

TradeAngle Language

Motivation – TradeStation EasyLanguage method of trading strategies is slow, and
cumbersome (for the programmer). TradeStation wants users to trade through its platform
so they have crafted their scripting language to have major gaps in its functionality and
information capabilities. There is no ability, for instance, to know specific information
about a given open order. The programmer has to figure out which if his (possibly many)
trades have fired within the last ‘bar’ by looking at OHLC values. Stop and Limit orders
are cancelled on the next bar. Again the programmer has to figure out if the stop/limit
order has actually been hit, and if not then re-fire the same order again for every bar.

It is also very tightly geared to their graphical environment. The optimization of any
given trading strategy is brute-force (ie O(n^3) for 3 variables), and is unusable for
anything but the simplest of algorithms. And finally, there is no debugging capabilities
built-in to the EasyLanguage compiler. Error messages like ‘an array bounds has been
breached’ without specifying a line number or variable name are useless and add many
hours of debugging to complicated scripts.

Result – TradeAngle Language (TAL) has been created to take the trading strategy
outside of TradeStation. We have created the following:

 TAL Specification : the script language is specified using a BNF Grammar.
 It is comparable to Pascal with a little C

 TAL Parser/Compiler : the script is parsed and compiled into a binary file.
 Any errors are detected and displayed showing their precise
 location within the script

 TAL System Functions : a library if internal ‘functions’ that can be called
 from within scripts is continually being updated. Useful functions
 range from simple square-root calculations, to more complex
 stochastics

 TAL Simulator : the compiled script can be ‘run.’ Currently we have (ironically)
 tied the running of a TAL script back into TradeStation. This
 allows us the graphical interface for results, strategy monitoring
 capabilities, and the price data.

FFOORR SSAALLEE && EEXXCCHHAANNGGEE

wwwwww..ttrraaddiinngg--ssooffttwwaarree--ccoolllleeccttiioonn..ccoomm

SSuubbssccrriibbee ffoorr FFRREEEE ddoowwnnllooaadd 55000000++ ttrraaddiinngg bbooookkss..

MMiirrrroorrss::

wwwwww..ffoorreexx--wwaarreezz..ccoomm

wwwwww..ttrraaddeerrss--ssooffttwwaarree..ccoomm

CCoonnttaaccttss

aannddrreeyybbbbrrvv@@ggmmaaiill..ccoomm
aannddrreeyybbbbrrvv@@hhoottmmaaiill..ccoomm

aannddrreeyybbbbrrvv@@yyaannddeexx..rruu
SSkkyyppee:: aannddrreeyybbbbrrvv

IICCQQ:: 7700996666443333

http://www.trading-software-collection.com/
mailto:andreybbrv@ya.ru?subject=Subscribe
http://www.forex-warez.com/
http://www.traders-software.com/
mailto:andreybbrv@gmail.com
mailto:andreybbrv@hotmail.com
mailto:andreybbrv@yandex.ru

The next stage (in development now) is a stand-alone simulator that does not require
TradeStation to run TAL files. It will include:

(1) Connectivity to a quote stream (InstaQuote, HyperFeed, etc.) for price data
(2) Smart optimization of script variables (Monte Carlo method, etc)
(3) More trade types (Trailing Stop, Banded, etc) with script access to trades
(4) Portfolio handling (with library functions to allow TAL scripts to access

portfolio/account information)
(5) Back-testing capabilities
(6) Graphical interface

Here is a simple TAL script example:
--
Inputs:
 D1 : DataSeries;
 ProfitPoints : double;
 LossPoints : double;

Var: ma : double;
Var: p1,p2 : double;
Var: Trades : intarray;
Var: i,t integer;

ma = MovingAverage(D1.Close(),30);

if ma > D1.Open[b1] then begin
 p1 = D1.CurrentPrice();
 i = NewTrade(GetUser(),D1.symbol(),p1,”B”);
 if i >= 0 Then begin
 Trades.add(i);
 SetLimit(i,ProfitPoints);
 SetStop(i,LossPoints);
 end;
end;

for i = 0 to Trades.Count() – 1
Begin
 t = Trades[i]l
 if(TradeStatus(t)== False) then
 Trades.remove(t);
 else
 Output(“Trade: “ + TradeName(t) + “ is live. P/L = “ + TradePL(t));
End;

--

