furthermore, an
extension of a VAR related to the concepts of cointegration and error correction is
discussed in this chapter. This is called the Vector Error Correction Model (VECM)
and it allows us to introduce another popular test for cointegration called the
Johansen test. In Appendix 11.2, we informally introduce the concept of a variance

decomposition. This is commonly used with financial VARs but a full understand-
ing requires concepts beyond the scope of this book.

At the beginning of Chapter 10, we motivated the importance of regression with
time series variables for financial researchers by mentioning a few papers such as one



by Campbell and Ahmer called “What moves the stock and bond markets? A vari-
ance decomposition for long-term asset returns” and one by Lettau and Ludvigson
called “Consumption, aggregate wealth and expected stock returns”. In this chapter,
we will discuss these financial examples (and several others) in more detail.

Granger causality

In this book we have referred to causality quite a bit; however, mostly through warn-
ings about interpreting correlation and regression results as reflecting causality. For
instance, in Chapter 3 we discussed an example where alcohol drinking and lung
cancer rates were correlated with one another, even though alcohol drinking does not
cause lung cancer. Here correlation did not imply causality. In fact, it was cigarette
smoking that caused lung cancer, but a correlation between cigarette smoking and
alcohol drinking produced an apparent relationship between alcohol and lung cancer.

In our discussion of regression, we were on a little firmer ground, since we
attempted to use common sense in labeling one variable the dependent variable and
the others the explanatory variables. In many cases, because the latter “explained” the
former it was reasonable to talk about X “causing” Y. For instance, in our house price
example in Chapters 4, 5, 6 and 7, the price of the house was said to be “caused” by
the characteristics of the house (e.g. number of bedrooms, number of bathrooms,
etc.). However, in our discussion of omitted variable bias in Chapter 6, it became
clear that multiple regressions could provide a misleading interpretation of the degree
of causality present if important explanatory variables were omitted. Furthermore,
there are many regressions in which it is not obvious which variable causes which.
For instance, in Chapter 10 (Exercise 10.7), you ran a regression of Y = stock prices
in Country A on X = stock prices in Country B. It is possible that stock price move-
ments in Country A cause stock markets to change in Country B (i.e. X causes Y ).
For instance, if Country A is a big country with an important role in the world
economy (e.g. the USA), then a stock market crash in Country A could also cause
panic in Country B. However, if Country A and B were neighboring countries (e.g.
Thailand and Malaysia) then an event which caused panic in either country could
affect both countries. In other words, the causality could run in either direction – or
both! Hence, when using the word “cause” with regression or correlation results a
great deal of caution has to be taken and common sense has to be used.

However, with time series data we can make slightly stronger statements about
causality simply by exploiting the fact that time does not run backward! That is, if
event A happens before event B, then it is possible that A is causing B. However, it
is not possible that B is causing A. In other words, events in the past can cause events
to happen today. Future events cannot.

These intuitive ideas can be investigated through regression models incorporating
the notion of Granger causality. The basic idea is that a variable X Granger causes
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Y if past values of X can help explain Y. Of course, if Granger causality holds this
does not guarantee that X causes Y. This is why we say “Granger causality” rather
than just “causality”. Nevertheless, if past values of X have explanatory power for
current values of Y, it at least suggests that X might be causing Y.

Granger causality is only relevant with time series variables. To illustrate the basic
concepts we will consider Granger causality between two variables (X and Y ) which
are both stationary. A nonstationary case, where X and Y have unit roots but are coin-
tegrated, will be mentioned below.

Granger causality in a simple ADL model

Since we have assumed that X and Y are stationary, the discussion of Chapter 10 sug-
gests an ADL model is appropriate. Suppose that the following simple ADL model
holds:

This model implies that last period’s value of X has explanatory power for the current
value of Y. The coefficient b1 is a measure of the influence of Xt-1 on Yt. If b1 = 0,
then past values of X have no effect on Y and there is no way that X could Granger
cause Y. In other words, if b1 = 0 then X does not Granger cause Y. An alternative
way of expressing this concept is to say that “if b1 = 0 then past values of X have
no explanatory power for Y beyond that provided by past values of Y ”. Since we
know how to estimate the ADL and carry out hypothesis tests, it is simple to test for
Granger causality. That is, OLS estimation of the above regression can be conducted
using any standard spreadsheet or econometric computer package, and the P-value
for the coefficient on Xt-1 examined for significance. If b1 is statistically significant
(e.g. P-value <0.05) then we conclude that X Granger causes Y. Note that the null
hypothesis being tested here is H0: b1 = 0 which is a hypothesis that Granger causal-
ity does not occur. So we should formally refer to the test of b1 = 0 as a test of
Granger non-causality, but we will adopt the more common informal terminology
and just refer to this procedure as a Granger causality test.

Granger causality in an ADL model with p and q lags

Of course, the above ADL model is quite restrictive in that it incorporates only one
lag of X and Y. In general, we would want to select lag lengths using the methods
described in Chapter 10 to work with an ADL( p, q) model of the form:2

Here X Granger causes Y if any or all of b1, . . . , bq are statistically significant. In
other words, if X at any time in the past has explanatory power for the current value

Y t Y Y X X et t p t p t q t q t= + + + + + + + +- - - -a d f f b b1 1 1 1. . . . . . .

Y Y X et t t t= + + +- -a f b1 1 1 1 .
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of Y, then we say that X Granger causes Y. Since we are assuming X and Y do not
contain unit roots, OLS regression analysis can be used to estimate this model. The
P-values of the individual coefficients can be used to determine whether Granger
causality is present. If you were using the 5% level of significance, then if any of the
P-values for the coefficients b1, . . . , bq were less than 0.05, you would conclude that
Granger causality is present. If none of the P-values is less than 0.05 then you would
conclude that Granger causality is not present.

The strategy outlined above is a useful one that can be carried out quite simply in
Excel or any other statistical software package. You are likely to obtain reliable evi-
dence about whether X Granger causes Y by following it. Note, however, that there
is formally a more correct – also more complicated – way of carrying out this test.
Recall that the null hypothesis tested is formally one of Granger non-causality. That
is, X does not Granger cause Y if past values of X have no explanatory power for
the current value of Y. Appropriately, then, we want to test the hypothesis H0:
b1 = b2 = . . . = bq = 0 and conclude that X Granger causes Y only if the hypothesis
is rejected. Note that this test is slightly different from the one proposed in the pre-
vious paragraph. That is, a joint test of b1 = b2 = . . . = bq = 0 is not exactly the same
as q individual tests of bi = 0 for i = 1, . . . , q. We have not discussed how to carry
out tests to determine whether several coefficients are jointly equal to zero. For
readers interested in such joint tests, Appendix 11.1 offers some practical advice.

However, if you choose to follow the simpler strategy outlined above then you
should note the following:

If you find any or all of the coefficients b1, . . . , bq to be significant using t-statistics or the

P-values of individual coefficients, you may safely conclude that X Granger causes Y. If none

of these coefficients is significant, it is probably the case that X does not Granger cause Y.

However, you are more likely to be wrong if you conclude the latter than if you had used the

correct joint test of Granger non-causality.
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Example: Do stock price movements in Country A Granger

cause stock price movements in Country B?

Monthly data on logged stock prices for Countries A and B is located in data
set STOCKPAB.XLS, introduced in Exercise 10.7. If you have done that exercise,
you will recall that stock prices in both countries appear to have unit roots, but
are not cointegrated. However, the differences of these series are stationary and
can be nicely interpreted as stock market returns (exclusive of dividends). We
will use these differenced variables to investigate whether stock returns in
Country A Granger cause those in Country B.

Table 11.1 contains results from OLS estimation of the regression of DY =
stock returns in Country A on four lags of itself, four lags of DX = stock returns
in Country B and a deterministic trend.



Causality in both directions

In many cases, it is not obvious which way causality should run. For instance, should
stock markets in Country A affect markets in Country B or should the reverse hold?
In such cases, when causality may be in either direction, it is important that you check
for it. If Y and X are the two variables under study, in addition to running a regres-
sion of Y on lags of itself and lags of X (as above), you should also run a regression
of X on lags of itself and lags of Y. In other words, you should work with two sep-
arate equations: one with Y being the dependent variable and one with X being the
dependent variable. This is a simple example of a regression model with more than
one equation.

Note that it is possible to find that Y Granger causes X and that X Granger 
causes Y. In the case of complicated models, such bi-directional causality is quite
common and even reasonable. Think, for instance, of the relationship between 
interest rates and exchange rates. It is not unreasonable that interest rate policy may
affect future exchange rates. However, it is also equally reasonable to think that
exchange rates may also affect future interest rate policy (e.g. if the exchange rate is
perceived to be too high now the central bank may be led to decrease interest rates
in the future).
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An examination of the P-values in Table 11.1 indicates that only the deter-
ministic trend and last period’s stock returns in Country A have explanatory
power for present stock returns in Country A. All of the coefficients on the
lags of stock returns in Country B are insignificant. Stock returns in Country B
do not seem to Granger cause stock returns in Country A.3

Table 11.1 ADL model using stock returns in Country A as the dependent variable.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.751 0.710 -1.058 0.292 -2.156 0.654
DYt-1 0.822 0.170 4.850 3.81E - 6 0.486 1.158
DYt-2 -0.041 0.186 -0.222 0.825 -0.409 0.326
DYt-3 0.142 0.186 0.762 0.448 -0.227 0.511
DYt-4 -0.181 0.175 -1.035 0.303 -0.526 0.165
DXt-1 -0.016 0.143 -0.114 0.909 -0.299 0.267
DXt-2 -0.118 0.143 -0.823 0.412 -0.402 0.166
DXt-3 -0.042 0.143 -0.292 0.771 -0.324 0.241
DXt-4 0.038 0.142 0.266 0.791 -0.244 0.319
Time 0.030 0.011 2.669 0.009 0.0077 0.052
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Example: Do stock price movements in Country B Granger

cause stock price movements in Country A?

In the previous example we used data set STOCKPAB.XLS to investigate whether
stock returns in Country B Granger caused stock returns in Country A. We
found that they did not. However, it is possible that causality runs in the 
opposite direction: from Country A to Country B.

Table 11.2 contains results from OLS estimation of the regression of DX =
stock returns in Country B on four lags of itself, four lags of DY = stock returns
in Country A and a deterministic trend.

Here we do find evidence that stock returns in Country A Granger cause
stock returns in Country B. In particular, the coefficient on DYt-1 is highly sig-
nificant, indicating that last month’s stock returns in Country A has strong
explanatory power for stock returns in Country B.

Table 11.2 ADL model using stock returns in Country B as the dependent variable.

Standard Lower Upper
Coefficient error t-stat P-value 95% 95%

Intercept -0.609 0.835 -0.730 0.467 -2.262 1.044
DXt-1 0.053 0.168 0.312 0.755 -0.280 0.386
DXt-2 -0.040 0.169 -0.235 0.814 -0.374 0.294
DXt-3 -0.058 0.168 -0.348 0.728 -0.391 0.274
DXt-4 0.036 0.167 0.215 0.830 -0.295 0.367
DYt-1 0.854 0.200 4.280 3.83E - 5 0.459 1.249
DYt-2 -0.217 0.218 -0.993 0.323 -0.649 0.215
DYt-3 0.234 0.219 1.067 0.288 -0.200 0.668
DYt-4 -0.272 0.205 -1.323 0.188 -0.678 0.135
Time 0.046 0.013 3.514 0.001 0.020 0.072

Exercise 11.1

In the previous examples using the data set STOCKPAB.XLS, we have set p = q =
4 (i.e. four lags of stock returns in both countries). Using County A as the depen-
dent variable and the sequential testing procedure outlined in Chapter 10 select
optimal values for p and q. Discuss whether stock returns in Country B Granger
cause stock returns in Country A using the ADL( p, q) model you have selected.
Repeat the analysis using Country B as the dependent variable.



This brief discussion of Granger causality has focussed on two variables, X and
Y. However, there is no reason why these basic techniques cannot be extended to the
case of many variables. For instance, if we had three variables, X, Y and Z, and were
interested in investigating whether X or Z Granger cause Y, we would simply regress
Y on lags of Y, lags of X and lags of Z. If, say, the lags of Z were found to be 
significant and the lags of X not, then we could say that Z Granger causes Y, but X
does not.

Granger causality with cointegrated variables

Testing for Granger causality among cointegrated variables is very similar to the
method outlined above. Remember that, if variables are found to be cointegrated
(something which should be investigated using unit root and cointegration tests), then
you should work with an error correction model (ECM) involving these variables. In
the case where you have two variables, this is given by:

As noted in Chapter 10, this is essentially an ADL model except for the presence of
the term let-1. Remember that et-1 = Yt-1 - a - bXt-1, an estimate of which can be
obtained by running a regression of Y on X and saving the residuals. Intuitively, X

Granger causes Y if past values of X have explanatory power for current values of
Y. Applying this intuition to the ECM, we can see that past values of X appear in the
terms DXt-1, . . . , DXt-q and et-1. This implies that X does not Granger cause Y if
w1 = . . . = wq = l = 0. Chapter 10 discussed how we can use two OLS regressions to
estimate ECMs, and then use their P-values or confidence intervals to test for causal-
ity. Thus, t-statistics and P-values can be used to test for Granger causality in the same
way as the stationary case. Also, the F-tests described in Appendix 11.1 can be used
to carry out a formal test of H0: w1 = . . . = wq = l = 0.
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Exercise 11.2

Excel file LONGGDP.XLS contains annual data on real GDP per capita for four
of the world’s largest English-speaking countries (USA, UK, Canada and 
Australia) for the years 1870–1993.

(a) Take differences to obtain time series of the growth in GDP per capita for
each of the four countries.

(b) Investigate where GDP growth in any country Granger causes GDP growth
in any other country. For instance, does GDP growth in the USA Granger
cause GDP growth in the UK? Does it in Canada?



In the previous paragraph we described how to test whether X Granger causes Y.
Testing whether Y Granger causes X is achieved by reversing the roles that X and Y

play in the ECM. One interesting consequence of the Granger Representation
Theorem is worth noting here (without the proof). If X and Y are cointegrated then
some form of Granger causality must occur. That is, either X must Granger cause Y
or Y must Granger cause X (or both).
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Exercise 11.3

Use the data on Y = long-term interest rates and X = short term-interest rates
in INTERESTRATES.XLS. Assume (perhaps incorrectly in light of Exercise 10.4)
that Y and X are cointegrated. Test whether Y Granger causes X. Test whether
X Granger causes Y.

Vector autoregressions

Our discussion of Granger causality naturally leads us to an interest in models with
several equations and the topic of Vector Autoregressions or VARs. Before discussing
their popularity and estimation, we will first define what a VAR is. Initially, we will
assume that all variables are stationary. If the original variables have unit roots, then
we assume that differences have been taken such that the model includes the changes
in the original variables (which do not have unit roots). The end of this section will
consider the extension of this case to that of cointegration.

In previous chapters, we used an Excel spreadsheet to produce empirical results.
However, even with the single-equation time series models of Chapters 8–10, spread-
sheets are somewhat awkward (e.g. creating lagged variables involves extensive
copying and pasting of data). When we are working with several equations, it becomes
even more difficult. And some of the features introduced (e.g. variance decomposi-
tions and impulse responses), are extremely difficult to produce using a spreadsheet.
In the following chapter, when considering financial volatility, it becomes yet more
difficult to work with a spreadsheet. Accordingly, in the remainder of this book,
empirical results will be produced using the computer package Stata. This has good
capabilities for working with time series. There are many other good computer pack-
ages with similar capabilities (e.g. MicroFit, E-views, etc.). If you plan on working
extensively with financial time series, it is a good idea to leave the world of spread-
sheets and work with one of these.

When we investigated Granger causality between X and Y, we began with a
restricted version of an ADL( p, q) model with Y as the dependent variable. We 
used it to investigate if X Granger caused Y. We then went on to consider causality
in the other direction, which involved switching the roles of X and Y in the ADL;



in particular, X became the dependent variable. We can write the two equations as
follows:

and

The first of these equations tests whether X Granger causes Y; the second, whether
Y Granger causes X. Note that now the coefficients have subscripts indicating which
equation they are in. For instance, a1 is the intercept in the first equation, and a2

the intercept in the second. Furthermore, the errors now have subscripts to denote
the fact that they will be different in the two equations.

These two equations comprise a VAR. A VAR is the extension of the autoregres-
sive (AR) model to the case in which there is more than one variable under study.
Remember that the AR model introduced in Chapter 9 involved one dependent 
variable, Yt, which depended only on lags of itself (and possibly a deterministic trend).
A VAR has more than one dependent variable (e.g. Y and X ) and, thus, has more
than one equation (e.g. one where Yt is the dependent variable and one where Xt is).
Each equation uses as its explanatory variables lags of all the variables under study (and
possibly a deterministic trend).

The two equations above constitute a VAR with two variables. For instance, you
can see that in the first equation Y depends on p lags of itself and on q lags of X.
The lag lengths, p and q, can be selected using the sequential testing methods dis-
cussed in Chapters 8 through 10. However, especially if the VAR has more than two
variables, many different lag lengths need to be selected (i.e. one for each variable in
each equation). In light of this, it is common to set p = q and use the same lag length
for every variable in every equation. The resulting model is known as a VAR( p) model.
The following VAR(p) has three variables, Y, X and Z:

Note that, in addition to an intercept and deterministic trend, each equation contains
p lags of all variables in study. VAR( p) models with more than three variables can be
obtained in an analogous manner.

Since we assume that all the variables in the VAR( p) are stationary, estimation and
testing can be carried out in the standard way. That is, you can obtain estimates of

Z t Y Y X X

Z Z e

t t p t p t p t p

t p t p t

= + + + + + + +
+ + + +

- - - -

- -

a d f f b b
d d
3 3 31 1 3 31 1 3

31 1 3 3

. . . . . .

. . . .

X t Y Y X X

Z Z e

t t p t p t p t p

t p t p t

= + + + + + + +
+ + + +

- - - -

- -

a d f f b b
d d
2 2 21 1 2 21 1 2

21 1 2 2

. . . . . .

. . . ,

Y t Y Y X X

Z Z e

t t p t p t p p t p

t p t p t

= + + + + + + +
+ + + +

- - - -

- -

a d f f b b
d d
1 1 11 1 1 11 1

11 1 1 1

. . . . . .

. . . ,

X t Y Y X X et t p t p t q t q t= + + + + + + + +- - - -a d f f b b2 2 21 1 2 21 1 2 2. . . . . . .

Y t Y Y X X et t p t p t q t q t= + + + + + + + +- - - -a d f f b b1 1 11 1 1 11 1 1 1. . . . . . ,

Regression with time series variables with several equations 191



coefficients in each equation using OLS. P-values or t-statistics will then allow you to
ascertain whether individual coefficients are significant. You can also use the mater-
ial covered in Appendix 11.1 to carry out more complicated F-tests. However, as we
have stressed above, there are many software packages that allow you to work with
VARs in an easier fashion (e.g. Stata, MicroFit or E-views) than any spreadsheet.

VARs are, then, easy to use (especially if you have an appropriate computer soft-
ware package). However, you may be wondering why we would want to work with
such models. One reason has to be Granger causality testing. That is, VARs provide
a framework for testing for Granger causality between each set of variables. However,
there are many other reasons for why we would want to use them that we should also
mention. For instance, a point which we will discuss below is that VARs are often
used for forecasting. However, financial researchers also use VARs in many other con-
texts. This is not a book that discusses financial theory, so exact derivations of the
financial theories motivating use of VARs will not be provided. But models involv-
ing so-called present value relationships often work with VARs using the (log) 
dividend-price ratio and dividend growth. VARs have been used to investigate 
issues relating to the term structure of interest rates (using interest rates of various
maturities, interest rate spreads, etc.), intertemporal asset allocation (using returns on
various risky assets), the rational valuation formula (using the dividend-price ratio and
returns), the interaction of bond and equity markets (using stock and bond return
data), etc. Even if you do not understand details of the previous sentences, the point
to note is that VARs have been used in a wide variety of financial problems. In the
following material, we work through one particularly popular financial VAR.

192 Analysis of financial data

Example: What moves the stock and bond markets?

An influential paper in the Journal of Finance in 1991 (“What moves the stock
and bond markets? A variance decomposition for long-term asset returns” by
Campbell and Ammer) investigated the factors which influenced the stock and
bond markets in the long run. Without going into the theoretical derivations,
suffice it to note here that the authors develop a model where, at a given point
in time, unexpected movements in excess stock returns should depend on
changes in expectations (i.e. news) about future dividend flows, future excess
stock returns and future real interest rates. Similarly, current unexpected move-
ments in excess bond returns should depend on changes in expectations (i.e.
news) about future inflation, future interest rates and future excess bond returns.
The question of interest is which of these various factors is most important in
driving the stock and bond markets. The authors conclude that news about
future excess stock returns is the most important factor in driving the stock
market and news about future inflation is the most important factor in driving
the bond market.



Regression with time series variables with several equations 193

A key part of this model (and many similar models) is that the researcher 
has to distinguish between “expected” and “unexpected” values of variables.
To show how this distinction is operationalized, let ert be the excess return on
the stock market at time t. Consider the investor at time t - 1 trying to make
investment decisions. At time t - 1, she will not know exactly what ert will be.
However, she will have some expectation about what it might be. Let us denote
the expectation at time t - 1 of what the excess stock return at time t will be
by Et-1(ert). (We remind the reader that expected values were defined and dis-
cussed at the end of Chapter 2. Please refer back to this material if you have
forgotten what an expected value is.) As discussed in the previous paragraph,
unexpected movements in stock and bond markets are crucial to the underly-
ing financial theory. These are defined as ert - Et-1(ert) (i.e. unexpected things
are defined as the difference between what actually happened and what was
expected).

Even though we have not spelled out all the details, we hope the previous
paragraph has motivated why expectations such Et-1(ert) appear in financial
models. VARs are frequently used to model such expectations. That is, since the
right-hand side of an equation in a VAR only contains variables dated t - 1 or
earlier, it can be thought of as reflecting information available to the investor
at time t - 1. So if we have an equation where ert is the dependent variable we
can use the fitted value from this regression (see Chapter 4 for a discussion of
fitted values) as an estimate of Et-1(ert). Using this informal motivation for why
VARs are useful, and noting that some variables (e.g. dividend-price ratios) have
been found useful for long-run prediction of stock and bond markets, the
authors of the paper end up working with a VAR involving the following six
variables:4

1. er is the excess stock return.
2. r is the real interest rate.
3. dy is the change in the return on a short-term bond.
4. s is the yield spread (difference in yields between a 10-year and a two-month

bond).
5. dp is the log of the dividend-price ratio.
6. rb is the relative bill rate (a return on a short-term bond relative to the average

returns over the last year).

Monthly observations from December 1947 through February 1987 on all of
these variables are available in the data set VAR.XLS.

We should mention that the authors did extensive testing to confirm that 
all of these variables are stationary. In general, before carrying out an analysis
using time series data, you must conduct unit root tests. Remember that, if
unit roots are present but cointegration does not occur, then the spurious
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regression problem exists. In this case, you should work with differenced data.
Alternatively, if unit roots exist and cointegration does occur, then you will have
important information that the series are trending together. In the present case,
tests indicate that we can accept the hypothesis that all variables are stationary.

Exercise 11.4

Use the data on all the variables in VAR.XLS. Test for unit roots in each of the
variables.

Table 11.3 Estimates from a VAR(1) with er, r, dy, s, dp and rb as dependent variables 
(P-values in parentheses).

Dependent variable

ert rt dyt st dpt rbt

Interc. -1.593 0.678 0.116 0.066 -0.007 0.082
(0.053) (0.354) (0.362) (0.562) (0.635) (0.516)

ert-1 -0.018 -0.099 0.013 -0.004 -0.043 0.014
(0.696) (0.041) (0.064) (0.573) (0.000) (0.042)

rt-1 0.033 0.473 -0.012 0.007 -0.0004 -0.011
(0.466) (0.000) (0.089) (0.237) (0.608) (0.104)

dyt-1 -0.640 0.416 0.067 -0.045 0.003 0.096
(0.056) (0.161) (0.196) (0.326) (0.585) (0.062)

st-1 0.318 0.215 0.075 0.862 0.004 0.100
(0.173) (0.299) (0.037) (0.000) (0.407) (0.006)

dpt-1 0.425 -0.087 -0.048 0.026 1.005 -0.049
(0.012) (0.561) (0.066) (0.261) (0.000) (0.061)

rbt-1 -0.357 0.064 -0.011 -0.017 1.56 0.888
(0.174) (0.783) (0.778) (0.643) (0.119) (0.000)

Table 11.3 presents results from estimation of a VAR(1). Note that this table is
in a slightly different format from previous ones. Since there are six variables in
our VAR (i.e. er, r, dy, s, dp and rb), there are six equations to estimate. We have
put results for all equations in one table. Each equation regresses a dependent
variable on one lag of all the variables in the VAR. To save space, we have
included only the OLS estimate and P-value of each coefficient with the P-value
being in parentheses below the estimate.

If we examine the significant coefficients (i.e. those with P-value less than
0.05), some interesting patterns emerge. There are not too many significant coef-
ficients – it is often hard to predict financial variables. However, it can be seen



Lag length selection in VARs

The results in the previous example are based on a VAR(1). That is, we set p = 1 and
used one lag of each variable to explain the dependent variable. In general, of course,
we might want to set p to values other than one. The literature on lag length selec-
tion in VARs is voluminous and most of the criteria suggested are too complicated
to be easily calculated using a spreadsheet such as Excel. However, more sophisti-
cated statistical packages do automatically calculate many criteria for lag length. For
instance, Stata calculates several information criteria with names like Akaike’s

information criterion (AIC), the Schwarz Bayes information criterion (SBIC)

and the Hannan–Quinn information criterion (HQIC). A full explanation of
these would require concepts beyond those covered in this book. However, for use
in practice, all you need to know is that these can be calculated for VARs for every
lag length up to pmax (the maximum possible lag length that is reasonable). You then
select the lag length which yields the smallest value for your information criterion.5

In addition, the t-stats and P-values we have used throughout this book provide
useful information on lag length.

If we estimate VAR( p) models for p = 1, 2, 3 and 4 using the data in VAR.XLS we
obtain the results shown in Table 11.4.

Note that the SBIC and HQIC select VAR(2)’s since the smallest values for these
criteria occur at this lag length. However, the AIC selects a VAR(4). This is the kind
of conflict which often occurs in empirical practice: one criterion (or hypothesis test)
indicates one thing whereas another similar criterion indicates something else. There
is nothing you can do when this happens other than honestly report that this has
occurred. There are statistical reasons (which we will not discuss) for thinking that
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that there are some significant explanatory variables. For instance, the last
month’s dividend-price ratio does have significant explanatory power for excess
stock returns this month. Last month’s yield spread does have explanatory power
for the change in short-term bond returns.

Some financial researchers would simply report the results from the VAR as
shedding light on the inter-relationships between key financial variables.
However, others would use results from this VAR as a first step in an analysis
of what moves the stock and bond markets. A common method of doing this
is through something called a variance decomposition. It is difficult to explain
variance decompositions without using concepts beyond the scope of this book.
The interested reader will find an informal discussion of variance decomposi-
tions in Appendix 11.2 at the end of this chapter. To give the reader a little flavor
of the kinds of questions variance decompositions can answer, note that, in the
Campbell and Ammer paper, the authors use them to make statements such that
it “attributes only 15% of the variance of stock returns to the variance of news
about future dividends, and 70% to news about future excess returns”.



the AIC might tend to choose too long a lag length. Accordingly, most researchers,
facing the results in the tables, would be inclined to simply work with a VAR(2). For
the sake of brevity, we will not present coefficients for the VAR(2) as this model
would involve six equations with each equation having 13 explanatory variables (e.g.
two lags of each of six variables plus the intercept). To present all these estimates
would require a large table.
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Table 11.4 Information criteria for VAR(p) for different 
lag lengths.

Lag length AIC SBIC HQIC

p = 1 8.121 8.267 8.492
p = 2 7.084 7.355 7.774
p = 3 7.026 7.424 8.037
p = 4 6.934 7.458 8.266

Exercise 11.5

Estimate a VAR(2) using the data in VAR.XLS. Which explanatory variables are
significant? Discuss Granger causality among all the variables in the model.

Exercise 11.6

Excel file LONGGDP.XLS, as you will recall, contains annual data on real GDP
per capita for four of the largest English-speaking countries (USA, UK, Canada
and Australia) for the years 1870–1993. Take differences to obtain time series
of the growth in GDP per capita for each of the four countries. Construct a
VAR using this data.

Forecasting with VARs

We have said relatively little in the book so far about forecasting, despite the fact that
this is an important activity of financial researchers. There are two main reasons for
omitting the topic. First, the field of forecasting is enormous. Given the huge volume
of research and issues to consider, it is impossible to do justice to the field in a book
like this.6 Second, basic forecasting using the computer is either very easy or very hard,
depending on what computer software you have. To be precise, many computer pack-
ages (e.g. Stata or MicroFit) have forecasting facilities that are simple to use. Once
you have estimated a model (e.g. a VAR or an AR), you can forecast simply by adding



an appropriate option to an estimation command. In other words, many computer
packages can allow you to undertake basic forecasting without a deep knowledge of
the topic. However, spreadsheets such as Excel typically do not have forecasting capa-
bilities for the models used in this book. It is possible to calculate forecasts, but it is
awkward, involving extensive typing of formulae.

In light of these issues, we will offer only a brief introduction to some of the prac-
tical issues and intuitive ideas relating to forecasting. All our discussion will relate to
forecasting with VARs but it is worth noting that the ideas also relate to forecasting
with univariate time series models. After all, an AR model is just a VAR with only one
equation.

Forecasting is usually done using time series variables. The idea is that you use your
observed data to predict what you expect to happen in the future. In more technical
terms, you use data for periods t = 1, . . . , T to forecast periods T + 1, T + 2, etc.

To provide some intuition for how forecasting is done, consider a VAR(1) involv-
ing two variables, Y and X:

and

You cannot observe YT+1 but you want to make a guess of what it is likely to be. Using
the first equation of the VAR and setting t = T + 1, we obtain an expression for YT+1:

This equation cannot be directly used to obtain YT+1 since we don’t know what e1T+1

is. In words, we don’t know what unpredictable shock or surprise will hit the economy
next period. Furthermore, we do not know what the coefficients are. However, if we
ignore the error term (which cannot be forecast since it is unpredictable) and replace
the coefficients by their estimates we obtain a forecast which we denote as T+1:

If you are working in a spreadsheet such as Excel, note that everything in the formula
for T+1 can be taken from either the original data or from the output from the regres-
sion command. It is conceptually easy just to plug in all the individual numbers (i.e.
the estimates of the coefficients and YT, XT and T + 1) into a formula to calculate 

T+1. A similar strategy can be used to obtain T+1. You can see how, in practice, cal-
culating these forecasts in this way can be awkward and time consuming. Hence, if
you plan on doing more forecasting, we stress that it is preferable to avoid spread-
sheets such as Excel and work with specialized statistical packages such as Stata or
MicroFit.

The previous paragraph described how to forecast one period into the future. We
can use the same strategy for two periods, provided that we make one extension. In
the one period case, we used XT and YT to create T+1 and T+1. In the two periodX̂Ŷ

X̂Ŷ

Ŷ
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case, T+2 and T+2 depend on YT+1 and XT+1. But since our data only runs until period
T, we do not know what YT+1 and XT+1 are. Consequently, we replace YT+1 and XT+1

by T+1 and T+1. That is, use the relevant equation from the VAR, ignore the error,
replace the coefficients by their estimates and replace past values of the variables that
we do not observe by their forecasts. In a formula:

The above equation can be calculated in a spreadsheet, although somewhat 
awkwardly. T+2 can be calculated in a similar manner using the formula:

We can use the general strategy of ignoring the error, replacing coefficients by their
estimates and replacing lagged values of variables that are unobserved by forecasts,
to obtain forecasts for any number of periods in the future for any VAR(p).

The previous discussion demonstrated how to calculate point estimates of fore-
casts. Of course, in reality, what actually happens is rarely identical to your forecast.
In Chapter 5, we discussed a similar issue. There we pointed out that OLS provides
estimates only of coefficients, and that these will not be precisely correct. For this
reason, in addition to estimates, we also recommended that you present confidence
intervals. These reflect the level of uncertainty about the coefficient estimate. When
forecasting, confidence intervals can also be calculated, and these can be quite infor-
mative. It is increasingly common for government agencies, for instance, to present
confidence intervals for their forecasts. For instance, the Bank of England can be
heard on occasion to make statements of the form: “Our forecast of inflation next
year is 1.8%. We are 95% confident that it will be between 1.45% and 2.15%”. Many
computer packages automatically provide confidence intervals and, thus, you do not
need to know their precise formula when forecasting. If you are using a spreadsheet,
the formula is fairly complicated and it would be awkward to calculate, which is why
we do not present it here.

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .X T Y XT T T+ + += + +( )+ +2 2 2 21 1 21 12a d f b

X̂

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .Y T Y XT T T+ + += + +( )+ +2 1 1 11 1 11 12a d f b

X̂Ŷ

X̂Ŷ
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Exercise 11.7

It is recommended that you do this question and others involving forecasting
only if you have access to a computer package that is capable of doing fore-
casts. If you are working with a spreadsheet such as Excel this question will be
difficult.

Use the variables er, r, dy, s, dp and rb from VAR.XLS which contains data until
February 1987.

(a) Using data through December 1986 and a VAR( p) for various values of
p (e.g. p = 1, 3, 4) construct forecasts for all variables for January and 



Vector autoregressions with cointegrated variables

In the preceding discussion of VARs we assumed that all variables are stationary. If
some of the original variables have unit roots and are not cointegrated, then the ones
with unit roots should be differenced and the resulting stationary variables should be
used in the VAR. This covers every case except the one where the variables have unit
roots and are cointegrated.

Recall that in this case in the discussion of Granger causality, we recommended
that you work with an ECM. The same strategy can be employed here. In particular,
instead of working with a vector autoregression (VAR), you should work with a vector
error correction model (VECM). Like the VAR, the VECM will have one equation
for each variable in the model. In the case of two variables, Y and X, the VECM is:

and

As before, et-1 = Yt-1 - a - bXt-1. Note that the VECM is the same as a VAR with
differenced variables, except for the term et-1. An estimate of this error correction
variable can be obtained by running an OLS regression of Y on X and saving the
residuals. We can then use OLS to estimate ECMs, and P-values and confidence inter-
vals can be obtained. Lag length selection and forecasting can be done in a similar
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February 1987. Are these forecasts close to the actual values of these vari-
ables in these months?

(b) In part (a), data from December 1947 through December 1986 was used to
estimate the VAR, which was then used to forecast January and February
1987. Try forecasting for longer and longer periods. For instance, try using
data through the end of 1985 to forecast 1986 and 1987 data. Now try using
data through the end of 1984 to forecast 1985, 1986 and 1987 data, etc.
Discuss your results. Do your results suggest that VARs are better at fore-
casting a short period ahead than a long period?

Exercise 11.8

Using the data in Exercise 11.6 and the VAR constructed therein, carry out a
forecasting exercise for GDP growth for the four included countries. Experi-
ment with various forecast horizons. Does the VAR forecast well?



fashion to the VAR, with the slight added complication that forecasts of the error
correction term, et, must be calculated. However, this is simple using OLS estimates
of a and b and replacing the error, et, by the residual ut. Furthermore, many com-
puter packages such as Stata or MicroFit will do estimation, testing and forecasting
in VECMs automatically. We have mentioned many financial examples where coin-
tegration occurs (see Chapter 10) and will not repeat this material here. However, we
will go through an extended example shortly.

Of course, as with any of the models used in this chapter, you should always do
unit root tests to see if your variables are stationary or not. If your variables have
unit roots, then it is additionally worthwhile to test for cointegration. In the previous
chapter, we introduced a test for cointegration based on checking whether there is a
unit root in the residuals from the cointegrating regression. However, there is a more
popular cointegration test called the Johansen test. To explain this test would require
a discussion of concepts beyond the scope of this book. However, if you have a soft-
ware package (e.g. Stata) which does the Johansen test, then you can use it in prac-
tice. Accordingly, we offer a brief intuitive description of this test.

The first thing to note is that it is possible for more than one cointegrating rela-
tionship to exist if you are working with several time series variables (all of which
you have tested and found to have unit roots). To be precise, if you are working with
M variables, then it is possible to have up to M - 1 cointegrating relationships (and,
thus, up to M - 1 cointegrating residuals included in the VECM). For instance, in
Chapter 10 we mentioned a financial theory arguing that the cay variables (con-
sumption, assets and income) are cointegrated. As we shall see below, there probably
is just one cointegrating relationship between these variables. That is, c, a and y all
have unit roots, but ct - a - b1at - b2yt is stationary. However, in theory it would have
been possible for there to be two cointegrating relationships (e.g. if ct - yt and at - yt

were both stationary). Thus, it is often of interest to test, not simply for whether coin-
tegrating is present or not, but for the number of cointegrating relationships.

The Johansen test can be used to test for the number of cointegrating relation-
ships using VECMs. For reasons we will not explain, the “number of cointegrating
relationships” is referred to as the “cointegrating rank”. The details of the Johansen
test statistic are quite complicated. However, like any hypothesis test, you can compare
the test statistic to a critical value and, if the test statistic is greater than the critical
value, you reject the hypothesis being tested. Fortunately, many software packages
(e.g. Stata) will calculate all these numbers for you. We will see how this works in the
following example.

Before working through this example, note that when you do the Johansen test you
have to specify the lag length and the deterministic trend term. The former we have
discussed before. That is, lag length can be selected using information criteria as
described above. With VECMs it is possible simply to put an intercept and/or deter-
ministic trend in the model (as we have done in the equations above – see the terms
with coefficients j and d on them). However, it is also possible to put an intercept
and/or deterministic trend actually in the cointegrating residual (e.g. if you say ct - a
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- b1at - b2yt is the cointegrating residual you are putting an intercept into it).
The Johansen test varies slightly depending on the exact configuration of determin-
istic terms you use, so you will be asked to specify these before doing the Johansen
test.
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Example: Consumption, aggregate wealth and 

expected stock returns

In an influential paper in the Journal of Finance in 2001, “Consumption, aggre-
gate wealth and expected stock returns”, Lettau and Ludvigson present finan-
cial theory arguing that the cay variables should be cointegrated and the
cointegrating residual should be able to predict excess stock returns. They then
present empirical evidence in favor of their theory. In a subsequent paper
(“Understanding trend and cycle in asset values: Reevaluating the wealth effect
on consumption” in the American Economic Review in 2004), using the cay data,
they build on this argument using VECMs and present variance decompositions
which shed light on their theory (we will discuss the variance decomposition in
Appendix 11.2).

We will not repeat the theory (nor will we consider the forecasting aspect of
their paper). However, we stress that their work uses all the tools we have been
developing in this chapter: testing for cointegration, estimation of a VECM and
variance decompositions. We will investigate the presence of cointegration here
using US data from 1951Q4 through 2003Q1 on c which is consumption (for-
mally it is the log of real per capita expenditures on nondurables and services
excluding shoes and clothing); a which is our measure of assets (formally it is
the log of a measure of real per capita household net worth including all finan-
cial and household wealth as well as consumer durables); and y which is the log
of after-tax labor income. This data is available in CAY.XLS.

Unit root tests indicate that all of these variables have unit roots. If we do
the Johansen test using a lag length of one and restricting the deterministic term
to allow for intercepts only (i.e. no deterministic trends such as those with co-
efficients d in the previous equations are allowed for), we get the results in Table
(using Stata).

Table 11.5 Johansen test for cointegration using cay data.

Rank Trace statistic 5% Critical value

0 37.27 29.68
1 6.93 15.41
2 0.95 3.76
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How should you interpret this table? Note first that “Trace statistic” is the
name of the test statistic used in the Johansen test and “Rank” indicates the
number of cointegrating relationships with Rank = 0 indicating cointegration is
not present. With the Johansen test, the hypothesis being tested is always a
certain cointegrating rank with the alternative hypothesis being that cointegrat-
ing rank is greater than hypothesis being tested.

If we compare the Trace statistic to its critical value we can see, for Rank =
0, that the test statistic is greater than the 5% critical value. This means we can
reject the hypotheses that Rank = 0 at the 5% level of significance (in favor of
the hypothesis that Rank ≥ 1). Thus, the Johansen test indicates that cointegra-
tion is present. However, if we look at the row with Rank = 1 we see that the
test statistic is less than the critical value. Thus, we can accept that hypothesis
that Rank = 1 (and are not finding evidence in favor of Rank ≥ 2). Thus, we are
finding evidence that Rank = 1 (with this evidence, the information in the last
row of the table is not relevant). As expected by Lettau and Ludvigson, we are
finding evidence that one cointegrating relationship exists in this data set.

Armed with the information that one cointegrating relationship seems to
exist, you can then (following Lettau and Ludvigson) calculate the cointegrat-
ing residual and investigate whether this has predictive power for expected stock
returns. Alternatively, you could use this information to specify a VECM with
one cointegrating relationship (and, thus, one error correction term). Following
Lettau and Ludvigson, you could then do a variance decomposition to investi-
gate further issues in financial economics (see Appendix 11.2 for more details).

Exercise 11.9

For this question, use the data on spot and forward exchange rates in FOREX.XLS.

(a) Starting with pmax = 4, select a lag length for the VECM and estimate the
VECM.

(b) Using the VECM from part (a), carry out a forecasting exercise. Experiment
with various forecast horizons. Does the VECM forecast well?

Exercise 11.10

Use the data on Y = long-term interest rates and X = short-term interest rates
in INTERESTRATES.XLS.

(a) Assume (perhaps incorrectly in light of Exercise 10.4) that Y and X are coin-
tegrated. Repeat the steps in Exercise 11.9 to carry out a forecasting exercise.
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(b) Now assume that Y and X have unit roots but are not cointegrated. Con-
struct a VAR using differenced data (i.e. DY and DX ) and carry out a fore-
casting exercise.

(c) Compare results from part (a) and (b). What effect does assuming (possi-
bly incorrectly) cointegration have on forecasting performance?

Exercise 11.11

Use the data from CAY.XLS.

(a) Test for unit roots in all the variables in this data set.
(b) Test for cointegration in these variables using the Engle–Granger test from

Chapter 10. Does this test yield the same finding as the Johansen test?
(c) In Table 11.5, the Johansen test was done with one lag. Does the finding of

the Johansen test differ if you use two lags? Three lags? Four lags?
(d) Discuss the issue of lag length selection in this data set using information

criteria.

Chapter summary

1. X Granger causes Y if past values of X have explanatory power for Y.
2. If X and Y are stationary, standard statistical methods based on an ADL

model can be used to test for Granger causality.
3. If X and Y have unit roots and are cointegrated, statistical methods based

on an ECM can be used to test for Granger causality.
4. Vector autoregressions, or VARs, have one equation for each variable being

studied. Each equation chooses one variable as the dependent variable. The
explanatory variables are lags of all the variables under study.

5. VARs are useful for forecasting, testing for Granger causality or, more gen-
erally, understanding the relationships between several series.

6. If all the variables in the VAR are stationary, OLS can be used to estimate
each equation and standard statistical methods can be employed (e.g. P-
values and t-statistics can be used to test for significance of variables).

7. If the variables under study have unit roots and are cointegrated, a variant
on the VAR called the Vector Error Correction Model, or VECM, should
be used.

8. The Johansen test is a very popular test for cointegration included in many
software packages.



Appendix 11.1: Hypothesis tests involving 

more than one coefficient

In Chapters 5 and 6 we discussed the F-statistic, which was used for testing the
hypothesis R2 = 0 in the multiple regression model:

We discussed how this was equivalent to testing H0 : b1 = . . . = bk = 0 (i.e. whether all
the regression coefficients are jointly equal to zero). We also discussed testing the 
significance of individual coefficients using t-statistics or P-values.

However, we have no tools for testing intermediate cases (e.g. in the case k = 4,
we might be interested in testing H0 : b1 = b2 = 0). Such cases arose in our discussion
of Granger causality (e.g. we had a regression model with four lags of stock returns
in Country A, four lags of stock returns in Country B and a deterministic trend and
we were interested in testing whether the coefficients on the four lags of stock returns
in Country B were all zero). The purpose of this appendix is to describe a procedure
and a rough rule of thumb for carrying out these kind of tests.

The F-statistic described in Chapter 5 is more properly referred to as an F-
statistic since it is only one of an enormous class of test statistics that take their crit-
ical values from statistical tables for the F-distribution. In this book, as you know by
now, we have provided little statistical theory, and do not describe how to use statis-
tical tables. However, if you plan to do much work in Granger causality testing, you
are well-advised to study a basic statistics or econometrics book to learn more about
the statistical underpinnings of hypothesis testing.

To understand the basic F-testing procedure we introduce a distinction between
unrestricted and restricted regression models. That is, most hypotheses you would
want to test place restrictions on the model. Hence, we can distinguish between the
regression with the restrictions imposed and the regression without. For instance, if
the unrestricted regression model is:

and you wish to test the hypothesis H0 : b2 = b4 = 0, then the restricted regression
model is:

The general strategy of hypothesis testing is that a test statistic is first calculated and
then compared to a critical value. If the test statistic is greater than the critical value
then you reject the hypothesis; otherwise, you accept the hypothesis. In short, there
are always two components to a hypothesis testing procedure: a test statistic and a
critical value.

Here the test statistic is usually called the F-statistic and is given by:

Y X X e= + + +a b b1 1 3 3 .

Y X X X X e= + + + + +a b b b b1 1 2 2 3 3 4 4 ,

Y X X X ek k= + + + + +a b b b1 1 2 2 . . . .
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where R2
U and R2

R are the R2s from the unrestricted and restricted regression models,
respectively. J is the number of restrictions (e.g. J = 2 in our example since b2 = 0 and
b4 = 0 are two restrictions). T is the number of observations and k is the number of
explanatory variables in the unrestricted regression (including the intercept).

Note that the F-statistic can be obtained by running the unrestricted and restricted
regressions (e.g. regress Y on X1, X2, X3 and X4 to get R2

U, then regress Y on X1 and
X3 to get R2

R) and then calculating the above formula using a spreadsheet or calcula-
tor. Many specialist statistics packages (e.g. Stata or MicroFit) will calculate the F-
statistic for you automatically if you specify the hypothesis being tested.

Obtaining the critical value with which to compare the F-statistic is a more prob-
lematic procedure (although some software packages will provide a P-value auto-
matically). Formally, the critical value depends on T - k and J. Most econometrics or
statistics textbooks will contain statistical tables for the F-distribution which will
provide the relevant critical values. Table 11.6 contains critical values which you may
use as a rough rule of thumb if T - k is large.

For instance, if you have a large number of observations, are testing J = 2 restric-
tions (i.e. b2 = 0 and b4 = 0), and you want to use the 5% level of significance, then
you will use a critical value of 3.00 with which to compare the F-statistic.

To aid in interpretation, note that the case J = 1 has not been included since testing
only one restriction is something that the t-statistic already does. Note also that the
critical values always get smaller as the number of restrictions increases. This fact can
be used to approximate critical values for values of J that are not included in Table
11.6.

For instance, the critical value for testing J = 7 restrictions will lie somewhere
between the critical values for the restrictions J = 5 and J = 10 given in Table 11.6.
In many cases, knowing that the correct critical value lies between two numbers will
be enough for you to decide whether to accept or reject the hypothesis. Consequently,
even though Table 11.6 does not include every possible value for J, you may be able
to use it if J differs from those above.

Formally, the critical values in the previous table are correct if T - k is equal to
infinity. The correct critical values for T - k > 100 are quite close to these. To give

f
R R J

R T k

U R

U

=
-( )

-( )

2 2

2
,
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Table 11.6 Critical values for F-test if T - k is large.

Significance
level J = 2 J = 3 J = 4 J = 5 J = 10 J = 20

5% 3.00 2.60 2.37 2.21 1.83 1.57
1% 4.61 3.78 3.32 3.02 2.32 1.88



you an idea of how bad an error may be made if T - k < 100, examine Table 11.7,
which gives the correct critical values if T - k = 40.

As you can see, these critical values are all somewhat larger than those given in the
table for T - k equal to infinity. You may want to use these if your value for T - k is
about 40. However, we also report them here to get some idea of the error that may
result if you use the large sample critical values. For instance, if J = 2, T - k = 40
and you obtain an F-statistic of 4 then using either table is fine: both state that the
hypothesis should be rejected at the 5% level of significance. However, if the F-
statistic were 3.1 you would incorrectly reject it using the large sample table.

In summary, you can safely use the methods and tables given in this appendix in
the following cases:

1. If your sample size is large relative to the number of explanatory variables (e.g.
T - k > 100) the large sample table above is fine.

2. If T - k is approximately 40 the T - k = 40 table is a safe choice.
3. If T - k is neither large, nor approximately 40, you are still safe using T - k = 40

table, provided your test statistic is not close to the critical value and provided 
T - k is not extremely small (e.g. T - k < 10).

Generally speaking, so long as you have either a large number of data points or your
data does not fall into one of these “borderline” cases, you should not be led astray
by using the methods outlined in this appendix.
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Table 11.7 Critical values for F-test if T - k is 40.

Significance
level J = 2 J = 3 J = 4 J = 5 J = 10 J = 20

5% 3.23 2.92 2.69 2.53 2.08 1.84
1% 5.18 4.31 3.83 3.51 2.80 2.37

Example: Do stock returns in Country A Granger cause stock

returns in Country B? (continued from page 187)

In the body of this chapter, we carried out Granger causality tests using stock
returns in two countries. We found that stock returns in Country B did not
Granger cause stock returns in Country A, but that stock returns in Country A
did Granger cause stock returns in Country B. Here, we will investigate whether
these conclusions still hold by carrying out the correct F-tests for Granger
causality.

Consider first whether stock returns in Country B Granger cause stock
returns in Country A. In the body of the chapter we use the following un-



Appendix 11.2: Variance decompositions

As the examples in this chapter have shown, variance decompositions are popular in
finance. To fully understand what they are would require concepts beyond the scope
of this book (e.g. matrix algebra). However, some statistical software packages allow
you to calculate variance decompositions in a fairly straightforward manner. Accord-
ingly, with a good software package, some intuition and a thorough understanding of
the financial problem you are working on, it should be possible for you to do vari-
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restricted model where Y = stock returns in Country A and X = stock returns
in Country B:

T = 1287 and k = 10 (i.e. p = q = 4 plus we have the deterministic trend in the
model). OLS estimation of this model yields R2

U = 0.616.
The hypothesis that Granger causality does not occur is H0 : b1 = . . . = b4 =

0 which involves 4 restrictions; hence J = 4. The restricted regression model is:

OLS estimation of this model yields R2
R = 0.613.

Using these numbers we calculate that the F-statistic is 0.145. Since T - k =
118 and is large, we can compare 0.145 to a critical value of 2.37. Since 0.145
< 2.37 we cannot reject the hypothesis at the 5% level of significance. Accord-
ingly, we accept the hypothesis that stock returns in Country B do not Granger
cause stock returns in Country A.

To test whether stock returns in Country A Granger cause stock returns in
Country B we repeat the steps above except that now the dependent variable
refers to Country B and the explanatory variable refers to Country A. If we 
use OLS to estimate the restricted and unrestricted regressions, we obtain 
R2

U = 0.605 and R2
R = 0.532. Note that the other elements in the formula for the

F-statistic do not change. Plugging these numbers into the equation for the F-
statistic yields f = 33.412, which is much larger than either the 1% or 5% criti-
cal values. In this case, we can safely reject the hypothesis that b1 = . . . = b4 =
0 and conclude that stock returns in Country A do Granger cause stock returns
in Country B.

Note that the findings that stock returns in Country B do not Granger cause
stock returns in Country A but that stock returns in Country A do Granger
cause stock returns in Country B, are exactly the same as given in the body of
the chapter. In general, however, the results from joint hypothesis testing may
differ from individually testing each hypothesis.

Y t Y Y et t t t= + + + + +- -a d f f1 1 4 4. . . .

Y t Y Y X X et t t t t t= + + + + + + + +- - - -a d f f b b1 1 4 4 1 1 4 4. . . . . . .



ance decompositions in practice even without matrix algebra. Furthermore, some
intuition should help you to read and understand empirical results presented in many
papers in finance. The purpose of this appendix is to provide such intuition about
variance decompositions.

In the example “What moves the stock and bond markets?” discussed in the body
of the chapter, recall that the underlying paper developed a model where unexpected
movements in excess stock returns should depend on changes in expectations about
future dividend flows and future excess stock returns (among other things). A key
question was which of these various factors is most important in driving the stock
markets. The authors’ model is much more sophisticated, but a simplified version
could be written as:

where uer is the component capturing unexpected movements in expected returns,
newsd is the component reflecting future news about dividends and newser is the com-
ponent reflecting future news about expected returns. Do not worry where these
components come from other than to note that they can be calculated using the data
and the VAR coefficients.

Financial researchers are interested in the relative roles played by newsd and newser

in explaining uer. One way of measuring this is through variances. Remember (see
Chapter 2) that, as its name suggests, the variance is a measure of the variability in a
variable. We motivated the regression R2 (see Chapter 4) as measuring the proportion
of the variability in the dependent variable that could be explained by the explana-
tory variables. Here we can do something similar. That is, we can measure the pro-
portion of the variability of uer that can be explained by newsd (or newser) and use this
as a measure of the role played by newsd (or newser) in explaining uer. This is a simple
example of a variance decomposition.

Formally, if newsd and newser are independent of one another8 we have:

If we divide both side of this equation by var(uer) then we get:

The two terms on the right-hand side of this equation can be interpreted as measures
of the relative roles of news about dividends and news about excess returns. For
instance, the first of them can be interpreted as: “The proportion of the variability
in unexpected excess returns that can be explained by news about future dividends is
var(newsd )/var(uer)” and it can be calculated using the VAR.

The Lettau and Ludgvigson example using the cay data allows us to describe
another common sort of variance decomposition. The empirical puzzle this paper is
investigating is why the huge swings in stock markets over the last decade (e.g. the

1 = ( )
( ) + ( )

( )
var
var

var
var

.
newsd

uer

newser

uer

var var var .uer newsd newser( ) = ( )+ ( )

uer newsd newser= +
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dot.com boom followed by the bust) did not have larger effects on consumption. The
VECM they estimate, along with a variance decomposition, indicates a sensible story:
that many fluctuations in the stock market were treated by households as being tran-
sitory and these did not have large effects on their consumption. Only permanent
changes in wealth affected consumption. This kind of variance decomposition is a
so-called “permanent-transitory decomposition”.

Remember (see Chapter 9) that unit root variables have a long memory property.
Errors in unit root variables tend to have permanent effects. However, the cointe-
grating error is, by definition, stationary. This can be interpreted as implying the coin-
tegrating error will have only a transitory effect on any of the variables. In a VECM,
our variables have unit roots in them, but the cointegrating error is stationary. Thus,
it has some errors which have permanent effects and others which have transitory
effects. Using the VECM, you can figure out these permanent and transitory com-
ponents and do a variance decomposition in the same way as described above.

That is, a simplified version of such a model would imply:

where permanent and transitory are the permanent and transitory components of assets
(denoted by a, which includes stock market investments). As before we can take vari-
ances of both sides of the equation, divide by the variance of assets to get:

and then use var( permanent)/var(a) as a measure of the role of permanent shocks in
driving fluctuations in assets.

These two examples are meant to give you an intuition about what variance decom-
positions are all about and how they are used in practice. To develop a deeper under-
standing, you will have to do additional reading in a textbook which uses more
sophisticated mathematics than this one. For instance, Quantitative Financial Economics

(Second edition) by Cuthbertson and Nitzsche (published by John Wiley & Sons, Ltd)
has a discussion of variance decompositions on pages 296–302.

Endnotes

1. The notation “VAR” for “Vector Autoregression” is the standard one in financial econo-
metrics. However, some financial analysts use VAR to denote “value-at-risk” which is a dif-
ferent concept altogether.

2. Note that the variable Xt has been omitted from this ADL( p, q) model. The reason is
because Granger causality tests seek to determine whether past – not current – values of
X can explain Y. If we were to include Xt we would be allowing for contemporaneous
causality and all the difficulties noted previously in this book about interpreting both cor-
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a permanent transitory= + ,
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relations and regressions as reflecting causality would hold. You may also be wondering
why we are using this ADL( p, q) model as opposed to the variant in which DYt is the depen-
dent variable (see Chapter 10). The reason is that it is easier to interpret Granger causality
in this basic ADL( p, q) model as implying coefficients are equal to zero. We could have
covered all the material in this section using our previous ADL( p, q) variant, but it would
have led to some messy hypothesis tests.

3. This conclusion is based on an examination of the individual P-values for each coefficient.
The joint test of b1 = . . . = b4 = 0 is detailed in Appendix 11.1 and supports the conclu-
sion that stock returns in Country B do not Granger cause stock returns in Country A.

4. Precise data sources and definitions are given in the original paper. To illustrate VAR tech-
niques, the definitions provided here are adequate.

5. This statement is true in Stata (and most financial econometrics textbooks and software
packages). However, confusingly, some statisticians define information criteria as being the
negative of that used by Stata. With this definition, you would select the lag length which
yields the largest value for the information criterion. So please be careful when using infor-
mation criteria and read the manual or help facilities of your computer software.

6. One introductory text is Philip Hans Franses, Time Series Models for Business Economics and

Forecasting, Cambridge University Press.
7. Remember that differencing variables and including lagged variables in a regression

decreases the number of observations, which is why T = 128 rather than T = 133.
8. If news about dividends and excess returns are correlated then the covariance between the

two will enter this formula.
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C H A P T E R

Financial volatility

12

Chapters 8–11 developed several different regression models for time series variables.
Throughout, we were always interested in the variables themselves. For instance, we
were interested in explaining stock or bond returns, exchange rates and yield spreads.
However, there are many cases where we are not interested in the variables them-
selves, but in their volatility (measured by the variance). For instance, in Chapter 4 we
introduced the capital asset pricing model (CAPM) and discussed how risk was impor-
tant for investment decisions. The risk of investing in the stock of a company was
related to the volatility of its share price (and other factors).

Another very important field of research relates to the pricing of financial deriva-
tives (e.g. options and other securities whose payoff is derived from the price of an
underlying asset). If you have studied the theory of finance, you may be aware of the
Black–Scholes option price formula and other similar derivative pricing methods. In
this book, we will not derive such formulae. We note only that, in these formulae, the
volatility of the price of the underlying asset plays a crucial role. The methods intro-
duced in this chapter are commonly used to provide estimates of this volatility.

We begin our discussion of volatility in asset prices informally, staying with famil-
iar regression methods. We then discuss a very popular method for estimating finan-
cial volatility called autoregressive conditional heteroskedasticity (ARCH). The
ARCH model shares a great deal of intuition with the regression model (including
the AR model), but is not exactly the same as a regression model. Accordingly,
methods like OLS cannot be used with ARCH. However, many computer software
packages (e.g. Stata, E-views, MicroFit, etc.) can estimate ARCH models. So the fact
that the theory underlying the estimation of ARCH models is difficult need not 
preclude your using them in practice. This chapter also discusses some extensions of
ARCH models.



Volatility in asset prices: Introduction

To provide some intuition, recall our discussion of the random walk model in Chapter
9. We defined the model as:

or

We then noted that there were good reasons for believing that such a model might
be appropriate for measuring economic phenomena like stock prices or exchange rate.
In other words, the stock return (exclusive of dividends) was unpredictable.

The simple random walk model is a little unreasonable as a description of stock
price behavior since stocks do appreciate in value over time. A slightly more realistic
model is:

This model can be interpreted as implying that stock prices, on average, increase by
a per period, but are otherwise unpredictable. Known as the random walk with drift

model, it adds an intercept to the random walk model, thus allowing stock prices to
“drift” upwards over time (if a > 0). Equivalently, stock returns are on average a but
are otherwise unpredictable.

In the rest of this section, we will assume that the random walk model for an asset
price is the correct one. That is, we will assume that either the asset price follows a
pure random walk or that it follows a random walk with drift, and that we have taken
deviations from the mean. To avoid confusion, we will let Dyt indicate the series with
deviations from means taken (i.e. Dyt = DYt - D , where D = SDYt/T ). Remem-
ber that taking deviations from the mean implies that there is no intercept in the
model (see Appendix 4.1). Thus, even if the asset price is drifting upwards over time
we can ignore the drift term and simply write, Dyt = et.

Although the ARCH model provides a better definition for volatility, it is possible
to simply use Dyt

2 as an estimate of volatility at time t. To motivate this choice, note
that high volatility is associated with big changes, either in a positive or in a negative
direction. Since any number squared becomes positive, large rises or large falls in the
price of an asset will imply Dyt

2 is positive and large. In contrast, in stable times the
asset price will not be changing much and Dyt

2 will be small. Hence, our measure of
volatility will be small in stable times and large in chaotic times.

An alternative motivation for our measure of volatility can be obtained by recall-
ing some material from Chapter 2. There we stressed that variance is a measure of
the volatility of a variable. In general, it is common practice to equate the two and
use variance as a measure of volatility. But using the variance as a measure of volatil-

YY

DY et t= +a .

DY et t= .

Y Y et t t= +-1
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ity presents problems in the present context. A key point here is that we want to allow
the volatility of an asset to change over time. The volatility at time t might be differ-
ent from that at time t - 1 or t + 1, etc. In Chapter 2, we used all observations to
provide one estimate of the variance. Here we can use only the observation at time
t to provide an estimate of the variance at time t. (In other words, it makes no sense
to use data at time t + 1 to estimate the variance at time t since the variance might be
different in the two periods.)

If you: (i) note that we can only use one observation to estimate the variance; (ii)
note that we have assumed the data is in deviations from mean form and, hence, has
mean zero; and (iii) use the formula for the variance from Chapter 2, then you obtain
Dyt

2 as an estimate of the variance.1

You can calculate this measure of volatility of an asset price quite easily in any
spreadsheet or statistical computer package simply by differencing the stock price
data, taking deviations from means and then squaring it. Once this is done, you will
have a new time series variable – volatility – which you can then analyze using the
tools introduced earlier.

Autoregressive models are commonly used to model “clustering in volatility”,
which is often present in financial time series data. Consider, for instance, an AR(1)
model that uses volatility as the time series variable of interest:

This model has volatility in a period depending on volatility in a previous period. If,
for instance, f > 0 then if volatility was unusually high last period (e.g. Dy 2

t-1 was very
large), it will also tend to be unusually high this period. Alternatively, if volatility was
unusually low last period (e.g. Dy 2

t-1 was near zero) then this period’s volatility will also
tend to be low. In other words, if the volatility is low it will tend to stay low, if it is
high it will tend to stay high. Of course, the presence of the error, et, means that there
can be exceptions to this pattern. But, in general, this model implies that we will tend
to observe intervals or clusters in time where volatility is low and intervals where it
is high. In empirical studies of asset prices, such a pattern is very common. As an
example, recall that in Chapter 2, we plotted the £/$ exchange rate (see Figure 2.1).
If you look back at this figure, you can see long spells when the exchange rate changed
very little (e.g. 1949–1967 and 1993–1996) and other, longer spells (e.g. 1985–1992)
where it was more volatile.

The previous discussion refers to the AR(1) model, but it can be extended to the
AR( p) model. All of the intuition given in Chapter 9 is relevant here. The only dif-
ference is that the interpretation relates to the volatility of the series rather than to
the series itself. Furthermore, all of the statistical techniques we described in Chapter
9 are relevant here. Provided the series is stationary (e.g. |f| < 1 in the AR(1) case),
then OLS estimates and P-values can be interpreted in the standard way. Testing for
a unit root can be conducted using a Dickey–Fuller test. In short, there is nothing
statistically new here.

D Dy y et t t

2
1

2= + +-a f .

Financial volatility 213



214 Analysis of financial data

Example: Volatility in stock prices

Excel worksheet STOCK.XLS contains data on Y = the stock price of a company
collected each week for four years (i.e. T = 208). The data has been logged.
Figure 12.1 provides a time series plot of this data.

You can see that the price of this stock has tended to increase over time,
although there are several periods when it also fell. The price of the stock was
£24.53 per share in the first month, increasing to £30.14 in the 208th month.2

Figure 12.2 plots DY, the percentage change in Y. Since 100 ¥ [ ln(Yt) -
ln(Yt-1)] is the percentage change in the stock price, we multiply the first dif-
ference of the data used to create Figure 12.1 by 100.

An examination of Figure 12.2 indicates that the change in stock price in any
given week was usually positive, but that there were some weeks when the price
fell. In the middle of the period of study (i.e. roughly weeks 90–110), there were
many large changes (both in a positive and a negative direction). For instance,
in weeks 94 and 96 the stock price increased by over 1.5%. This is a huge
increase in one week. If increases of this magnitude were to keep on occurring
for a year, the price of the stock would more than double (i.e. a weekly return
of 1.5% becomes an annualized return of over 100%). However, in weeks 92,
93 and 95, stock prices fell by almost as much. All in all, the stock price in this
middle period was much more volatile than in others.
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In order to investigate the volatility properties of stock price in more depth
we take deviations from the mean for the observations of the differenced data
used to create Figure 12.2 and then square them. That is, we: (i) calculate the
average change in stock price, 0.099%; (ii) subtract this number from every stock
price change; and (iii) square the result. Figure 12.3 plots the resulting series
which is our measure of volatility.

Note that volatility is the square of the stock price and hence cannot be 
negative. The pattern most evident in Figure 12.3 is the large increase in volatil-
ity in weeks 90–97 and, to a lesser extent, in weeks 4–8 and 101–107. This pro-
vides visual evidence that the volatility of this stock does indeed seem to vary
over time.

More formal evidence on the pattern of volatility can be found by building
an AR(p) model using the techniques of Chapter 9 and volatility as the variable
of interest. The sequential testing procedure suggested in that chapter yields the
AR(1) model shown in Table 12.1.

–1.5

–1

–0.5

0

0.5

1

1.5

2
Pe

rc
en

ta
ge

1 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109115121127133139145151157163169175181187193199205

Week
7

Fig. 12.2 Percentage change in stock price.

Table 12.1 AR(1) model using volatility as variable of interest.

Standard Lower Upper
Coefficient error t-Stat P-value 95% 95%

Intercept 0.024 0.015 1.624 0.106 -0.005 0.053
Dyt-1

2 0.737 0.047 15.552 1.74E - 36 0.643 0.830
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It can be seen that last week’s volatility has strong explanatory power for this
week’s volatility, since its coefficient is strongly statistically significant. Further-
more, R2 = 0.54, indicating that 54% of the variation in volatility can be
explained by last period’s volatility. Consequently, it does seem as if volatility
clusters are present. If volatility is high one period, it will also tend to be high
the next period.

This information might be of great interest to an investor wishing to pur-
chase this stock. Suppose an investor has just observed that Dyt-1 = 0 and there-
fore that Dy2

t-1 = 0. In other words, the stock price changed by its average amount
in period t - 1. The investor is interested in predicting volatility in period t in
order to judge the likely risk involved in purchasing the stock. Since the error
is unpredictable, the investor ignores it (i.e. it is just as likely to be positive as
negative). Below is the fitted AR(1) model:

Since Dy 2
t-1 = 0, the investor predicts volatility in period t to be 0.024. However,

had he observed Dy 2
t-1 = 1, he would have predicted volatility in period t to be

0.761 (i.e. 0.024 + 0.737). This kind of information can be incorporated into
financial models of investor behavior.
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Fig. 12.3 Volatility of stock price.



Autoregressive conditional 

heteroskedasticity (ARCH)

The class of ARCH models (including extensions) is probably the most popular one
for working with financial volatility. It is most compactly explained by working with
the familiar regression model:

Note that this general model contains many of the other models we have been
working with. For instance, if Xjt = Yt-j (i.e. the explanatory variables are lags of the
dependent variable) then this is an AR model. Another interesting case we will focus
on below occurs if there are no explanatory variables at all (i.e. a = b1 = . . . = bk =
0) in which case the ARCH model we will describe shortly simply relates to the depen-
dent variable itself. If we set this dependent variable to be the demeaned stock returns
(i.e. Dyt = DYt - D ), then we will be working with a model of financial volatility
analogous to that used in the first half of this chapter.

Y

Y X X X et t t k kt t= + + + + +a b b b1 1 2 2 . . . .
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Exercise 12.1

NYSE.XLS contains data on DY = the percentage change in stock prices each
month from 1952 through 1995 on the New York Stock Exchange (NYSE). For
those interested in precise details, the data are value-weighted stock returns
exclusive of dividends deflated using the Consumer Price Index. Note that this
data is already in differenced form but deviations from the mean have not been
taken, i.e. it is DY not Y or Dy.

(a) Make a time series plot of this data and comment on any patterns you
observe.

(b) Using the techniques discussed in Chapter 9, comment on the univariate
time series properties of DY. What does its autocorrelation function look
like? If you build an AR( p) model using this data what is p? Is DY station-
ary? Are stock returns on the NYSE predictable (i.e. can past stock returns
help you to predict current values)?

(c) Assume that the original series, Y, follows a random walk such that an AR(0)
model for DY is appropriate (possibly with an intercept). Calculate the
volatility of this variable as described in this chapter.

(d) Plot the volatility of this series. Does it appear that volatility clustering is
present?

(e) Construct an AR( p) model for the volatility series and discuss its proper-
ties. Can past values of volatility on the stock market help you to predict
current volatility?



The ARCH model relates to the variance (or volatility) of the error, et. You may
wish to review the material at the end of Chapter 2 if you have forgotten the prop-
erties of variances. To simplify notation (and adopt a very common notation in finan-
cial econometrics), we will let:

In other words, s 2
t will be our notation for volatility. It is this which is crucial in many

financial applications. Note that we are allowing volatility to vary over time – which
is quite important in light of our previous discussion of clustering of volatility.

The ARCH model with p lags (denoted by ARCH( p)) assumes that today’s volatil-
ity is an average of past errors squared:

where g1, . . . , gp are coefficients that can be estimated in many statistical software
packages. In the case where we have no explanatory variables and the dependent vari-
able is Dyt, we have

and the ARCH volatility depends on recent values of Dyt
2 – the metric for volatility

we were using in the first half of this chapter. This model is closely related to the
autoregressive model (which accounts for the “AR” part of the name ARCH) and
ARCH models have similar properties to AR models – except that these properties
relate to the volatility of the series.

s g g gt t p t py y
2

0 1 1
2 2= + + +- -D D. . . ,

s g g gt t p t pe e
2

0 1 1
2 2= + + +- -. . . ,

s t te
2 = ( )var .
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Example: Volatility in stock prices (continued from page 216)

With ARCH models we do not need to worry about subtracting the mean from
stock returns as we did in the first half of the chapter (by simply including an
intercept in the regression model we are allowing for a random walk with drift).
Accordingly, we use the logged stock price data from STOCK.XLS and simply
take the first different to create the variable DYt. If we estimate an ARCH(1)
model with DYt as the dependent variable and an intercept in the regression
equation, our computer software package produces a table similar to Table 12.2.

Table 12.2 ARCH(1) model using stock returns data.

Coefficient P-value Lower 95% Upper 95%

DYt

Intercept 0.105 0.000 0.081 0.129
ARCH
Lag 1 0.660 0.000 0.302 1.018
Intercept 0.024 0.000 0.016 0.032
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The upper part of Table 12.2 refers to the coefficients in the regression equa-
tion. In this case, we have only included an intercept (labeled a in the regres-
sion equation). The lower part of the table refers to the ARCH equation. Since
we are working with an ARCH(1) model, the equation includes an intercept
(labeled g0 in the ARCH equation) and one lag of the errors squares (labeled g1

in the ARCH equation and “Lag 1” in the table). The numbers in the table can
be read in the same manner as in the tables we have reported in earlier regres-
sion chapters. That is, the numbers in the column labeled “Coefficient” are esti-
mates of the coefficients (although, in this case, they are not OLS estimates, but
rather more sophisticated estimates designed for ARCH models). The numbers
in the columns labeled “P-value” are P-values for testing the hypothesis that the
corresponding coefficient equals zero. In this case, since the P-values are all less
than 0.05, we can conclude all the variables (in the regression equation and the
ARCH equation) are statistically significant at the 5% level. The final two
columns are lower and upper bounds for a 95% confidence interval.

The estimate of g1 (i.e. the coefficient on the lagged errors squared in the
ARCH equation) is 0.660, indicating that volatility this month depends strongly
on the errors squared last month. This shows that there is persistence in volatil-
ity of a similar degree to that found using the simpler methods in the first half
of this chapter. Remember that we previously found that the AR(1) coefficient
in a regression involving Dyt

2 was estimated to be 0.737.
Lag length selection in ARCH models can be done in the same manner as

with any time series model. That is, you can use an information criterion (see
Chapter 11) to select a model, or simply look at P-values for whether coeffi-
cients equal zero (and, if they do seem to be zero, then variables can be
dropped). For instance, if we estimate an ARCH(2) model using the stock return
data we obtain Table 12.3.

The coefficient estimates in Table 12.3 are very similar to those for the
ARCH(1) model. However, the coefficient on “Lag 2” (i.e. g2) is not significant,
since its P-value is greater than 0.05. Thus, we have evidence that an ARCH(1)
model is adequate and the second lag added by the ARCH(2) model does not
add significant explanatory power to the model.

For many purposes (e.g. pricing financial derivatives), an estimate of s 2
t is

required for every time period. We will not discuss how software packages
produce this, but note only that this is provided by them.

Table 12.3 ARCH(2) model using stock returns data.

Coefficient P-value Lower 95% Upper 95%

DYt

Intercept 0.109 0.000 0.087 0.131
ARCH
Lag 1 0.717 0.000 0.328 1.107
Lag 2 -0.043 0.487 -0.165 0.079
Intercept 0.025 0.000 0.016 0.033



There are many extensions of the ARCH model that are used by financial analysts.
For instance, Stata lists seven different variants of the ARCH model with acronyms
like GARCH, SAARCH, TARCH, AARCH, NARCH and NARCHK. Another
popular alternative model, which is not in the ARCH class is called stochastic volatil-

ity. If you are doing a great deal of work on financial volatility, you should do further
study to learn more about these models. Here we will only introduce the most popular
of these extensions: Generalized ARCH or GARCH. This takes the ARCH model
and adds on lags of the volatility measure itself (instead of just adding lags of squared
errors). Thus, a GARCH model with ( p, q) lags is denoted by GARCH( p, q) and has
a volatility equation of:

The properties of the GARCH model are similar to the ARCH model. For instance,
the coefficients can be interpreted in a similar fashion to AR coefficients and related
to the degree of persistence in volatility. However, it can be shown that the GARCH
model is much more flexible, much more capable of matching a wide variety of
patterns of financial volatility.

s g g g l s l st t p t p t q t qe e
2

0 1 1
2 2

1 1
2 2= + + + + + +- - - -. . . . . . .
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Example: Volatility in stock prices (continued from page 219)

If we estimate a GARCH(1, 1) model with our stock return data, we obtain the
results in Table 12.4.

The numbers in this table can be interpreted in the same manner as for the
ARCH tables. Here, however, we have an extra row labeled “GARCH lag 1”
which contains results for l1 (i.e. the lagged volatility). It can be seen that this
coefficient is insignificant, since its P-value is greater than 0.05. Thus, for this
data set, the extension to a GARCH(1, 1) model does not seem necessary. The
ARCH(1) model does perfectly well.

Table 12.4 GARCH(1, 1) model using stock returns data.

Coefficient P-value Lower 95% Upper 95%

DYt

Intercept 0.109 0.000 0.087 0.131
ARCH
ARCH lag 1 0.714 0.000 0.327 1.101
GARCH lag 1 -0.063 0.457 -0.231 0.104
Intercept 0.026 0.000 0.015 0.038
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Exercise 12.2

NYSE.XLS contains data on DY = the percentage change in stock prices each
month from 1952 through 1995 on the New York Stock Exchange (NYSE).

(a) Estimate ARCH( p) models for various values of p. Is there volatility clus-
tering in this data (i.e. does an ARCH model beat a simpler model where
there is constant volatility which means g1 = . . . = gp = 0)? Which value of p

is preferable?
(b) For your preferred choice of p, make a time series plot of volatility (i.e. plot

a graph of s 2
t ).

(c) Repeat parts (a) and (b) using a GARCH( p, q). Does your graph of volatil-
ity look the same with ARCH and GARCH models?

Exercise 12.3

This exercise is a substantive empirical project and uses the data from the 
book Nonlinear Time Series Models in Empirical Finance by Philip Hans Franses 
and Dick van Dijk (Cambridge University Press). The data is available at
http://www.few.eur.nl/few/people/djvandijk/nltsmef/nltsmef.htm. This data
set was used in Exercise 9.9 and more details are provided there. It contains
stock price indices from Amsterdam (EOE), Frankfurt (DAX), Hong Kong
(Hang Seng), London (FTSE100), New York, (S&P500), Paris (CAC40),
Singapore (Singapore All Shares) and Tokyo (Nikkei). It also has exchange rates
for the Australian dollar, British pound, Canadian dollar, German DeutschMark,
Dutch guilder, French franc, Japanese yen and the Swiss franc, all expressed as
number of units of the foreign currency per US dollar. The sample period for
the stock indexes runs from 6 January 1986 until 31 December 1997, whereas
for the exchange rates the sample covers the period from 2 January 1980 until
31 December 1997.

Investigate financial volatility using this data with ARCH and GARCH
models. Do stock returns appear to exhibit volatility? Do exchange rates?

An issue much studied by financial researchers is whether volatility in finan-
cial markets differs depending on the frequency a financial market is observed.
For instance, stock markets might be more volatile when observed every day
than when observed monthly. Investigate this issue using this data set. Note that
it is available at a daily frequency. When you work with weekly data you can use
data every Wednesday. For monthly frequency use the last day of each month.



Endnotes

1. In deriving this result we have ignored the N - 1 term in the denominator in the formula
introduced in Chapter 2. You should simply note that it is not important here. In some
formulas for the variance, N - 1 is replaced by N. Here, N = 1 so we can just ignore it.

2. This follows from the fact that ln(24.53) is 3.200 and ln(30.14) is 3.406.
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Chapter summary

1. Many time series variables, particularly asset prices, seem to exhibit random
walk behavior. For this reason, it is hard to predict how they will change in
the future. However, such variables often do exhibit predictable patterns of
volatility.

2. The square of the change in an asset price is a measure of its volatility.
3. Standard time series methods can be used to model the patterns of volatil-

ity in asset prices. The only difference is that volatility of the asset price is
used as the dependent variable.

4. ARCH models are a more formal way of measuring volatility. They contain
two equations. One is a standard regression equation. The second is a
volatility equation, where volatility is defined as being the (time varying) 
variance of the regression error.

5. ARCH models share similarities with AR models, except that the “AR” part
relates to the volatility equation.

6. There are many extensions of ARCH, of which GARCH is the most
popular.

7. ARCH and GARCH models can be estimated using many common statis-
tical software packages (but are hard to work with using a spreadsheet).



A P P E N D I X

Writing an empirical project

A

This appendix offers general guidelines on writing an empirical paper or project.
Chapter 2 discusses many data sources should you wish to collect your own data for
your project. Alternatively, the website associated with this book contains all the data
used in the empirical illustrations in this book. If you are interested in working 
with cross-sectional data, EQUITY.XLS could form the basis for a good project (see
Exercise 7.7). If you are interested in time series data, then Exercise 9.9 could 
form the basis for an empirical project. If you are interested in financial volatility then
Exercise 12.3 is a good place to start.

Description of a typical empirical project

Financial analysts are engaged in research in a wide variety of areas today. Under-
graduate and graduate students, academics, financial advisors, investment advisors
working in the private sector, policymakers working in the civil service and central
banks – may all need to write reports that involve analyzing financial data. Depend-
ing on the topic and intended audience, the form of these reports can vary widely,
so that there is no one correct format for an empirical paper. With this in mind, we
provide an outline that a financial report below as a guideline for future empirical
work. Note, however, that, in the context of your own undergraduate projects or
careers, it may not be necessary for you to include all of these elements in your
report(s).

1. Introduction. Most reports begin with an introduction that briefly motivates and
describes the issue being studied and summarizes the main empirical findings. The



introduction should be written in simple non-technical language, with statistical
and financial jargon kept to a minimum. A reader who is not an expert in the field
should be able to read and understand the general issues and findings of the report
or paper.

2. Literature review. This should summarize related work that others have done. It
should list and very briefly describe other papers and findings that relate to yours.

3. Financial theory. If the report is academic in nature and involves a formal the-
oretical model, then it is often described in this section. Outside of academia, you
may not need to include a formal model, but this section allows you to describe
the financial or institutional issues of your work in more detail. This section can
be more technical than the preceding ones and will typically include some math-
ematics and financial jargon. In short, you can address this section solely to an
audience of experts in your field.

4. Data. In this section you should describe your data, including a detailed discus-
sion of its sources.

5. The model to be estimated. In this section you should discuss how you use the
data to investigate the financial theory outlined in section 3. The exact form of
this section might vary considerably, depending on the topic and on the intended
audience. For instance, you may want to argue that a particular regression is of
interest for the study, that a certain variable will be the dependent variable and that
other variables will be the explanatory variables. Similarly, in a time series exercise,
you may wish to argue that your financial theory implies that your variables should
be cointegrated and that, for this reason, a test of cointegration will be carried
out. Or, if you are interested in pricing financial derivatives, you can use this to
motivate a particular model of financial volatility. In short, it is in this section that
you should justify the techniques used in the next section.

6. Empirical results. This section is typically the heart of any report. At this stage
you should describe your empirical findings and discuss how they relate to the
financial issue(s) under investigation. It should contain both statistical and finan-
cial information. By “financial” information we refer, for example, to coefficient
estimates or to a finding of cointegration between two variables, and what these
findings may imply for financial theory. In contrast, “statistical” information may
include: results from hypothesis tests that show how coefficient estimates are sig-
nificant; a justification for choice of lag length; an explanation for deleting insignif-
icant explanatory variables; a discussion of model fit (e.g. the R2 or outliers); etc.
Much of this information can be presented in charts or graphs. It is not uncom-
mon for papers to begin with some simple graphs (e.g. a time series plot of the
data) and then follow with a table of descriptive statistics (e.g. the mean, standard
deviation, and minimum/maximum of each variable, and a correlation matrix).
Another table might include results from a more formal statistical analysis, such
as OLS coefficient estimates, together with t-statistics (or P-values), R2s and F-
statistics for testing the significance of the regression as a whole.
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7. Conclusion. This should briefly summarize the issues addressed in the paper,
specifically, its most important empirical findings.

General considerations

The following contains a discussion of a few of the issues that you should keep 
foremost in your mind while carrying out an empirical project. In particular, it dis-
cusses what constitutes good empirical science and how you should present your
results.

The first thing worth stressing is that there are no right or wrong empirical results.
Empirical results are what they are and you should not be disappointed if they do not show what

you had hoped they would. In an ideal world, a researcher comes up with a new theory
then carries out empirical work that supports this new theory in a statistically signif-
icant way. The real world very rarely approaches this ideal.

In the real world, explanatory variables that you expect to be statistically signifi-
cant often aren’t significant. Variables you expect to be cointegrated often aren’t coin-
tegrated. Coefficients you expect to be positive often turn out to be negative. These
results are obtained all the time – even in the most sophisticated of studies. They
should not discourage you! Instead, you should always keep an open mind. A finding

that a theory does not seem to work is just as scientifically valid as a finding that a theory does work.
Furthermore, empirical results are often unclear or confusing. For instance, one

statistical test might indicate one thing while another the opposite. Likewise, an
explanatory variable that is significant in one regression might be insignificant in
another regression. There is nothing you can do about this, except to report your
results honestly and try (if possible) to understand why such conflicts or confusions
are occurring.

It would be rare for a researcher to completely falsify her results. Often, however,
she may be tempted to do slightly dishonest things in order to show that results are
indeed as financial reasoning anticipated. For instance, it is common for a researcher
to run a large number of regressions with many different explanatory variables. On
the whole, this is a very wise thing; a sign that the researcher is exploring the data in
detail and from a number of angles. However, if the researcher presents only the
regression that supports a particular theory and not the other regressions that dis-
credit it, she is intentionally misleading the reader. Always avoid this temptation to
misrepresent your results!

On the issue of how results should be presented, I cannot stress enough the impor-
tance of clarity and brevity. Whether it is a good thing or a bad thing, it is undoubt-
edly the case that university lecturers, readers of investment advice, civil servants,
policymakers and employers are busy people who do not want to spend a lot of time
reading long, poorly organized and verbose reports.
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One key skill that writers of good reports show is selectivity. For example, you may
have many different coefficient results and tests statistics from your various regres-
sion runs. An important part of any report is to decide what information is impor-
tant and what is unimportant to your readership. Select only the most important
information for inclusion in your report and – as always – report honestly and openly
the results that you obtain.
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A P P E N D I X

Data directory

B

Data file Content Data type Chapter

ADVERT.XLS Sales and advertising Cross-sectional, Chapter 5
expenditure N = 84 companies

BADNEWS.XLS Market cap. and oil Time Series, T = 60 Chapter 8
price months

CAPM.XLS Excess returns for Time series, T = 120 Chapters 4, 5 and 6
Company A and months
the stock market

CAY.XLS Consumption, Time series, T = 206 Chapter 11
assets and income quarters

CORMAT.XLS Artificial variables Cross-sectional, Chapter 3
labeled Y, X and Z N = 20

EQUITY.XLS Firm share value, Cross-sectional, Chapters 3, 4, 5 and 7
debt, sales, income, N = 309 companies
assets, SEO dummy

EX34.XLS Artificial variables Cross-sectional, Chapter 3
labeled Y, X1, X2 N = 20
and X3

EX46.XLS Artificial variables Cross-sectional, Chapter 4
labeled Y and X N = 50

EXECUTIVE.XLS Executive Cross-sectional, Chapters 2, 3, 4, 5 and 6
compensation, N = 70 companies
profits, changes in
sales and change in
debts

EXRUK.XLS UK pound/US dollar Time series, Chapter 2
exchange rate January 1947

through October,
1996, T = 598
months



Data file Content Data type Chapter

FIG51.XLS Artificial variables Cross-sectional, Chapter 5
labeled X and Y N = 5

FIG52.XLS Artificial variables Cross-sectional, Chapter 5
labeled X and Y N = 100

FIG53.XLS Artificial variables Cross-sectional, Chapter 5
labeled X and Y N = 100

FIG54.XLS Artificial variables Cross-sectional, Chapter 5
labeled X and Y N = 100

FIG95.XLS Artificial variable Time series, Chapter 9
created with f = 0 T = 100

FIG96.XLS Artificial variable Time series, Chapter 9
created with f = 0.8 T = 100

FIG97.XLS Artificial variable Time series, Chapter 9
created with f = 1 T = 100

FIG98.XLS Trend stationary Time series, Chapter 9
artificial variable T = 100

FOREX.XLS Spot and forward Time series, T = 181 Chapters 10 and 11
exchange rates months

GDPPC.XLS Real GDP per capita Cross-sectional, Chapters 2 and 5
N = 90 countries

HPRICE.XLS Housing prices Cross-sectional, Chapters 3, 5, 6 and 7
and housing N = 546 houses
characteristics (e.g.
lot size, number of
bedrooms)

INTERESTRATES. Long- and short- Time series, 1954Q1 Chapters 2, 9, 10 and 11
XLS term interest rates through 1994Q4,

T = 164 quarters
LIBERAL.XLS Growth in GDP and Time series, T = 98 Chapter 10

market cap. months
LIBERAL1.XLS Growth in GDP and Time series, T = 98 Chapter 10

market cap. months
LONGGDP.XLS Real GDP per Time series, 1870 Chapter 11

capita for Australia, through 1993,
USA, UK, Canada T = 124 years

LONGRUN.XLS Stock return and Time series, Chapter 8
dividend-price ratio T = 1200 months

NYSE.XLS NYSE stock price Time series, Chapters 9 and 12
index January 1952

through December
1995, T = 528
months

STOCK.XLS Logged stock price Time series, T = 208 Chapter 12 
data weeks

STOCKPAB.XLS Stock prices in two Time series, T = 131 Chapters 10 and 11
countries months

VAR.XLS Variables used in Time series, Chapter 11
Campbell–Ammer T = 471 months
paper
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User Note: The website accompanying this book http://www.wiley.com/go/koopafd
contains all these data sets in Excel file format (“.xls”). Most computer software pack-
ages will read Excel files. If your package does not, you can use the “Save As” option
in Excel to save the files in other formats (e.g. as ASCII text files).
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abnormal profits 148
accuracy of estimation 72–3, 101
actual value 56
ADL model 162

with p and q lags 185–7
see also autoregressive distributed lag

model
advanced descriptive statistics 30–31
after-tax labor income 201
AIC see Akaike’s information criterion
Akaike’s information criterion 195–6
alcohol 39–40, 106–7, 184
algebraic manipulation 163
alternative hypothesis 79
analysis of variance 111
ANOVA see analysis of variance
approximation 25
AR(1) model 149–52, 159, 212–13

with deterministic trend model 151
mathematical intuition for 159
nonstationarity 144–6
stationarity 144–6
see also autoregressive model for univariate

time series
ARCH see autoregressive conditional

heteroskedasticity

artificial data 103–4, 150
aside on autocorrelation 141–3
aside on lagged variables 125–7
aside on notation 127–32
asset price volatility 212–17
assets 169
association 67
augmented Dickey–Fuller test 160

see also Dickey–Fuller test
autocorrelation function 140–41
autoregressive conditional heteroskedasticity

211, 217–21
definition for volatility 212

autoregressive distributed lag model 162,
180

autoregressive model for univariate time
series 144–6

see also AR(1) model

bad news 130–32, 134, 178
Bank of England 198

see also forecasting with VARs
bank prime rate 103
bankruptcy 121
bar chart see histograms
base year 14, 27

Index
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basic data handling 9–32
advanced descriptive statistics 30–31
expected values and variances 24–6
index numbers 27–30
obtaining data 15–16
summary 26
types of financial data 9–15
working with data: descriptive statistics

21–4
working with data: graphical methods

16–21
basket of shares 14
bear market 138
best fitting line regression 50–53, 93
bi-directional causality 187–90
binary variables see dummy variables
bins 18–19
Black–Scholes option price formula 211
borderline 206

CAC40 index 158, 221
calculating all autocorrelations 141
calculating confidence interval for b

73–9
capital asset pricing model 58–60, 79, 83,

92–3, 98
CAPM see capital asset pricing model
CAPM beta 59
causality 37–40, 51, 67, 183–90

and correlation 39–40, 51
see also Granger causality

cay variables 170, 200–201, 208–9
ceteris paribus 95–9, 105, 117–19, 125, 131

conditions 163
change 12–14, 139–40, 178
change in Y see DY

chaos 212
ChartWizard© 16–17, 33
checking for unit root 200
cigarette smoking 39–40, 106–7, 184
class interval 18, 30
class width 18
classical hypothesis testing 79–80

clumps 19
clustering 213, 218
co-trending 168
coefficients 51–2, 97, 105–6, 163

interpretation of 163
in regression 105–6

cointegrating rank 200–202
cointegrating regression 170–72
cointegration 124, 149, 167–77

between spot and forward rates 170,
172–3, 176–7

error correction model 174–7
estimation and testing with cointegrated

variables 170–74
and Granger causality 189–90
and vector autoregressions 199–203

common sense 40, 67, 103, 168, 184
common trends 168
company price index calculation 27
confidence interval for b 73–9
confidence intervals 2, 69–70, 73–9

in election polls 75–6
testing for causality 189–90
see also causality; hypothesis testing

confidence level 70
confusion 103
consequence of Granger Representation

Theorem 190
Consumer Price Index 14, 217
consumption, aggregate wealth and

expected stock returns 201–2
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