

Financial Instrument Pricing
Using C++

Daniel J. Duffy

Financial Instrument Pricing
Using C++

Andrey
trading software col

Wiley Finance Series
Hedge Funds: Quantitative Insights

François-Serge L’habitant
A Currency Options Primer

Shani Shamah
New Risk Measures in Investment and Regulation

Giorgio Szegö (Editor)
Modelling Prices in Competitive Electricity Markets

Derek Bunn (Editor)
Inflation-Indexed Securities: Bonds, Swaps and Other Derivatives, 2nd Edition

Mark Deacon, Andrew Derry and Dariush Mirfendereski
European Fixed Income Markets: Money, Bond and Interest Rates

Jonathan Batten, Thomas Fetherston and Peter Szilagyi (Editors)
Global Securitisation and CDOs

John Deacon
Applied Quantitative Methods for Trading and Investment

Christian L. Dunis, Jason Laws and Patrick Naı̈m (Editors)
Country Risk Assessment: A Guide to Global Investment Strategy

Michel Henry Bouchet, Ephraim Clark and Bertrand Groslambert
Credit Derivatives Pricing Models: Models, Pricing and Implementation

Philipp J. Schönbucher
Hedge Funds: A Resource for Investors

Simone Borla
A Foreign Exchange Primer

Shani Shamah
The Simple Rules: Revisiting the Art of Financial Risk Management

Erik Banks
Option Theory

Peter James
Risk-adjusted Lending Conditions

Werner Rosenberger
Measuring Market Risk

Kevin Dowd
An Introduction to Market Risk Management

Kevin Dowd
Behavioural Finance

James Montier
Asset Management: Equities Demystified

Shanta Acharya
An Introduction to Capital Markets: Products, Strategies, Participants

Andrew M. Chisholm
Hedge Funds: Myths and Limits

François-Serge L’habitant
The Manager’s Concise Guide to Risk

Jihad S. Nader
Securities Operations: A Guide to Trade and Position Management

Michael Simmons
Modeling, Measuring and Hedging Operational Risk

Marcelo Cruz
Monte Carlo Methods in Finance

Peter Jäckel
Building and Using Dynamic Interest Rate Models

Ken Kortanek and Vladimir Medvedev
Structured Equity Derivatives: The Definitive Guide to Exotic Options and Structured Notes

Harry Kat
Advanced Modelling in Finance Using Excel and VBA

Mary Jackson and Mike Staunton
Operational Risk: Measurement and Modelling

Jack King
Interest Rate Modelling

Jessica James and Nick Webber

Financial Instrument Pricing
Using C++

Daniel J. Duffy

Published by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

Copyright 2004 Daniel J. Duffy

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed
to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Duffy, Daniel J.
Designing and implementing financial instruments in C++ / Daniel J. Duffy.

p. cm.
ISBN 0-470-85509-6

1. Investments – Mathematical models. 2. Financial engineering. 3. C++
(Computer program language) I. Title

HG4515. 2. D85 2004
332.6′0285′5133 – dc22

2004008925

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85509-6

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com

Contents

1 Executive Overview of this Book 1
1.1 What is this book? 1
1.2 What’s special about this book? 1
1.3 Who is this book for? 2
1.4 Software requirements 3
1.5 The structure of this book 4
1.6 Pedagogical approach 5
1.7 What this book is not 6
1.8 Source code on the CD 6

PART I TEMPLATE PROGRAMMING IN C++

2 A Gentle Introduction to Templates in C++ 9
2.1 Introduction and objectives 9
2.2 Motivation and background 10
2.3 Defining a template 11

2.3.1 An example 13
2.4 Template instantiation 15
2.5 Function templates 16

2.5.1 An example 17
2.6 Default values and typedefs 18
2.7 Guidelines when implementing templates 18
2.8 Conclusions and summary 19

3 An Introduction to the Standard Template Library 20
3.1 Introduction and objectives 20

3.1.1 Why use STL? 20
3.2 A Bird’s-eye view of STL 20
3.3 Sequence containers 23

3.3.1 Programming lists 24
3.3.2 Vectors and arrays in STL 25

3.4 Associative containers 27
3.4.1 Sets in STL 27
3.4.2 Maps in STL 29

vi Contents

3.5 Iterators in STL 30
3.5.1 What kinds of iterators? 30

3.6 Algorithms 33
3.7 Using STL for financial instruments 35
3.8 Conclusions and summary 35

4 STL for Financial Engineering Applications 36
4.1 Introduction and objectives 36
4.2 Clever data structures 36

4.2.1 A simple output mechanism 38
4.3 Set theory and STL 40
4.4 Useful algorithms 43
4.5 STL adaptor containers 45
4.6 Conclusions and summary 46

5 The Property Pattern in Financial Engineering 47
5.1 Introduction and objectives 47
5.2 The Property pattern 47

5.2.1 Requirements for a Property pattern 48
5.3 An example 51
5.4 Extending the Property pattern: property sets and property lists 52

5.4.1 An example 55
5.5 Properties and exotic options 57

5.5.1 Example: Executive options 57
5.6 Conclusions and summary 59

PART II BUILDING BLOCK CLASSES

6 Arrays, Vectors and Matrices 63
6.1 Introduction and objectives 63
6.2 Motivation and background 64
6.3 A layered approach 66
6.4 The Array and Matrix classes in detail 66

6.4.1 Simple print functions 69
6.4.2 Array example 70
6.4.3 Matrix example 71

6.5 The Vector and NumericMatrix classes in detail 72
6.5.1 Vector example 74
6.5.2 NumericMatrix example 74

6.6 Associative arrays and matrices 74
6.7 Conclusions and summary 77

7 Arrays and Matrix Properties 78
7.1 Introduction and objectives 78
7.2 An overview of the functionality 78
7.3 Software requirements 79

7.3.1 Accuracy 79

Contents vii

7.3.2 Efficiency 79
7.3.3 Reliability 79
7.3.4 Understandability 80

7.4 The core processes 80
7.4.1 Interactions between matrices and vectors 83
7.4.2 Some examples 84

7.5 Other function categories 85
7.5.1 Measures of central tendency 85
7.5.2 Measures of dispersion 86
7.5.3 Moments, skewness, kurtosis 86
7.5.4 Inequalities 87

7.6 Using the functions 87
7.6.1 Calculating historical volatility 88
7.6.2 Variance of return of a portfolio 88

7.7 An introduction to exception handling 88
7.7.1 Try, throw and catch: A bit like tennis 89

7.8 Conclusions and summary 90

8 Numerical Linear Algebra 91
8.1 Introduction and objectives 91
8.2 An introduction to numerical linear algebra 91

8.2.1 Direct methods 93
8.2.2 Iterative methods 93

8.3 Tridiagonal systems 94
8.3.1 LU decomposition 94
8.3.2 Godunov’s Double Sweep method 97
8.3.3 Designing and implementing tridiagonal schemes 99

8.4 Block tridiagonal systems 99
8.5 What requirements should our matrix satisfy? 101

8.5.1 Positive-definite matrices and diagonal dominance 101
8.5.2 M-Matrices 102

8.6 Conclusions and summary 102

9 Modelling Functions in C++ 103
9.1 Introduction and objectives 103
9.2 Function pointers in C++ 103
9.3 Function objects in STL 106

9.3.1 Comparison functions 108
9.3.2 STL and financial engineering 108

9.4 Some function types 109
9.4.1 Applications in numerical analysis and financial

engineering 111
9.4.2 An example: Functions in option pricing 111

9.5 Creating your own function classes 111
9.6 Arrays of functions 114
9.7 Vector functions 115
9.8 Real-valued functions 115

viii Contents

9.9 Vector-valued functions 116
9.10 Conclusions and summary 116

10 C++ Classes for Statistical Distributions 117
10.1 Introduction and objectives 117
10.2 Discrete and continuous probability distribution functions 117
10.3 Continuous distributions 119

10.3.1 Uniform (rectangular) distribution 119
10.3.2 Normal distribution 121
10.3.3 Lognormal distribution 122
10.3.4 Gamma distribution and its specialisations 122

10.4 Discrete distributions 124
10.4.1 Poisson distribution 124
10.4.2 Binomial and Bernoulli distributions 125
10.4.3 Pascal and geometric distributions 126

10.5 Tests 127
10.5.1 Continuous distributions 127
10.5.2 Discrete distributions 127

10.6 Conclusions and summary 128

PART III ORDINARY AND STOCHASTIC DIFFERENTIAL
EQUATIONS

11 Numerical Solution of Initial Value Problems: Fundamentals 131
11.1 Introduction and objectives 131
11.2 A model problem 132

11.2.1 Qualitative properties of the solution 132
11.3 Discretisation 133
11.4 Common schemes 134
11.5 Some theoretical issues 136
11.6 Fitting: Special schemes for difficult problems 137
11.7 Non-linear scalar problems and predictor–corrector methods 138
11.8 Extrapolation techniques 139
11.9 C++ design and implementation 140
11.10 Generalisations 143
11.11 Conclusions and summary 144

12 Stochastic Processes and Stochastic Differential Equations 145
12.1 Introduction and objectives 145
12.2 Random variables and random processes 145

12.2.1 Random variables 145
12.2.2 Generating random variables 147
12.2.3 Random (stochastic) processes 150

12.3 An introduction to stochastic differential equations 151
12.4 Some finite difference schemes 152

12.4.1 Improving the accuracy: Richardson extrapolation 153
12.5 Which scheme to use? 153

Contents ix

12.6 Systems of SDEs 154
12.7 Conclusions and summary 154

13 Two-Point Boundary Value Problems 155
13.1 Introduction and objectives 155
13.2 Description of problem 155
13.3 (Traditional) centred-difference schemes 157

13.3.1 Does the discrete system have a solution? 158
13.3.2 Extrapolation 158

13.4 Approximation of the boundary conditions 158
13.4.1 Linearity boundary condition 159

13.5 Exponentially fitted schemes and convection–diffusion 160
13.6 Approximating the derivatives 160
13.7 Design issues 161
13.8 Conclusions and summary 163

14 Matrix Iterative Methods 164
14.1 Introduction and objectives 164
14.2 Iterative methods 165
14.3 The Jacobi method 165
14.4 Gauss–Seidel method 166
14.5 Successive overrelaxation (SOR) 166
14.6 Other methods 166

14.6.1 The conjugate gradient method 167
14.6.2 Block SOR 167
14.6.3 Solving sparse systems of equations 167

14.7 The linear complementarity problem 168
14.8 Implementation 169
14.9 Conclusions and summary 171

PART IV PROGRAMMING THE BLACK–SCHOLES ENVIRONMENT

15 An Overview of Computational Finance 175
15.1 Introduction and objectives 175
15.2 The development life cycle 175
15.3 Partial differential equations 176
15.4 Numerical approximation of PDEs 177
15.5 The class of finite difference schemes 179
15.6 Special schemes for special problems 179
15.7 Implementation issues and the choice of programming language 180
15.8 Origins and application areas 180
15.9 Conclusions and summary 181

16 Finite Difference Schemes for Black–Scholes 182
16.1 Introduction and objectives 182
16.2 Model problem: The one-dimensional heat equation 182
16.3 The Black–Scholes equation 186

x Contents

16.4 Initial conditions and exotic options payoffs 187
16.4.1 Payoff functions in options modelling 188

16.5 Implementation 190
16.6 Method of lines: A whirlwind introduction 190
16.7 Conclusions and summary 191

17 Implicit Finite Difference Schemes for Black–Scholes 192
17.1 Introduction and objectives 192
17.2 Fully implicit method 193
17.3 An introduction to the Crank–Nicolson method 194
17.4 A critique of Crank–Nicolson 195

17.4.1 How are derivatives approximated? 195
17.4.2 Boundary conditions 197
17.4.3 Initial conditions 198
17.4.4 Proving stability 198

17.5 Is there hope? the Keller scheme 199
17.5.1 The advantages of the Box scheme 201

17.6 Conclusions and summary 202

18 Special Schemes for Plain and Exotic Options 203
18.1 Introduction and objectives 203
18.2 Motivating exponentially fitted schemes 203

18.2.1 A new class of robust difference schemes 203
18.3 Exponentially fitted schemes for parabolic problems 205

18.3.1 The fitted scheme in more detail: Main results 205
18.4 What happens when the volatility goes to zero? 208

18.4.1 Graceful degradation 208
18.5 Exponential fitting with explicit time 209

18.5.1 An explicit time-marching scheme 209
18.6 Exponential fitting and exotic options 210
18.7 Some final remarks 211

19 My First Finite Difference Solver 212
19.1 Introduction and objectives 212
19.2 Modelling partial differential equations in C++ 214

19.2.1 Function classes in C++ 215
19.2.2 Function classes for partial differential equations 217

19.3 Finite difference schemes as C++ classes, Part I 218
19.4 Finite difference schemes as C++ classes, Part II 219
19.5 Initialisation issues 220

19.5.1 Functions and parameters 220
19.5.2 The main program 221

19.6 Interfacing with Excel 224
19.7 Conclusions and summary 224

20 An Introduction to ADI and Splitting Schemes 225
20.1 Introduction and objectives 225

Contents xi

20.2 A model problem 226
20.3 Motivation and history 227
20.4 Basic ADI scheme for the heat equation 228

20.4.1 Three-dimensional heat equation 229
20.5 Basic splitting scheme for the heat equation 230

20.5.1 Three-dimensional heat equation 231
20.6 Approximating cross-derivatives 231
20.7 Handling boundary conditions 232
20.8 Algorithms and design issues 234
20.9 Conclusions and summary 236

21 Numerical Approximation of Two-Factor Derivative Models 237
21.1 Introduction and objectives 237
21.2 Two-factor models in financial engineering 237

21.2.1 Asian options 237
21.2.2 Convertible bonds with random interest rates 239
21.2.3 Options with two underlying assets 239
21.2.4 Basket options 240
21.2.5 Fixed-income applications 241

21.3 Finite difference approximations 241
21.4 ADI schemes for Asian options 242

21.4.1 Upwinding 242
21.5 Splitting schemes 243
21.6 Conclusions and summary 243

PART V DESIGN PATTERNS

22 A C++ Application for Displaying Numeric Data 247
22.1 Introduction and objectives 247
22.2 Input mechanisms 248
22.3 Conversion and processing mechanisms 249
22.4 Output and display mechanisms 250

22.4.1 Ensuring that Excel is started only once 251
22.5 Putting it all together 252
22.6 Output 252
22.7 Other functionality 252

22.7.1 Accessing cell data 254
22.7.2 Cell data for functions 255
22.7.3 Using Excel with finite difference schemes 255

22.8 Using Excel and property sets 258
22.9 Extensions and the road to design patterns 259
22.10 Conclusions and summary 260

23 Object Creational Patterns 261
23.1 Introduction and objectives 261
23.2 The Singleton pattern 263

23.2.1 The templated Singleton solution 263

xii Contents

23.2.2 An extended example 266
23.2.3 Applications to financial engineering 269

23.3 The Prototype pattern 270
23.3.1 The Prototype pattern: Solution 271
23.3.2 Applications to financial engineering 271

23.4 Factory Method pattern (virtual constructor) 272
23.4.1 An extended example 274

23.5 Abstract Factory pattern 275
23.5.1 The abstract factory: solution 277
23.5.2 An extended example 277

23.6 Applications to financial engineering 279
23.7 Conclusions and summary 279

24 Object Structural Patterns 281
24.1 Introduction and objectives 281
24.2 Kinds of structural relationships between classes 281

24.2.1 Aggregation 282
24.2.2 Association 283
24.2.3 Generalisation/specialisation 286

24.3 Whole–Part pattern 286
24.4 The Composite pattern 288
24.5 The Façade pattern 289
24.6 The Bridge pattern 290

24.6.1 An example of the Bridge pattern 290
24.7 Conclusions and summary 295

25 Object Behavioural Patterns 296
25.1 Introduction and objectives 296
25.2 Kinds of behavioural patterns 297
25.3 Iterator pattern 298

25.3.1 Iterating in composites 299
25.3.2 Iterating in property sets 300

25.4 The Visitor pattern 301
25.4.1 Visitors and the Extensible Markup Language (XML) 302

25.5 Notification patterns 305
25.6 Conclusions and summary 307

PART VI DESIGN AND DEPLOYMENT ISSUES

26 An Introduction to the Extensible Markup Language 311
26.1 Introduction and objectives 311

26.1.1 What’s the big deal with XML? 311
26.2 A short history of XML 312
26.3 The XML structure 312

26.3.1 XML files 312
26.3.2 XML syntax 313
26.3.3 Attributes in XML 314

Contents xiii

26.4 Document Type Definition 315
26.4.1 DTD syntax 315
26.4.2 Validation issues 319
26.4.3 Limitations of DTDs 320

26.5 Extensible Stylesheet Language Transformation (XSLT) 320
26.5.1 Namespaces in XML 321
26.5.2 Main concepts in XSL 322

26.6 An application of XML: Financial products Markup Language 324
26.6.1 Product architecture overview 324
26.6.2 Example: Equity derivative options product architecture 326

26.7 Conclusions and summary 327

27 Advanced XML and Programming Interface 328
27.1 Introduction and objectives 328
27.2 XML Schema 328

27.2.1 Element declaration 329
27.2.2 User-defined simple and complex types 330
27.2.3 Multiplicity issues 331
27.2.4 An example 332
27.2.5 Comparing DTDs and the XML Schema 334
27.2.6 XML Schemas and FpML 334

27.3 Accessing XML data: The Document Object Model 334
27.3.1 DOM in a programming environment 335

27.4 DOM and C++: The essentials 335
27.5 DOM, entities and property sets 338

27.5.1 XML readers and writers 340
27.5.2 Examples and applications 342

27.6 XML structures for plain and barrier options 342
27.7 Conclusions and summary 345

28 Interfacing C++ and Excel 346
28.1 Introduction and objectives 346
28.2 Object model in Excel: An overview 346
28.3 Under the bonnet: Technical details of C++ interfacing

to Excel 348
28.3.1 Startup 348
28.3.2 Creating charts and cell values 349
28.3.3 Interoperability with the SimplePropertySet 350

28.4 Implementing the core process 351
28.4.1 Registration: Getting basic input 352
28.4.2 Calculations 352
28.4.3 Displaying the results of the calculations 353
28.4.4 The application (main program) 354

28.5 Extensions 354
28.6 Application areas 355
28.7 Conclusions and summary 355

xiv Contents

29 Advanced Excel Interfacing 356
29.1 Introduction and objectives 356
29.2 Status report and new requirements 356
29.3 A gentle introduction to Excel add-ins 357

29.3.1 What kinds of add-ins are there? 357
29.4 Automation add-in in detail 359

29.4.1 Functions with two parameters 362
29.4.2 Functions that accept a range 364
29.4.3 Using the Vector template class 366

29.5 Creating a COM add-in 367
29.6 Future trends 373
29.7 Conclusions and summary 373

30 An Extended Application: Option Strategies and Portfolios 374
30.1 Introduction and objectives 374
30.2 Spreads 374
30.3 Combinations: Straddles and strangles 375
30.4 Designing and implementing spreads 376
30.5 Delta hedging 378
30.6 An example 379
30.7 Tips and guidelines 381

Appendices
A1 My C++ refresher 383
A2 Dates and other temporal types 394

References 397

Index 401

1

Executive Overview of this Book

1.1 WHAT IS THIS BOOK?
The goal of this book is to model financial instruments, such as options, bonds and interest-
rate products by partial differential equations, finite differences and C++. It is intended
for IT and quantitative finance professionals who know this material and wish to deepen
their knowledge and for those readers who use techniques such as Monte Carlo, Fourier
transform methods, stochastic differential equations and lattice methods (for example, the
binomial method) for instrument pricing.

We integrate a number of well-known areas to create a traceable and maintainable path
from when a financial engineer proposes a new model to when he or she codes the resulting
equations in C++. When viewed as a black box, the core process in this book is to produce
C++ classes and code for financial engineering applications. Furthermore, we give lots of
examples of code that developers can use without much hassle. The accompanying CD
contains all the source code in this book. We provide guidelines, algorithms and reusable
code to help the reader to achieve these ends. The main activities that realise the core
process are:

• Activity 1: Map the financial model to a partial differential equation (PDE)
• Activity 2: Approximate the PDE by the finite difference method (FDM)
• Activity 3: Implement the FDM using C++ and design patterns.

In this book we shall concentrate on Activities 2 and 3. Since this is a book on the
application of C++ to financial engineering we concentrate on mapping the numerical
algorithms from Activity 2 to robust and flexible C++ code and classes. However, we
shall provide sufficient motivation and background information to help the reader to
understand the complete ‘instrument life cycle’. This life cycle describes the processes,
activities, decisions and alternatives that describe how to program models for financial
instruments in C++.

The topics in this book relate to finance, partial differential equations, numerical
schemes and C++ code, and for this reason we use the term Computational Finance
to sum up these related activities (see Seydel, 2003, where the same phrase is used). The
foundations for partial differential equations and finite difference schemes for financial
engineering applications are discussed in Duffy (2004b).

1.2 WHAT’S SPECIAL ABOUT THIS BOOK?
This book is part of a larger, ongoing project. It is the outcome of one part of this
project and concentrates on showing how to program finite difference schemes in C++.
Our approach is novel in a number of respects.

1. We use modern object-oriented and generic design patterns in C++ to solve a range
of partial, stochastic and ordinary differential equations in financial engineering. Tra-
ditionally, engineers have used packages such as Matlab, Maple, the C language or

2 Financial Instrument Pricing Using C++

other specialised libraries. Each alternative solution has its own benefits of course, but
using C++ means that your code is portable, flexible and future-proof (C++ will still
be used 20 years from now). Using C++ means that you are not tied into one vendor
or operating system.

2. We give a thorough introduction to finite difference methods, how to apply them to
Black–Scholes type equations and how to map them to C++ code. We avoid glib
recipe-type schemes that work well for toy problems but do not always scale to real-
life problems. In particular, we show how to program the famous Crank–Nicolson
scheme and discuss when it breaks down, especially in applications with small volatil-
ity, discontinuous payoff functions or non-linearities. We propose new schemes that
overcome these problems and produce uniformly good approximations to the delta
of an option. The book discusses finite difference schemes for both one-factor and
two-factor problems.

3. Successful software always needs to be adapted and extended, and to this end we
design our classes and applications so that they can easily be modified. Our book is
novel in the sense that we apply the powerful and proven design patterns (see Gamma
et al., 1995; Buschmann et al., 1996) to help us to produce applications that can be
extended or adapted to different organisational, hardware and software contexts.

4. Last, but not least, it is vital that our software artefacts are well documented. We
document these artefacts at the design level and, in particular, we use the de-facto
Unified Modeling Language (UML) to visually display the structural, functional and
behavioural relationships between the classes and objects in our applications.

In short, this book describes in a step-by-step manner how to create ‘good’ software
for financial engineering applications; it also integrates established techniques from fluid
mechanics, numerical analysis and software design to produce a coherent and seamless
approach to the design and implementation of financial models in C++.

1.3 WHO IS THIS BOOK FOR?
This book is meant for IT and quantitative finance professionals (risk managers, prod-
uct development and derivatives research groups) who work in financial institutions and
software companies and are involved in designing and implementing pricing models in
C++. This book deals with fundamental issues such as C++ design and implementation,
design patterns, finite difference methods and advanced software environments. Thus, it
is of value to financial engineers (‘Quants’), software developers and financial modellers.

We feel that the book is useful for universities and other educational institutes that
deliver financial courses. This is not a book on instrument theory as such, and we assume
that the reader has knowledge of option theory as presented in books by Hull (2000)
and Wilmott (1998), for example. We also assume that the reader has had some exposure
to differential equations, differential and integral calculus and matrix algebra. Finally, the
reader should have a working knowledge of C++.

As we have already mentioned in this chapter, the book is suited not only to those
readers from a partial differential equation (PDE) background but also to those who
use techniques such as Monte Carlo, Fourier transform methods, stochastic differential
equations (SDEs) and the binomial method for instrument pricing. We do our best to show
that finite differences compare well with, and even outperform, these former methods,
especially for complex and non-linear one-factor and two-factor Black–Scholes models.

Executive Overview of this Book 3

Finally, the real option theory is emerging and many of the techniques in this book can
be used in decision support systems in the oil, gas and energy industries. Thus, the book
is also of interest to engineers, scientists and financial engineers in these fields.

1.4 SOFTWARE REQUIREMENTS

We have written this book from a number of viewpoints that have to do with what we call
software quality. In general, we adopt the ISO 9126 quality characteristics (see Kitchenham
and Pfleeger, 1996) as our working model. ISO 9126 describes how good a software product
is. It consists of six top-level characteristics:

• Functionality: The ability of the software to satisfy stated or implied customer needs.
• Reliability: Does the software maintain its level of performance for a stated period

of time?
• Usability: Is the software easy to understand, learn or integrate with other applications?
• Efficiency: Describes the response times in the application and the corresponding re-

sources that are needed.
• Maintainability: How easy is it to modify, adapt and test the application? How stable

is the application under change?
• Portability: The ease with which the application can be adapted to work in some new

software or hardware environment.

Any one (or all) of the above requirements may be important for your new or existing
software project. In general, the more requirements your applications must satisfy the
more time it will take to satisfy them. In this book we classify applications into three
broad categories, depending on the level of flexibility that they must have:

• Low flexibility: These are either throwaway prototypes or simple programs in order to
test a piece of code or check the validity of some new model

• Medium flexibility: The code and classes in this category can be customised (by chang-
ing its source code if necessary) and used in your own applications

• High flexibility: The code in this category can be used in your applications without
any changes.

It is important to know at the outset how flexible our solutions must be; on the one hand,
we do not want to ‘over-engineer’ our application, but nor do we want to produce code
that is difficult to maintain, understand or falls apart when we modify it. This book will
provide you with guidelines to help you to produce good designs for financial engineering
applications.

We layer the software in this book by examining it at four different levels:

• Foundation classes and building blocks: Reusable components for vectors, lists, matri-
ces and other containers. We make ample use of the Standard Template Library (STL).

• Mechanisms: Tightly coupled groups of generic functions that are related to a specific
piece of functionality. An example is a set of functions for Date manipulations (cash
flows, interest rate curves).

• Half-products: Ready-to-use libraries that you can use as part of your own applications.
We can place these half-products in assemblies and DLLs.

4 Financial Instrument Pricing Using C++

• Applications: Dedicated applications for the user (not the developer). These applica-
tions are usually executables.

There are many advantages associated with taking this layered approach to software
development, as we shall see in this book.

1.5 THE STRUCTURE OF THIS BOOK

This book is partitioned into six major parts, each of which deals with a major topic and
consists of a number of chapters. These chapters deal with techniques that help to achieve
the goals of each part.

Part I This part is an introduction to C++ template classes. We define what templates
are, how to create them and how to use them in financial engineering applications. We
give an overview of the Standard Template Library (STL). This is a C++ library consisting
of template classes for a wide range of data containers, algorithms and functionality for
navigating in these containers. We develop a number of template classes based on STL
that we can use in financial engineering applications.

Part II In this part we create classes and code that will be used when approximat-
ing partial differential equations by finite difference methods. First, we create template
classes for arrays, vectors and matrices as well as the corresponding mathematical oper-
ations on them. Furthermore, we introduce several classes that solve linear systems of
equations. These classes implement direct and iterative matrix solvers in numerical linear
algebra. Second, we create a number of other foundation classes that we need in numerical
differentiation and integration. Finally, some useful classes for statistics are introduced.

Part III This part represents the start of the book as far as the mathematical core is
concerned. We motivate the finite difference method by applying it to a simple first-order
ordinary differential equation in Chapter 11. This chapter discusses the most important
ideas and schemes that will serve us well in later chapters. Continuing from Chapter 11,
we introduce stochastic differential equations and the finite difference schemes needed in
order to approximate them. We also propose several schemes to approximate two-point
boundary value problems. Special attention is paid to the Crank–Nicolson scheme and
why it fails to approximate the solution of the convection-diffusion equation in certain
circumstances. It is in this part of the book that we introduce the class of exponentially
fitted schemes and explain how they resolve the spurious oscillation problems associated
with Crank–Nicolson.

Part IV In this part we introduce the one-factor and two-factor Black–Scholes equa-
tions and devise appropriate finite difference schemes for them. Before we reach this level
of Nirvana, we begin with the one-dimensional heat equation and discuss explicit and
implicit finite difference schemes to approximate its solution. The schemes are extensions
of the time-independent schemes that we introduced in Part III. Slightly increasing the
level of difficulty, we discuss the Crank–Nicolson and fully implicit schemes for the
one-dimensional convection-diffusion equation (and its specialisation, the Black–Scholes
equation). We analyse the schemes in some detail, discussing why they work, when they

Executive Overview of this Book 5

do not work and how to produce fitted schemes that approximate the solution and the
delta of the Black–Scholes equation.

Proceeding to two-factor problems, we propose Alternating Direction Implicit (ADI)
and splitting methods and compare their relative merits.

Part V In this part we give an introduction to design patterns. Design is about alter-
natives and we have many choices when designing a system as the choices are determined
by the software requirements. We begin with an introduction to some general design prin-
ciples. In particular, we focus on templates and inheritance and why they are competitors.
We also introduce the important notion of delegation whose understanding is fundamental
to design patterns.

The main objective in Part V is to show how the famous design patterns of GOF
(see Gamma et al., 1995) are applied to financial engineering applications. We pay special
attention to choosing appropriate examples and to a discussion of the advantages of design
patterns in this particular context. Three chapters are devoted to the Creational, Structural
and Behavioural patterns.

Part VI This part contains a number of chapters that are of particular interest to
financial engineers and IT personnel who write financial engineering applications. First,
we give an introduction to the Extensible Markup Language (XML), a W3C standard
for interoperable data representation. We also describe how it is used in option pricing
applications in this book. XML will become more important in the financial world in
the coming years as evidenced by the work seen with FpML and FIX. We also discuss
classes and code that allow C++ code to communicate with Excel. Finally, we introduce
a number of design patterns that are very useful for the current work.

1.6 PEDAGOGICAL APPROACH

In general, our approach is incremental in the sense that we begin with simple examples
to illustrate the theory and progress to larger problems and examples. This approach
applies to the theory of finite differences for partial differential equations as well as the
C++ code and design patterns. For example, our main objective is to model one-factor
and two-factor Black–Scholes equations using finite differences. The main ‘flow’ in this
case is:

• Finite differences for scalar, linear first-order ordinary differential equations (ODEs).
• Finite differences for stochastic differential equations (SDEs).
• Two-point boundary value problems (special case: stationary convection-diffusion).
• Explicit and implicit finite difference schemes for the heat equation.
• Crank–Nicolson and fitting schemes for the one-factor Black–Scholes equation.
• Approximating the Greeks.
• Alternating Direction Implicit (ADI) and splitting schemes for two-factor Black–Scholes

equations.

In a similar vein, we build up C++ expertise as follows:

• The C++ template class.
• The Standard Template Library (STL) and its applications to financial engineering.

6 Financial Instrument Pricing Using C++

• The Property pattern and the modelling of financial instruments.
• C++ classes for ODEs and SDEs.
• C++ foundation classes: vectors, matrices and statistics.
• C++ classes for the heat equation.
• Modelling Black–Scholes with C++.
• C++ for ADI and splitting methods.

In short, we adopt the following rule-of-thumb:

1. Get it working.
2. Then get it right.
3. Then get it optimised.

One step at a time!

1.7 WHAT THIS BOOK IS NOT

First, this is not an introductory book on C++. We assume that the reader has a working
knowledge of this language. Second, this book assumes that the reader knows what an
option is, what Black–Scholes is, and so on. Finally, this is not a book on the theory of
partial differential equations and their approximation using finite differences, but is rather
a book that motivates finite difference schemes and applies them to financial engineering
applications using C++.

1.8 SOURCE CODE ON THE CD

You can use the source code on the accompanying CD free of charge in your applications
provided you acknowledge the author:

 Datasim Education BV 2004

Each source file has this copyright statement. Any questions or suggestions should be
sent to Daniel Duffy at info@datasim.nl.

Part I

Template Programming in C++

2

A Gentle Introduction to Templates in C++

2.1 INTRODUCTION AND OBJECTIVES

This is the first chapter in Part I of this book. The main goal of Part I is to introduce
the reader to generic programming in C++ by discussing template classes and function
templates. We also give a fairly detailed introduction to the Standard Template Library
(STL), which provides us with a ready-to-use set of data structures and algorithms that
we can apply to financial applications. Furthermore, we define our own data structures
that model European option attributes. In short, Part I is the foundation upon which we
build all future classes and software systems in this book.

In Appendix 1 we give a review of the main features in C++ which you should read if
your knowledge of C++ is a bit rusty, but experienced C++ developers can pass it.

In this chapter we give a detailed introduction to how C++ supports the notion of generic
programming in the form of so-called templates. Just as a class can be seen as a factory
or ‘cookie-cutter’ for objects, so too can we see a C++ template as a factory for normal
C++ classes. This feature leads to massive reusability in C++ software applications. For
example, the STL (see Musser and Saini, 1996) contains C++ templates for a wide range
of data containers such as vectors, lists and sets as well as various kinds of algorithms that
operate on these containers. For example, STL has a C++ template for vectors. A vector
is an indexible array of objects to which new objects can be added. The objects in the
vector are generic and the programmer can then ‘instantiate’ the generic underlying type
by replacing it by a concrete type. Some examples of instantiated template classes are:

vector<double> (an array of doubles)
vector<EuropeanOption> (an array of European options)
vector <int> (an array of integers)

Please note that each of the above examples represents a class and that no new member
functions need to be written because they are generated as it were from the corresponding
template. Thus, we only have to write the template once and we instantiate its generic
underlying types to give us a class. The following example shows us how templates,
classes and objects are related:

template <class Type> vector; // Template declaration
typedef vector<double> DoubleVector; // A new class
DoubleVector myarr(10); // An array object: 10 elements

In this case we create a new object called ‘myarr’ by calling the corresponding constructor
that is defined in the code of the template. It is not necessary to write the code for this
constructor in class DoubleVector. The conclusion is that we achieve large reusability
gains that are not achievable with non-templated C++ code.

In this chapter we devote some attention to the most important aspects of C++ pro-
gramming using templates and, in particular, we concentrate on the syntax issues that you

10 Financial Instrument Pricing Using C++

need to master before progressing. Useful examples based on the financial domain will
be discussed in some detail.

The focus in this chapter is to show how to create your own simple template classes.
In Chapter 3 we give an introduction to the C++ STL, a library of ready-to-use tem-
plate classes.

2.2 MOTIVATION AND BACKGROUND

In Appendix 1 we create a class that models European options. In particular, we model
the member data in the class as variables of type double. We then create instances of
the class by initialising the data. In Appendix 1 the member data in the class is given by:

class EuropeanOption
{
// Public member data for convenience only
double r; // Interest rate
double sig; // Volatility
double K; // Strike price
double T; // Expiry date
double U; // Current underlying price
double b; // Cost of carry

string optType; // Option type (call, put)

// ...
};

But what if a programmer wishes to use this class in an application but would prefer to
use floats or some other data types to represent the option’s parameters? One option
is to copy the header and code files for the original class and change the declarations of
the parameters in the source and recompile. However, this is unacceptable because we
would end up with two classes that are essentially identical but only differ in the types
of their member data. It is easy to appreciate that this situation will lead to maintenance
problems. Fortunately, there is an elegant solution to this problem and it is resolved by
the use of the so-called template mechanism in C++. In this particular case we create a
template class whose parameters belong to some generic type rather than a concrete type
such as double or float. When creating the template class we are not worried about the
parameter types but we declare the parameters as belonging to some abstract type. In the
case of the Option class we show how this is done:

template <class ValueType> class EuropeanOption
{
// Public member data for convenience only
ValueType r; // Interest rate
ValueType sig; // Volatility
ValueType K; // Strike price
ValueType T; // Expiry date
ValueType U; // Current underlying price
ValueType b; // Cost of carry

string optType; // Option name (call, put)

// ...
};

A Gentle Introduction to Templates in C++ 11

In this case we have replaced the concrete type double by the generic data type ‘Val-
ueType’. Please note that this name is not a class but is just some easy-to-read name
that represents the eventual real type that will be used in applications. We note that there
is only one generic underlying type (namely ValueType) and this can be a restriction
in practice. A solution is to define an Option class having several underlying types or
creating classes that can contain heterogeneous data types.

What is the difference between a template class and a normal class? Strictly speaking,
a template class is a type whose instances are classes in much the same way that objects
are instances of classes. A template is a kind of meta-class.

How do we bring templates to life in an application? Basically, we replace the generic
underlying abstract data type by a concrete type to produce a class from which we can
create instances of that class, as the following code shows:

EuropeanOption<double> option1; // Default constructor
EuropeanOption<float> option2;
option1.optType = "P";
option1.U = 19.0;
option1.K = 19.0;
option1.T = 0.75;
option1.r = 0.10;
option1.sig = 0.28;

// Similar code for option2 ...

cout << "Option price with doubles: " << option1.Price() << endl;
cout << "Option price with floats: " << option2.Price() << endl;

In this case we declare two instances of the classes for options with underlying types
double and float, respectively! The added value is that we have created the code
for the option template class only once. Depending on the context, a programmer can
customise the class by replacing the generic data type ValueType by a specific type.
This feature promotes reusability and reliability of the code; on the one hand, we only
have to write the code once and, on the other hand, we only have to test and debug it
once. We now give a step-by-step account of templates in C++ and give some examples
for motivational purposes. We shall give more complex and practical examples as we
progress in this book.

2.3 DEFINING A TEMPLATE

C++ supports two kinds of templates first, template classes (as motivated in section 2.2)
and function templates. We concentrate on template classes in this and the next section,
and section 2.5 will discuss function templates.

A template class is a type that uses one or more generic underlying data types. As
we can see in Appendix 1, we partition the creation of a template class into two pieces,
namely the creation of the header file (contains the declarations of the member data and
member functions) and the creation of the code file (this contains the actual code for each
member function that we have declared in the header file).

As far as the declaration of the template class is concerned, we need some way of telling
the compiler that the underlying types are generic. To this end, we use the ‘template’
keyword in conjunction with the names of the underlying data types that will be used in

12 Financial Instrument Pricing Using C++

the template class. We have already seen an example in section 2.2, where we defined a
class for European options whose underlying type is generic:

template <class ValueType> class EuropeanOption
{
// ...

};

It is possible to define a class with several underlying types. Later chapters will discuss
this aspect in more detail but for the moment we are content to give some examples. The
first example defines a so-called class that represents named properties:

template <class Name, class Type> class Property
{
private:

Name nam; // The name of the property
Type con; // The contents of the property

public:

Property(); // Default constructor
Property(const Name& name, const Type& t);

// Other member function here ...

};

In this case a property has a name (for identification purposes) and a value. Both under-
lying types are generic and the programmer can replace them by specific types as in the
following code snippet:

Property<string, double> interestRate; // Use default constructor
Property<string, double> T(“Expiry date”, 1.0);

Don’t worry about the details of this class yet; we shall dissect it in great detail in
Chapter 5.

Finally, to show what the possibilities are we give part of the definition of a class
that represents points and entities in three-dimensional space. Each coordinate direction
is generic, thus allowing customisation:

template <class First, class Second, class Third> class Point
{ // Three-dimensional point class

private:

First f;
Second s;
Third t;

public:

// Other member functions

};

Programmers can then use this class by instantiating the generic types by their own
specific classes or even built-in types, for example (Spiegel, 1959):

A Gentle Introduction to Templates in C++ 13

Point<double, double, double> cartesianObject;
Point<double, Angle, double> cylindricalObject;
Point<double, Angle, Angle> sphericalObject;

Note that the instantiated types are either/or built-in types as the last example shows:
Angle is a class representing degree or radian units.

2.3.1 An example

A good way to learn how templates work is to examine one example in detail. To this
end, we give a self-contained account of a template class that we call Range. This class
corresponds to a closed interval in one dimension. This is a useful ‘utility’ class and it
contains functionality that is used by other applications in this book. In particular, the
Range class (and in combination with other classes) models the following:

• Candlestick charts that model price movements (Lofton, 1997): commodity prices have
a daily high and a daily low value; they also have opening and closing prices. When
the closing price is higher than the opening price we speak of a bullish day, otherwise
we speak of a bearish day. See Figure 2.1.

• Barrier option modelling: a double barrier option is knocked in or out if the underlying
price touches a lower boundary L or an upper boundary U (Haug, 1998).

• Placing constraints on properties: a property should lie in a range; an exception or alert
is triggered if its values fall outside the range.

• The range class is a part of other classes that model ordinary, stochastic and partial
differential equations. In these cases it plays the role of an interval of stock prices, time
or other financially relevant variable.

DH DH

CP

CP OP

OP

DL DL

BullishBearish

OP = opening price
CP = closing price
DL = daily low
DH = daily high

Figure 2.1 Candlestick charts

14 Financial Instrument Pricing Using C++

We first look at the header file for the Range class. We document this file by first looking
at the member data and then the member functions. The declaration of the class and its
member data is:

template <class Type> class Range
{ // A class for a one-dimensional interval
private:

Type lo;
Type hi;

public:

// Member functions

};

Here we see that a range is identified by creating member data objects that represent the
lower and upper values of the range, respectively. Once we have defined the structure of
the template class we continue with a discussion of its member functions. We can group
them into the following categories:

• Constructors and destructor.
• Member functions for setting and getting the high/low values of the range.
• Determining whether a given value is to the left, to the right or contained in a range.

The official class interface consisting of the member function is as follows:

template <class Type> class Range
{

private:

Type lo;
Type hi;

public:

// Constructors
Range(); // Default constructor
Range(const Type& low, const Type& high); // Low and high value
Range(const Range<Type>& ran2);// Copy constructor

// Destructor
virtual ~Range();

// Modifier functions
void low(const Type& t1); // Sets the low value of current range
void high(const Type& t1);// Sets the high value of current range

// Accessing functions
Type low() const; // Lowest value in range
Type high() const; // Highest value in the range

Type spread() const; // High - Low value

// Boolean functions
bool left(const Type& value) const; // Value to the left?
bool right(const Type& value) const;// Value to the right?
bool contains(const Type& value) const;// Contains value?

A Gentle Introduction to Templates in C++ 15

// Operator overloading
Range<Type>& operator = (const Range<Type>& ran2);

};

We shall now discuss how to implement the member functions for template classes.
We shall show how this is done for three member functions in Range, namely the copy
constructor, the function that calculates the extent of the range and the function that
determines whether a given value is in the range.

template <class Type> Range<Type>::Range(const Range<Type>& r2)
{ // Copy constructor

lo = r2.lo;
hi = r2.hi;

}

template <class Type> Type Range<Type>::spread() const
{ // Returns the higher bound of the range

return hi - lo;
}

template <class Type> bool Range<Type>::contains(const Type& t) const
{// Does range contain t?

if((lo <= t) && (hi >= t))
return true;

return false;
}

Notice that the template specifier must be given in all cases. Failure to do so will result in
compiler errors. Furthermore, if you look closely at the code you will see that the Range
class has assumptions concerning what it should expect from the underlying type, in this
case Type. Summing up, Type needs to implement the following:

The assignment operator =
The subtraction operator −
The operators <= and >=

The built-in numeric types do indeed support these operators but you will get a compiler
error if you instantiate the class with a type that does not support these operators. Thus, if
you wish to use Range with your own types you must ensure that they satisfy the above
requirements. This concept, called policy, describes what your template expects from its
underlying generic types.

In general, Range is used for numerical underlying types.

2.4 TEMPLATE INSTANTIATION

The process of generating a normal class from a template class and a template argument
is called template instantiation (Stroustrup, 1997). The generated classes are perfectly
ordinary classes and can be used in your applications. For example, the following are all
examples of classes:

16 Financial Instrument Pricing Using C++

Range<double>
Range<int>
Range<float>

You can then create instances of these classes in the usual way as the following code
shows:

// Define a futures contract (simple data structure)
double closingPrice(45.7);
double openingPrice(60.0);
Range<double> bearish(closingPrice, openingPrice);

// Looking at some prices
double currentPrice = 50.0;

bool test1 = bearish.left(currentPrice);
bool test2 = bearish.right(currentPrice);
bool test3 = bearish.contains(currentPrice);

if (test1 == false && test2 == false && test3 == true)
cout << "Everything OK\n";

In the same way we can instantiate a template class having multiple underlying values
as follows:

Point<double, double, double> origin(0.0, 0.0, -10000.0);

2.5 FUNCTION TEMPLATES

Besides the ability to define and instantiate template classes we can also define so-called
function templates. These are similar to procedural functions but with the additional prop-
erty that they operate on generic data types or have template arguments. For example,
here is a code that calculates the minimum of two generic numeric types:

template <class N> N min (const N& first, const N& second)
{ // Type ‘N’ is some generic numeric type

if (first < second)
return first;

return second;
}

Another useful function that we can create is swap(); this swaps two objects:

template <class Any> void swap (Any& first, Any& second)
{ // Type ‘Any’ is any old type

Any tmp = first; // Make a temporary copy

first = second;
second = tmp;

}

Having defined how to program function templates, we shall now describe how to use
them. In general, we use instantiate by just replacing the generic underlying type by a
concrete type, as shown in the following sample code:

A Gentle Introduction to Templates in C++ 17

// Swap two integers
int i = 10;
int j = -1435;
swap (i, j);

// Swap two ranges, why not?
Range<double> r1(0.0, 1.0);
Range<double> r2(100.0, 150.0);
swap(r1, r2);

We can see that there are massive reusability gains to be had by defining and using
template classes and function templates. Function templates will be used in this book to
provide a set of mechanisms that provide services to higher-level classes and code. We
use them to write essentially C-style functions having complex objects as arguments. We
group related functionality in the form of function templates for the following areas of
numerical analysis and statistics:

• Matrix manipulations, norms and other properties
• Statistics and statistical calculations
• Numerical interpolation and extrapolation
• Numerical integration

and many more. We shall discuss these mechanisms in more detail in later chapters.

2.5.1 An example

The Gaussian (normal) distribution is very important in financial engineering and option
pricing. Furthermore, the probability density function (pdf) and cumulative normal dis-
tribution function (cdf) are used in many applications. We implement these functions as
two function templates (see Haug, 1998):

template <class N> N NormalFunction(const N& x) const // pdf
{ // The type ‘N’ is some generic numeric type

N A = 1.0/sqrt(2.0 * 3.1415);
return A * exp(-x*x*0.5);

}

template <class N> N cdfNormal(double x) const // cdf
{ // The approximation to the cumulative normal distribution

N a1 = 0.4361836;
N a2 = -0.1201676;
N a3 = 0.9372980;

N k = 1.0/(1.0 + (0.33267 * x));

if (x >= 0.0)
{
return 1.0 - n(x)* (a1*k + (a2*k*k) + (a3*k*k*k));

}
else
{
return 1.0 - cdfNormal(-x); // Recursive function

}
}

18 Financial Instrument Pricing Using C++

The programmer can now use these functions with his or her own favourite underlying
data type.

2.6 DEFAULT VALUES AND TYPEDEFS
C++ helps the programmer in a number of ways. For instance, it often happens that certain
concrete types are used a lot and in this case we would like to create code without having
to specify the concrete classes each time. For example, let us suppose that our properties
have double values by default. Instead of having to write

Property<string, double> prop1(“Rocky”, 1.0);

we might prefer to write

Property<string> prop1(“Rocky”, 1.0);

This state of affairs can be achieved by defining so-called default values in the template
class declaration:

template <class Name = string, class Type = double> class Property
{

// Body
};

In fact, we see that the default name type is of class string, so it is possible to define
a Property without having to use any parameters whatsoever; in that case the name
will be a string and the value will be a double. Concluding, the following declarations
are possible:

Property<string, double> s1("Rocky", 2.0);
Property<string> s2("Rocky", 3.0);
Property<> s3("Rocky", 4.0); // Both types are default

The syntax for the case in which you use both defaults is a bit awkward and you should
not forget the brackets as the third example above shows.

The use of default values is similar to supplying a policy through a template argument
and then defaulting that argument to supply the most common policy. Template parameters
used to express policies are called traits (see Stroustrup, 1997).

A useful trick to improve the readability of code that uses templates, and to help us
to write less code, is to use a facility called typedef to create new data types. For
example, we develop a shorthand notation for commonly used classes and other types, as
the following examples show:

typedef int Length;
typedef Property<string, double> StandardProperty;
typedef BinaryDelegate<Key, Value> TObservers;

A typedef does not create a new type; it merely adds a new name for some existing type.

2.7 GUIDELINES WHEN IMPLEMENTING TEMPLATES
We shall now provide a number of tips to help you to eliminate annoying compiler errors.
These can be very cryptic when working with templates.

A Gentle Introduction to Templates in C++ 19

Tip 1: When using templates you must include the code file that contains the bodies of
the member functions in the template class. Otherwise, you will get a linker error.

Tip 2: Just because your template class compiles without error does not mean that your
test program will work during template class instantiation. The template class
expects the classes that instantiate the underlying types to support the member
functions that are used in the code of the template class.

Tip 3: Ninety percent of the compiler errors associated with template class programming
are caused by incorrect syntax.

Tip 4: Please use strings from the Standard Template Library (STL) instead of Stone Age
char∗ (char pointers). Avoid using string classes from vendor-specific libraries.
Include the following in your code:

#include <string>
using namespace std; // Standard namespace for STL

We shall introduce STL in Chapter 3.

2.8 CONCLUSIONS AND SUMMARY

We have given an introduction to template programming in C++. A template class is a kind
of meta-class as its underlying data types are generic and cannot be directly instantiated
by objects. Instead, replacing the generic data types by concrete types in the template
class leads to classes. This process is called template instantiation. The resulting classes
can then be used to create objects.

Designing, programming and testing code written using templates can be a challenge
for novices but with some forethought and perseverance many problems can be resolved.
In particular, the compiler errors that are produced by syntactically incorrect template
classes may be very difficult to resolve. The end-result will be a suite of generic code
that can be used in many applications and satisfies a variety of software requirements.
Template classes play an essential role in this book, as they do in many modern C++
applications, tools and libraries.

3
An Introduction to the Standard

Template Library

3.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce the reader to the Standard Template Library (STL) in C++.
The library consists of a number of data containers, algorithms and so-called iterators
for navigating in these data containers. STL is part of the standard C++ language and
is portable between different C++ compilers and operating systems. Furthermore, STL
allows you to reuse existing algorithms and data containers because they are generic; in
general terms, we say that software is generic if it is not tied to any specific data structure
or object type. In the case of STL the algorithms are as efficient as they would be if you
had written them specifically for the task at hand. STL makes use of the C++ template
mechanism and a reasonable understanding of templates (for example, the level attained
in Chapter 2 of this book) is an essential prerequisite before you start using the classes
in STL.

3.1.1 Why use STL?

First, for reusability reasons because it implements a number of generic template classes
that you can use in your applications and as components of your own classes. In the past,
each software or hardware vendor had its own proprietary set of reusable classes. We are
thinking of organisations such as Borland, IBM, Microsoft, Rogue Wave and many others.
Now we can just use STL. Second, STL is portable between C++ compilers and operating
systems. For example, you can write and test your programs using your favourite C++
compiler under Windows and then port it to the Linux operating systems and compile
it using the GNU compiler. Finally, once you learn the interfaces of two or three data
containers and iterators you will also be able to use the other STL classes in applications.

This chapter forms the basis for many of the template classes in this book. We shall
encounter STL directly and indirectly in later chapters. Investing in learning STL and how
to apply it to financial engineering problems will repay itself handsomely. We motivate
STL by giving quite a few examples and the corresponding output from each example.
A good way to learn the syntax of STL is to look at the code and then at the output to
see if you can match them up, as it were. In this way we hope that you will get a feeling
for the syntax of the library.

As with Chapter 2, we provide lots of code examples to show how STL works. Looking
at code and writing your own examples is the best way to learn in this particular context.
The examples in this chapter are simple to enable you to grasp the essence of STL as
quickly as possible and progress to more challenging problems.

3.2 A BIRD’S-EYE VIEW OF STL

In this section we give a high-level overview of STL. More detailed accounts can be found
in many books on the subject (see, in particular, Musser and Saini, 1996; Breymann, 1998).

An Introduction to the Standard Template Library 21

'STL Component'

'Containers' 'Algorithms' 'Iterators'

Input
Output
Forward
. . .

'Function Objects'

Generator Predicate
Random Number
Generator
. . .'Sequence'

vector
list
slist

'Associative'

set
map
multiset
multimap

'Adaptors'

stack
queue
priority queue

'Mutating'

copy
replace
sort
remove
. . .

'Non-
mutating'

find
search
min
max
. . .

Figure 3.1 STL roadmap

Basically, STL provides functionality for data structures and algorithms that operate on
those data structures as well as extra functionality that enables us to navigate in these
data structures.

We discuss the following categories in STL (see Figure 3.1 for the STL roadmap):

Containers

Containers, which are collections of elements that have a logical relationship with each
other, are essentially data structures. There are three subcategories of container:

• Sequence containers (list, vector, slist)
• Associative containers (set, multiset, map, multimap)
• Adaptors (stack, queue, priority queue).

A sequence container is one whose elements are arranged in a strictly linear order. Typical
examples are lists, arrays and vectors. Elements in sequence containers are accessed in a
sequential manner. An associative container, on the other hand, allows fast access to data
by mean of some key. This key may or may not coincide with the data. For example, the
telephone number of a person could be accessed by using the person’s name as a key. In
sets and multisets the key is the data whereas the key and data are different with maps
and multimaps.

Finally, an adaptor is a container that changes the interface of an existing container.
Examples of adaptors are stacks, queues and priority queues. These containers can be
loosely called derivative containers because their member functions use the method of
their base container by a technique called delegation. We shall discuss this topic in the
chapters on design patterns.

Iterators

These tend to be difficult for novice programmers. An iterator is a mechanism for travers-
ing a sequence container and it can be described as a ‘glorified pointer’: an iterator

22 Financial Instrument Pricing Using C++

Forward Iterator

Bidirectional Iterator

Random Access Iterator

Input Iterator
(read-only)

Output Iterator
(write-only)

Figure 3.2 Hierarchy of iterator concepts

points to one specific element in a container at any one given time; thus, dereferencing
the iterator gives you the element itself!

Iterators can be classified in a hierarchy of ever-increasing functionality, as shown
in Figure 3.2. Input (read-only) and output (write-only) iterators are the most restricted
types. They allow traversal in a range of elements in the forward direction only. They only
accept single-pass algorithms. Forward iterators, on the other hand, can also traverse a
range in the forward direction but they support more clever algorithms than the input and
output iterators. A bidirectional iterator supports both forward and backward traversal.
Finally, a random access iterator also supports arbitrary-sized jumps in a range.

Algorithms

These are classes that operate on containers. There are two important categories depend-
ing on the iterators that algorithms use. First, non-mutating (or non-modifying) algorithms
use constant iterators and hence do not modify the elements of the underlying container
while mutating algorithms use mutable iterators. Some examples of non-mutating algo-
rithms are:

• Searching for specific values in a range of elements
• Counting the number of elements in a range that have a given value
• Applying a given function to each element in a range
• Comparing two ranges
• Finding the minimum and maximum of a range of elements.

In short, non-mutating algorithms can be loosely described as ‘inspection’ or read-only
algorithms.

Some examples of mutating algorithms are:

• Copy a range of elements from one container to another container
• Swap two containers

An Introduction to the Standard Template Library 23

• Transform a range of elements into another range
• Replace elements in some range
• Fill a range with elements
• Remove elements from a range
• Reverse a range in place.

The reader should take note that these algorithms exist in STL and that he or she
does not have to reinvent the wheel when developing C++ applications: just reuse these
algorithms. In short, mutating algorithms can be loosely described as ‘modifier’ or write-
only algorithms.

Function objects

A function object (or functor) is any object that can be called using ordinary function
call syntax. Each functor must overload the operator ‘()’. A simple example of a function
object is the normal C function pointer. Examples of function objects are Generator, Unary
Function and Binary Functions that can be called as f (), f (x) and f (x, y). A special
function object that will interest financial engineers is the Random Number Generator.
This generator uses the subtractive method for generating pseudo-random numbers based
on the classic Knuth algorithms.

Final remark

One final remark concerning containers, algorithms and iterators. Most of the algorithms
in STL operate on arbitrary containers and the algorithms have no knowledge of the
container’s internal structure because this problem is taken over by iterators. Iterators can
be seen as the mediators between containers and algorithms. This promotes flexibility in
the software.

3.3 SEQUENCE CONTAINERS

The elements in sequence containers are arranged in a strict linear order. They are variable-
sized containers, which means that elements can be added or removed after the containers
have been constructed. The most general representation of a sequence container is shown
in Figure 3.3. Here we see that the container consists of a number of elements and that it

. . .

Front Back

Some element in Container

Figure 3.3 Sequence containers

24 Financial Instrument Pricing Using C++

has a front element and a back element. The main scenarios that have to do with container
life cycle are:

• Creating instances of the container (constructor)
• Inserting elements (at front, back or in the interior of container)
• Erasing and removing elements
• Iterating over the elements of the sequence container
• Other possible operations depending on the type of container.

In this section we concentrate on the list template class because, first, we use it with many
other classes in this book and, second, it embodies what we need to know if we wish
to understand other STL containers. In other words, once you know how to use the list
class in your applications you should not have many problems with the rest of the STL
functionality.

Actually, there are two kinds of lists in STL: first, the ‘slist’ (singly linked list) template
class where each element is linked to the next element but not to the previous element and
the list template class where each element has a predecessor and a successor. The former
class supports traversal in the forward direction only while the latter class supports both
forward and backward traversal.

3.3.1 Programming lists

Let us look at how to create lists. In this first example we show how to create lists by
using various constructors, how to use iterators in order to navigate in a list and how
to add an element to the end of a list. To this end, the following code is complete and
machine-readable:

// ch3list.cpp
//
// Examples to show how sequence containers (list) work.
//
// (C) Datasim Education BV 2003

#include <list>
#include <string>
#include <iostream.h>

using namespace std; // You must use this to include STL!

int main()
{

// Create list instances
list<int> list1; // Empty list

size_t n = 10;
double val = 3.14;
list<double> list2(n, val); // Create n copies of val

list<double> list3(list2); // Create a copy of list2

cout << "Size of list1 " << list1.size() << endl;
cout << "Size of list2 " << list2.size() << endl;
cout << "Size of list3 " << list3.size() << endl;

An Introduction to the Standard Template Library 25

// We iterate over the elements of list 3 and print its elements
// Create list iterator
list<double>::const_iterator i;
// Print every character in the list
for (i = list2.begin(); i != list2.end(); ++i)
{
cout << *i << ",";

}
cout << endl;
// Now populate a new list with the elements of list2
list<double> list4;
for (i = list2.begin(); i != list2.end(); ++i)
{
list4.push_back(*i);

}
// Print every character in the list
for (i = list4.begin(); i != list4.end(); ++i)
{
cout << *i << ",";

}
cout << endl;
return 0;

}

The output from this program is:

Size of list1 0
Size of list2 10
Size of list3 10
3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,
3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,

We note that if you use a given STL container in your code, you should first include its
header and declare that you are using the STL namespace, as can be seen in the above
example. As far as iterators are concerned, we paraphrase the code that prints the elements
of list4 above: set the iterator to point to the first element of list4, print the element, move
to the next element and print it; print all elements until we come to the end of the list.
Finally, please note that we are using a so-called const iterator; it can read but not write
the elements that it is traversing over.

3.3.2 Vectors and arrays in STL

The vector class in STL is similar to ‘list’ and many of the member functions are the same.
In fact, we could replace all occurrences of the word ‘list’ by ‘vector’ in section 3.3.1,
recompile and run the code. It works! However, with lists it is only possible to access
an element by navigating from the begin or end in a linear fashion. Vectors do not have
this problem because they have random access iterators defined for them. Further, it is
possible to return the element in a vector at a specified position. The following code
shows how the vector class is used:

// ch3vector.cpp
//
// Examples to show how sequence containers (vector) work.
//

26 Financial Instrument Pricing Using C++

// (C) Datasim Education BV 2003

#include <vector>
#include <string>
#include <iostream.h>

using namespace std;

template <class T> void print(const vector<T>& l)
{ // A generic print function for vectors

cout << endl << "Size of vector is " << l.size() << "\n[";
// Must use const iterator here, otherwise get a compiler error.
vector<T>::const_iterator i;
for (i = l.begin(); i != l.end(); ++i)
{

cout << *i << ",";
}
cout << "]\n";

}

int main()
{
size_t n = 10;
double val = 3.14;
vector<double> vector2(n, val); // Create n copies of val

cout << "Size of vector2 " << vector2.size() << endl;

print(vector2);

// Access elements of vector by using the indexing operator []
// Change some values here and there
vector2[0] = 2.0;
vector2[1] = 456.76;

int last_element = vector2.size() - 1;
vector2[last_element] = 55.66;

print(vector2);

return 0;
}

The output from this program is:

Size of vector2 10
Size of vector is 10
[3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,]
Size of vector is 10
[2,456.76,3.14,3.14,3.14,3.14,3.14,3.14,3.14,55.66,]

In this example we first of all created a (reusable) function template to print the elements
of a generic vector. The function is then called in the main program by instantiating it
for double precision numbers. This reduces the amount of code in our tests. An important
remark on indexing is in order; the vector class starts indexing at zero an hence a vector
of length 10 will be accessed by indexes zero up to and including nine! This is an
important point to remember when using the indexing operator with vector. We create
more sophisticated vector classes in later chapters where the programmer can choose the
start index. For example, he or she could choose zero, one or even a negative number as

An Introduction to the Standard Template Library 27

the start index. In this case we cater for different kinds of developers. This class vector
is the ‘building’ block for the classes that we develop in later chapters for mathematical
entities such as Vector and two-dimensional and three-dimensional Matrix. Thus, it
is important to understand how it works and how it is used in applications. It will also
be a useful class in your own applications.

3.4 ASSOCIATIVE CONTAINERS

Sequence containers do not impose any order; you can insert an element into a sequence
container at any position. Associative containers are different because the elements are
ordered on the basis of some special rule. We do not have to insert elements at a particular
position because such details are hidden from us; you just insert the element and the
associative container takes care of the rest. The main reason for this ploy is that lookup is
quicker than with sequence containers. For example, we can use binary search instead of
linear search; in this case the complexity is reduced from O(N) to O(log N). In general,
associative containers allow efficient retrieval of elements based on keys. Each element
has a key associated with it and it is possible to find that element based on the key. There
are four associative containers in STL: set, map, multiset and multimap. In the
case of set the key is the element while in the case of map and multimap the elements
are associated with the keys. In essence, maps and multimaps are key:value pairs (similar
to a telephone book of names and telephone numbers). In set and map the keys are
unique, while with multiset and multimap duplicate keys are allowed.

3.4.1 Sets in STL

Sets are very important in general and for our financial applications in particular. Set
theory is well established in mathematics and it can be applied to many domains. For the
moment, we give an illustrative example of some sets containing descriptions of option
attributes. We see how to create sets, add elements to sets, swap sets and print sets.

// ch3set1.cpp
//
// Creating sets. Simple functions for starters.
//
// 1. Create sets with string elements
// 2. Compare sets with '==' operator
// 3. Swap two sets using the swap() function
// 4. Assigning sets to each other
//
// (C) Datasim Education 2003

#include <set>
#include <iostream>
#include <string>

using namespace std;

template <class T> void print(const set<T>& mySet, const string& name)
{ // Print the contents of a set. Notice the presence of a const

// iterator.

cout << endl << name << ", size of set" << mySet.size() << "\n[";

Andrey
trading software col

28 Financial Instrument Pricing Using C++

set<T>::const_iterator i;

for (i = mySet.begin(); i != mySet.end(); ++i)
{

cout << (*i) << ",";
}

cout << "]\n";
}

int main()
{
set<string> first; // Default constructor
// Only unique (new elements) added
first.insert("Interest rate");
first.insert("Expiry date");
first.insert("Volatility");

cout << "First Size: " << first.size() << endl;
set<string> second (first); // Copy constructor

// Add extra elements to second set
second.insert("Interest rate");
second.insert("Strike price");
second.insert("Current underlying price");
second.insert("Cost of carry");

cout << "Second Size: " << second.size() << endl;

// Are the sets the same?
if (first == second)

cout << "Sets have same elements\n";
else

cout << "Not same elements\n";
// A bit of swapping
swap(first, second);

// Assignment
set<string> third = first;

// Now print the sets
print(first, "First set");
print(second, "Second set");
print(third, "Third set");

}

The output from this program is:

First Size: 3
Second Size: 6
Not same elements

First set, size of set is 6
[K,S,T,b,r,sigma,]
Second set, size of set is 3
[T,r,sigma,]
Third set, size of set is 6
[K,S,T,b,r,sigma,]
An Executive Option, size of set is 7
[K,S,T,b,lambda,r,sigma,]

An Introduction to the Standard Template Library 29

3.4.2 Maps in STL

In general, we can describe a map as a kind of dynamic associative array; ‘dynamic’
because we can add new elements at run-time and ‘associative’ because the values in the
map are accessed by a key that is not necessarily of integer type. The following example
shows what we mean. We create a map that models the attributes of a European option.

// ch3map1.cpp
//
// Test case for map container. Simple element-based operations.
//
// Important topics are:
//
// 1. The question of unique keys(when allowed/accepted)
// 2. Inserting pairs of object into map
// 3. Iterating over the elements of the map and using the current
// pair’s option and second elements.
//
// (C) Datasim Education 2003

#include <map>
#include <iostream>
#include <string>

using namespace std;

int main()
{

map<string, double> option;

// Using indexing to define the keys in the map
option["r"] = 0.10; // Interest rate
option["sig"] = 0.28; // Volatility
option["K"] = 19.0; // Strike price
option["T"] = 0.75; // Expiry date
option["S"] = 19.0; // Underlying asset

cout << "Size of map: " << option.size() << endl;;

// Iterating in the map
map<string, double>::iterator i = option.begin();

while (i != option.end())
{
cout << "Element pair [" << (*i).first << "," <<
(*i).second << "]";

i++;
}

return 0;

}

The output from this program is:

Size of map: 5
Element pair [K,19]
Element pair [S,19]
Element pair [T,0.75]
Element pair [r,0.1]
Element pair [sig,0.28]

30 Financial Instrument Pricing Using C++

We can already see some advantages of the map container in this example. Compared
with the member data in the Option class in Chapter 1, we can group the attributes of
an option into a single abstraction whose elements are accessed by meaningful keys,
in this the string names representing the names of the different attributes of an option.
We shall use this construction in later chapters as an embedded data structure for other
higher-level classes.

Summarising, a map can be compared to a dictionary, hash table or telephone book.

3.5 ITERATORS IN STL
We have already discussed the iterator hierarchy (see Figure 3.2). Iterators are the life-
blood of STL because without them we would not always be able to populate containers
with data or retrieve information from these containers. They can be seen as a general-
isation of pointers; they are in fact objects that point to other objects. With an iterator,
you can navigate through a range of objects.

The main advantage of the iterator concept is that it decouples containers from the
algorithms that operate on them. In STL, algorithms operate on a range of iterators rather
than the containers themselves. All STL containers have iterators so you do not have to
program them yourself. It is even possible to define iterators for user-defined types and
classes and we shall discuss this topic in Chapter 5.

3.5.1 What kinds of iterators?

We have already discussed the iterator taxonomy in section 3.2. We now give an overview
of how to use some of these iterators. We concentrate on the following useful types:

• Forward iterators that can read data
• Forward iterators that can write data
• Reverse iterators
• Random access iterators.

The following example makes heavy use of operator overloading in order to navigate
in containers.

// ch3iterators.cpp
//
// Test program to test the following iterators;
// - Bidirectional random access iterators
// - Reverse iterators
// - Const iterators
//
// (C) Datasim Education BV 2003

#include <vector>
#include <iostream>

using namespace std;

vector<double> makevector(int size)
{ // Creates STL vector with doubles

vector<double> result; // Create empty vector
for (int i=1; i<=size; i++)
{

An Introduction to the Standard Template Library 31

result.push_back(double(i));
}
return result;

}

void print(const vector<double>& l)
{ // Print the vector

cout << "Size of vector is: " << l.size() << endl;

// Create vector iterator
vector<double>::const_iterator i;

// Print every character in the vector
for (i=l.begin(); i!=l.end(); i++)
{
cout << (*i) << " ";

}

cout << endl;
}

void main()
{

// Create a vector with characters
vector<double> vector1=makevector(5);

// Create bidirectional iterator
vector<double>::iterator bi;

// Traverse forward
cout << "Traverse forward" << endl;
bi=vector1.begin(); // Set iterator
while (bi!=vector1.end()) cout << (*bi++) << " ";
cout << endl << endl;;

// Traverse backward
cout << "Traverse backward" << endl;
bi=(vector1.end());
do
{
cout << (*--bi) << " ";

}
while (bi!=vector1.begin());
cout << endl << endl;

// Traverse random
cout << "Traverse random" << endl;
bi=vector1.begin();
cout << *bi << " "; // First element
cout << *(bi+=3) << " "; // 1+3 is 4th element
cout << *(bi-=1) << " "; // 4-1 is third element
cout << bi[-1] << " "; // 3-1 is second element
cout << bi[1] << endl << endl; // 3+1 is fourth element

// Create bidirectional iterator
vector<double>::reverse_iterator ri;

// Traverse reverse forward
cout << "Traverse reverse forward" << endl;
ri=vector1.rbegin(); // Set iterator
while (ri!=vector1.rend()) cout << (*ri++) << " ";
cout << endl << endl;

32 Financial Instrument Pricing Using C++

// Traverse reverse backward
cout << "Traverse reverse backward" << endl;
ri=(vector1.rend());
do
{

cout << (*--ri) << " ";
}
while (ri!=vector1.rbegin());
cout << endl << endl;

// Traverse reverse random
cout << "Traverse reverse random" << endl;
cout << *ri << " "; // First element
cout << *(ri+=3) << " "; // 1+3 is 4th element
cout << *(ri-=1) << " "; // 4-1 is third element
cout << ri[-1] << " "; // 3-1 is second element
cout << ri[1] << endl << endl; // 3+1 is fourth element

// Change element
cout << "Change first element with mutable iterator" << endl;
bi=vector1.begin();
*bi=double(99);
print(vector1);

// Change element with const iterator
cout << "Change first element with const iterator" << endl;
vector<double>::const_iterator ci;
ci=vector1.end();
ci--;
cout << *ci << endl;

}

The output from this program is:

Traverse forward
1 2 3 4 5
Traverse backward
5 4 3 2 1
Traverse random
1 4 3 2 4
Traverse reverse forward
5 4 3 2 1
Traverse reverse backward
1 2 3 4 5
Traverse reverse random
5 2 3 4 2
Change first element with mutable iterator
Size of vector is: 5
99 2 3 4 5
Change first element with const iterator
5

Some remarks on this code are:

• Random access iterators define operators +=, −+, + and − so that it is possible to
‘jump’ from one position in a vector to another position.

• Reverse iterators begin at the end of a vector (denoted by rend()) and they navigate
in the vector until they reach the beginning of the vector (denoted by rbegin()).

An Introduction to the Standard Template Library 33

• Iterators that read the elements of a vector and do not need to modify those elements
should be implemented as const iterators.

3.6 ALGORITHMS

Most of the algorithms in STL are general in nature and there is no support for domain-
specific functionality such as numerical analysis (in all its forms), statistics or matrix
algebra. However, it is possible to create domain-specific libraries using STL compo-
nents as ‘building blocks’. In fact, this is what we do in this book, as we shall see in
later chapters.

To give a taste of what STL offers in the area of algorithms, in this case we concentrate
on the following:

• Creating vectors of random numbers
• Sorting a vector
• Merging two vectors
• Binary search in a vector for a particular value.

We take the rand() random function from a standard library. In real applications we
should probably use specialised pseudo-random number generators. However, we should
be suspicious of random number generators offered by the operating system. The algo-
rithms can be used in applications for Monte Carlo simulations and the numerical solution
of stochastic differential equations (SDEs).

For another approach to random number generation in quantitative finance, see Jäckel
(2002).

// ch3alg.cpp
//
// Sample algorithms in STL.
//
// (C) Datasim Education BV 2003

#include <vector>
#include <iostream>
#include <algorithm>
#include <time.h>

using namespace std;

void print(const vector<int>& v)
{ // Print the vector

// Create vector iterator
vector<int>::const_iterator i;

cout << "[";

// Print every integer in the vector
for (i=v.begin(); i!=v.end(); i++) cout << *i << ", ";
cout << "]" << endl;

}

int main()
{

// Create a 'seed' at the current time so that

34 Financial Instrument Pricing Using C++

// the random numbers will be different each time
// the generator is run
srand((unsigned) time (NULL));

int Size = 5;
// Create vectors and fill with random numbers
vector<int> v1, v2;
int i;
for (i=0; i<= Size; i++)

v1.push_back(rand());
for (i=0; i< Size; i++)

v2.push_back(rand());

cout << "Two random lists" << endl;
print(v1);
print(v2);

// Sort the lists
sort(v1.begin(), v1.end());
sort(v2.begin(), v2.end());

cout << "Two sorted lists" << endl;
print(v1);
print(v2);

// Merge the two lists to a third list
vector<int> v3(v1.size()+v2.size());
cout << endl << "Merge the two lists" << endl;
merge(v1.begin(), v1.end(), v2.begin(), v2.end(), v3.begin());
print(v3);

return 0;
}

The output from this program is:

Two random lists
[24251, 25008, 20095, 6266, 29955, 11496,]
[26089, 32073, 682, 6132, 4099,]

Two sorted lists
[6266, 11496, 20095, 24251, 25008, 29955,]
[682, 4099, 6132, 26089, 32073,]

Merge the two lists
[682, 4099, 6132, 6266, 11496, 20095, 24251, 25008, 26089, 29955, 32073,]

Most of the code should be self-explanatory. However, we discuss the sort and binary
search algorithms in some detail. The sort algorithm sorts a vector (in this case)
between its beginning and end into ascending order. It is possible to sort the vector in
some other way by using a so-called comparison function , but this topic is outside the
scope of this chapter. The binary search algorithm takes three arguments: the start
position, the end position and the value that we are looking for. Here is another example:

int arr[] = {1, 2, 3, 3, 5, 8};// Built-in sorted C-style array
const int N = sizeof(arr)/sizeof(int);

for (int j = 1; j <= 10; j++)
{
cout << "\nSearching for: " << j << ":";

An Introduction to the Standard Template Library 35

if (binary_search(arr, arr+N, j) == true)
cout << "present";

else
cout << "not present";

}

The output from this piece of code is:

Searching for: 1:present
Searching for: 2:present
Searching for: 3:present
Searching for: 4:not present
Searching for: 5:present
Searching for: 6:not present
Searching for: 7:not present
Searching for: 8:present
Searching for: 9:not present
Searching for: 10:not present

3.7 USING STL FOR FINANCIAL INSTRUMENTS

How much of STL do we use in this book? Of course, it is not possible to discuss
all the possibilities (nor even desirable!) on how to apply STL to financial engineering
applications but there is a suitable subset of the STL library that we use to build more
complex and intelligent classes. These classes will be introduced piecemeal as we progress
in the book.

3.8 CONCLUSIONS AND SUMMARY

We have given an overview of the functionality of the Standard Templates Library (STL).
This is part of the official C++ language and hence code that uses STL is guaranteed to
be portable and future-proof.

Our interest in this book is in applying STL to writing financial engineering appli-
cations. In particular, STL has support for containers, algorithms and iterators and we
embed them in our own code and applications in the coming chapters.

4

STL for Financial Engineering Applications

4.1 INTRODUCTION AND OBJECTIVES

In this chapter we continue with our discussion of STL. In particular, we show how to
use the STL classes in order to create new classes and containers. The possibilities are
almost infinite but in this chapter we concentrate on several examples that lay the basis
for many of the applications and classes in future chapters.

The main examples are:

• Creating classes for matrices
• How STL implements sets and set operations
• Numeric algorithms in STL
• Creating your own Property classes for option data modelling.

Once these new building blocks have been coded and tested they can be used in financial
engineering applications such as:

• Creating tree data structures for the binomial and trinomial methods
• Band, tridiagonal and sparse matrix computation
• Numeric computation with statistical data
• Flexible attributes (member data) for many kinds of options.

There are many advantages to be gained from this manner of programming. The
first advantage is reusability; once a class has been created it can then be applied and
extended using the extension techniques that the object-oriented and generic program-
ming paradigms offer. Second, it promotes reliability because we do not have to worry
about low-level details. These details are encapsulated in other classes that we then use
as black boxes. Finally, and possibly most important for financial engineers who use
C++ in their applications, this approach promotes usability because we do not have to
have knowledge of all the low-level details of a class when we are just using it. In
short, encapsulating and hiding non-relevant detail in other classes reduces ‘cognitive
overload’.

The containers in this chapter (and indeed most of the chapters in this book) are time-
independent. In order to rectify this situation somewhat we devote Appendix 2 to date and
time classes that can be used in various financial engineering applications – for example,
discount curves and cash flows.

4.2 CLEVER DATA STRUCTURES

STL supports nesting and recursive classes (Gamma et al., 1995). Basically, this means
that you can define container classes whose underlying types are also containers. There is
an infinite number of possible combinations but our concern in this book is with defining

STL for Financial Engineering Applications 37

useful structures for financial engineering applications. For example, the following struc-
tures are all feasible in STL:

• Lists of vectors: list<vector<T> >
• Vectors of vectors: vector<vector<T> >
• Lists of sets: list<set<T> >
• List of vectors of vectors: list<vector<vector<T> > >(wow!)

Of course, one has to be reasonable and not get carried away by creating containers
and the corresponding code that is difficult to understand and difficult to maintain. In
this section we give some examples of creating matrices with various kinds of inter-
nal structure. This is a very important topic in numerical analysis and numerical linear
algebra and much research and effort has been devoted to the problem of constructing
memory-efficient matrix data structures, some of which are shown in Figure 4.1. The
main types are:

(a) General rectangular full matrices with n rows and m columns: this is a matrix with
n × m elements in memory.

(b) Diagonal matrix: a matrix all of whose elements are zero except for the main diagonal.
(c) Tridiagonal matrix: a matrix all of whose elements are zero except for the main

diagonal, the sub-diagonal and the super-diagonal. We shall need this type of matrix
when we solve boundary value problems using finite differences.

(d) Block tridiagonal: a matrix whose diagonals are tridiagonal matrices.
(e) Lower triangular: a matrix whose element above the main diagonal are zero. An upper

triangular matrix is one whose elements below the main diagonal are zero.

Full

(a)

Sparse

(f)

Diagonal

(b)

Lower triangular

(e)

Block tridiagonal

(d)

. .

. .

Tridiagonal

(c)

Figure 4.1 Matrix structures

38 Financial Instrument Pricing Using C++

Binomial tree

(a)

Three-dimensional matrix (array of matrix)

(b)

. .
.

Row

Column
3rd dimension

Figure 4.2 Special matrix structures

(f) Sparse matrix: a matrix whose elements are mainly zero and that has a (small) per-
centage of non-zero elements. In general, there is no pattern to the position of the
non-zero elements. This is a special matrix category and is important for multi-
dimensional problems

These matrix types will be used when we solve one-factor and multi-factor option
models with finite difference schemes. We choose the most appropriate matrix for the
problem at hand. Of course, we could use a full matrix (case (a) above) for all applications
but this approach would be wasteful of computer memory and would result in performance
degradation.

We mention two other very interesting structures in financial engineering: first, the data
structure that holds the data in the binomial method (see Figure 4.2(a)). This is a lattice
structure and is implemented as a vector of vectors in STL. Second, three-dimensional
matrices (or arrays of matrices) are useful when modelling portfolios (see Figure 4.2(b)).

We shall show how some useful matrix structures are defined in STL, but first we need
to create some simple functions for printing vectors and matrices. These functions are
useful when you are testing and debugging prototype code and applications.

4.2.1 A simple output mechanism

Since we shall often be working with vectors and matrices in this book we thought it
useful to provide a number of output mechanisms to enable the results of calculations to
be visualised. As a first attempt, we discuss how to output vectors and matrices using
the standard C++ iostream. (In later chapters we discuss how to display vectors and
matrices in a spreadsheet.) First, we print vectors using the following function template:

template <class V> void print(const vector<V>& v)
{
cout << "\nV:[";
vector<V>::const_iterator i;

// Print every value in the vector
for (i = v.begin(); i!=v.end(); i++)

STL for Financial Engineering Applications 39

{
cout << (*i) << ",";

}
cout << "]";

}

Basically, we define a const iterator that navigates over the elements of a vector and prints
the current element in that vector. The second step is to print a vector whose elements are
themselves vectors. Again, this is achieved by iterating over the ‘outer’ vector and then
calling the already-defined print function for ‘simple’ vectors. The resulting code is:

template <class V> void print (vector<vector<V> >& mat)
{ // This structure is really a matrix

vector<vector<V> >::const_iterator i;

// Print every vector in the matrix
for (i = mat.begin(); i!=mat.end(); i++)
{
print (*i);

}
cout << endl;

}

We take an example to show how the print function works. To this end, we create a 5 × 5
‘full’ matrix as follows:

// Create a 'full' matrix
vector<vector<int> > myMat(5); // 5 rows

myMat[0] = vector<int>(5,1); // Size 5, value 1
myMat[1] = vector<int>(5,2);
myMat[2] = vector<int>(5,3);
myMat[3] = vector<int>(5,4);
myMat[4] = vector<int>(5,5);

print(myMat);

The output from this code is:

V:[1,1,1,1,1,]
V:[2,2,2,2,2,]
V:[3,3,3,3,3,]
V:[4,4,4,4,4,]
V:[5,5,5,5,5,]

Another example is the case where we create a matrix containing character data. Each
‘inner’ vector contains one less element than its predecessor:

// Matrices with character values
vector<vector<char> > myCharMat(5); // 5 rows

myCharMat[0] = vector<char>(5,'A'); // Elements with value ‘A’
myCharMat[1] = vector<char>(4,'B');
myCharMat[2] = vector<char>(3,'C');
myCharMat[3] = vector<char>(2,'D');
myCharMat[4] = vector<char>(1,'E');

print(myCharMat);

40 Financial Instrument Pricing Using C++

The output from this code is:

V:[A,A,A,A,A,]
V:[B,B,B,B,]
V:[C,C,C,]
V:[D,D,]
V:[E,]

The moral of this story is that you can create simple yet effective printing functions
for your code and applications before integrating them with more sophisticated output
software such as Excel and other graphics packages.

4.3 SET THEORY AND STL
STL support the notion of a set. This has powerful ramifications because many applications
use sets as high-level data structures. We are interested in creating sets, adding elements
to and removing elements from a set, and comparing two sets. The main functions are:

• Is set A a subset of set B (includes())?
• The union of A and B (set_union())

A

B
B

BB

A

AA

Union
Intersection

Difference
Symmetric
difference

B

A

A B

Subset
Disjoint sets

Figure 4.3 Set operations

STL for Financial Engineering Applications 41

• The intersection of A and B (set_intersection())
• The difference of A and B A\B (set_difference())
• The symmetric difference of A and B (set_symmetric_difference())

These functions and relationships are shown in Figure 4.3. They are supported by STL
although you have to write your own function to test if two sets are disjoint.

In our first example we give some code to show how to create sets, copy sets and insert
elements into sets.

// ch4set1.cpp
//
// Creating sets. Simple functions for starters.
//
// 1. Create sets with string elements
// 2. Compare sets with '==' operator
// 3. Swap two sets using the swap() function
// 4. Assigning sets to each other
//
// (C) Datasim Education 2003

#include <set>
#include <iostream>
#include <string>

using namespace std;

template <class T> void print(const set<T>& mySet, const string& name)
{ // Print the contents of a set.

cout << endl << name << ",size of set" << mySet.size() << "\n[";
set<T>::const_iterator i;

for (i = mySet.begin(); i != mySet.end(); ++i)
{
cout << (*i) << ",";

}
cout << "]\n";

}

int main()
{

set<string> first; // Default constructor

// Only unique (new elements) added
first.insert("r");
first.insert("T");
first.insert("sigma");

cout << "First Size: " << first.size() << endl;

set<string> second (first); // Copy constructor

// Add extra elements to second set
second.insert("r"); // "Interest rate"
second.insert("K"); // "Strike price"
second.insert("S"); // "Current underlying price"
second.insert("b"); // "Cost of carry"

cout << "Second Size: " << second.size() << endl;

42 Financial Instrument Pricing Using C++

// Are the sets the same?
if (first == second)

cout << "Sets have same elements\n";
else

cout << "Not same elements\n";
// A bit of swapping
swap(first, second);

// Assignment
set<string> third = first;

// Now print the sets
print(first, "First set");
print(second, "Second set");
print(third, "Third set");

// Now create a set representing Executive options
set<string> execOption(first);
execOption.insert("lambda"); // The jump rate, see Haug (1998)

print(execOption, "An Executive Option");
}

The output from this code is:

First Size: 3
Second Size: 6
Not same elements

First set, size of set is 6
[K,S,T,b,r,sigma,]

Second set, size of set is 3
[T,r,sigma,]

Third set, size of set is 6
[K,S,T,b,r,sigma,]

An Executive Option, size of set is 7
[K,S,T,b,lambda,r,sigma,]

Note that there is no predefined order in a set, in contrast to vectors and lists. You insert
an element in the set and for the rest you do not (need to) know how the element is
stored. That is the beauty of encapsulation and information hiding.

We now discuss how sets are related to each other by applying the STL functions that
implement the operations in Figure 4.3. Most of this theory should be well known and
to this end we concentrate on the STL function that gives the intersection of two sets s1
and s2. To this end, we must define a so-called insert_iterator. This is officially
an STL adaptor and its function is to insert objects into a container, in this case a set.

int main()
{
set<int> first; // Default constructor

// Only unique (new elements) added
first.insert(1);
first.insert(2);
first.insert(3);
print (first, "First set");

STL for Financial Engineering Applications 43

set<int> second (first);

second.erase(3);
second.insert(999);
print (second, "Second set");

// Intersection of two sets
set<int> myintersect;
set<int>::iterator i = myintersect.begin();
insert_iterator<set<int> > insertiter2(myintersect, i);

set_intersection(first.begin(), first.end(), second.begin(),
second.end(), insertiter2);

print(myintersect, "Intersection");

return 0;
}

The output from this code snippet is:

First set, size of set is 3
[1 2 3]

Second set, size of set is 3
[1 2 999]

Intersection, size of set is 2
[1 2]

We can use sets as management classes in financial engineering applications. To give an
example, we could compare two portfolios p1 and p2 (when viewed as sets) by asking
the following questions:

• What have p1 and p2 in common?
• What are the differences between p1\p2 and p2\p1?

The outcomes will then be used in the application. In this sense the sets are a kind of
repository containing vital or configuration information.

4.4 USEFUL ALGORITHMS

STL has support for a number of numeric algorithms. The offering is meager and the
algorithms that we discuss in this section are:

• Carry out an operation on the elements of a vector (add, product)
• The inner product of two containers (for example, vectors)
• Partial summation functions
• Calculate the difference between consecutive elements of a container.

The following code shows how STL implements these numeric algorithms:

// STLNumericAlgorithms.cpp
//
// Some of the numeric algorithms in STL. This library has

44 Financial Instrument Pricing Using C++

// minimal support for numerical analysis.
//
// (C) Datasim Education BV 2003

#include <vector>
#include <iostream>
#include <numeric> // For numeric algorithms

using namespace std;

int main()
{

// Create the containers for the algorithms
vector<double> vec1(4, 2.0); // Length 4, all values == 2.0
vector<double> vec2(4, 4.0); // Length 4, all values == 4.0

// The accumulate is a generalisation of summation
double init = 0.0;
double summation = accumulate (vec1.begin(), vec1.end(), init);

cout << "Sum of elements in vector 1: " << summation << endl;

// Inner product of two vectors
double ip = inner_product(vec1.begin(), vec1.end(),

vec2.begin(), init);
cout << "Inner product of vec1 and vec2: " << ip << endl;

// Now calculate the partial sum of a vector; result is also a
// vector
int size = 6;
int seed_value = 2;
vector<int> vec3(size, seed_value);
vector<int> result(size);
partial_sum(vec3.begin(), vec3.end(), result.begin());

cout << "The partial sum of the vector vec3\n";
print(result);

// Compute difference between consequence elements of a vector
int sz = 10;
int value = 2;
vector<int> vec4(sz);

vector<int>::iterator it;
for (it = vec4.begin(); it != vec4.end(); it++)
{

(*it) = value;
value += 1;

}
vector<int> result2(vec4.size());
adjacent_difference(vec4.begin(), vec4.end(), result2.begin());
cout << "The adjacent difference of the vector vec4\n";
print(result2);

return 0;
}

In later chapters we shall present many more numeric algorithms for numerical analy-
sis problems.

STL for Financial Engineering Applications 45

4.5 STL ADAPTOR CONTAINERS

STL has functionality for stack, queue and priority queue abstractions. These are called
adaptors because they adapt or modify the interfaces of other containers (Gamma et al.,
1995). We discuss the stack and priority queue by looking at some source code.

A stack has two major functions, pop (remove an element from the top of the stack)
and push (place an element on the top of the stack). The strategy is First In Last Out
(FILO) for element addition and removal. Here is some code:

stack<int, vector<int> > s1;

cout << "Size of a stack " << s1.size() << endl;

for (int i = 0; i < 10; i++)
{
s1.push(i);

}

cout << "Size of a stack " << s1.size() << endl;

// Non-destructive pop
cout << "Top element is: " << s1.top() << endl;

// Destructive pop (stack has no begin() or end())
while (!s1.empty())
{
s1.pop();

}

cout << "Size of a stack " << s1.size() << endl;

A queue is a container where elements join and leave on a First In First Out (FIFO) basis.
A priority queue is a variation of the queue because elements are placed in the queue
on the basis of some priority. Here is some code (note the presence of the comparitor
function which determines the placing of elements in the priority queue):

priority_queue<int, vector<int>, less<int> > myque;

myque.push(20);
myque.push(21);
myque.push(22);
myque.push(23);

cout << "Size of first queue " << myque.size() << endl;

while (!myque.empty())
{
cout << myque.top() << " ";
myque.pop();

}

cout << "Size of first queue " << myque.size() << endl;

The output from this code is:

Size of queue 4
23 22 21 20
Size of queue 0

46 Financial Instrument Pricing Using C++

You may be able to find useful applications for these adaptor containers, in simulations,
for example. We admit that vectors and matrices are the most important classes in your
daily work.

4.6 CONCLUSIONS AND SUMMARY

This chapter examines STL from the viewpoint of extensibility; can we create new classes
and containers based on the building blocks that STL offers? The answer is a definite ‘Yes’
and we have shown, by a number of relevant examples, how to create specific classes for
financial engineering and other applications. The productivity gains are measurable and
no longer do we have to build low-level utility classes before getting to the real issue of
designing and implementing robust C++ applications for financial instrument modelling.

5
The Property Pattern in Financial

Engineering

5.1 INTRODUCTION AND OBJECTIVES
In this chapter we develop a number of reusable classes that will be used in the construc-
tion of models for options and other financial products. In particular, we introduce the
Property pattern that encapsulates an option’s attributes. A property is a template class
that has a name and a value. Furthermore, it has a number of member functions, two
of which are functions to set and get the encapsulated value. The underlying types
of the name and value are generic, which means that programmers can instantiate these
types with their own specific types. In short, the Property pattern leads to high levels of
reusability.

An important point to make when using the Property pattern to model attributes of
option models is that it leads to a general risk engine framework. For a trader it is
desirable to calculate the sensitivities (that is, the partial derivatives) of an option with
respect to its parameters. Once the Property pattern is in place, it is straightforward to
write code that runs through the attributes, perturbs them and calculates a new option
model value and also approximates these sensitivities by a finite difference scheme. This
code is usually placed in a Visitor pattern (see Gamma et al., 1995, and Part V of the
current book).

Once we have created the Property pattern it is then possible to use it in many different
applications. For example, it can be seamlessly used with the classes in the STL and as
a mechanism for defining flexible attributes in other classes. We do not (yet) investigate
all the possibilities at this stage; instead, we focus on creating a class that represents
a list of properties. This is the SimplePropertySet class and it is possible to add
properties to and remove properties from this class (even at run-time!). Having defined
this class, we shall show how to use it to construct the properties of several plain and
exotic option types.

In general, application of the Property patterns will improve the overall quality of C++
code and promote programmer productivity. When we talk in this chapter about the Prop-
erty pattern, we implicitly mean the two classes Property and SimplePropertySet
that it subsumes. In our production environment, the pattern contains more classes than
just those discussed here.

5.2 THE PROPERTY PATTERN
Object-oriented technology takes the view of a class as having public member functions
and private member data. The functions and data are tightly coupled (this is called encap-
sulation) and the data cannot be accessed directly by client objects. Instead, a class must
expose its member data by providing clients with member functions to set and get the
member data as the following piece of code shows:

class Point
{ // Two-dimensional point in Cartesian space

48 Financial Instrument Pricing Using C++

private:

double x;
double y;

public:

// ...
double getX() const;
void setX(double d);
// ...

};

In this case we define a Point class containing two private member data of type double.
Public member functions for retrieving and modifying these data are available in the form
of so-called set and get functions. The use of these functions is relatively easy, as the
following code shows:

Point pnt(1.0, 2.0); // Create a point instance
cout << pnt.getX(); // Print the x-coordinate of the point
pnt.setX(3.3); // Change the x-coordinate

This is perfectly acceptable C++ code but this style of programming has a number of dis-
advantages that surface when creating code for Option classes. Some of the problems are:

• The underlying data type of the member data is double; if you wish to create a Point
class with integer coordinates you must edit and recompile the code. What we would
like is to create template Point classes whose underlying data types are generic.

• For every private member data we must create the corresponding set and get member
functions. This is an extremely laborious and error-prone process and it leads to classes
with many ‘junk’ functions, that is, functions that do nothing more than access the
member data. Of course, we could create public member data but this approach destroys
encapsulation, one of the cornerstones of the object-oriented paradigm.

• Each programmer has his or her own favourite naming convention for member
functions. For example, the following names are legitimate candidates for a member
function to set the x-variable of a Point instance:

void setX(double d); // Copy of d used
void setX(const double& d); // Const reference
void setX(double* d); // Pointer to a double

// and many more possibilities ...

Clients of the Point class need to be aware of the precise signature (function name,
input parameters and return type) when they use the class. What we would like to have
in fact is a standard syntax for all set and get functions irrespective of the class used
or the underlying data types.

• It is not possible to configure the Point class with three coordinates (x, y, z) without
editing and compiling the source code. In other words, the data is hard-coded.

• It is not possible to determine the member data of a Point instance at run-time without
having prior, hard-wired knowledge. The current Point is not self-aware.

5.2.1 Requirements for a Property pattern

Having motivated why standard approaches to implementation of member data in C++ is
not always satisfactory for all situations, we now discuss some of the requirements that a

The Property Pattern in Financial Engineering 49

Property pattern should fulfil and we motivate why we should go to the effort of writing
and using the patterns.

Some reasons for creating and using the Property pattern are:

• Usability: It is easy to learn how to use the pattern. We use operator overloading
(the operator ‘()’) to implement set and get member functions. This means that
all instantiated property classes will be accessed in a uniform manner. This will also
improve communication between developers.

• Functionality: It should be possible, for example, to add new properties to an object at
run-time and it should be possible to remove a property from an object at configuration-
time or run-time. For example, a property set containing standard properties for a plain
option can be extended to a property set for executive options (see Haug, 1998) by just
adding a new property that represents the so-called jump rate per year property.

• Maintainability: A class now uses public properties and property sets and clients know
how to access these in a uniform way. For example, we could enforce standardisation
by defining the member functions for properties with the same signature in all cases.
Each class would then have the following entry:

SimplePropertySet<Name, Value> properties; // Properties in Entity

Each client would then access the properties of the class using the above. Furthermore,
changes to the property of a class or an object occur in one place. In short, local
changes to the C++ code have local impact on the stability of that code.

• Efficiency: This characteristic relates to how well properties perform as far as response
time is concerned, and how much memory is needed in order to store a property. To
this end, we can design property sets using STL sequence containers and associative
containers depending on our performance requirements. For example, a class with
very many properties (a quite unusual situation!) could be designed using an STL
map while classes with, at most, seven or eight properties (which is the case with
Option classes) will be implemented using an STL list container for our present
purposes. As far as memory usage is concerned, a property object will always consume
more resources than the object it encapsulates. This may be a problem for real-time
embedded systems but we do not think that memory problems will occur for most
applications.

• Reliability: The Property pattern can be made robust by extending it with functionality
that saves the property values before they are modified. In fact, we shall show in a
later chapter how design patterns (see Gamma et al., 1995) are applied to create mature,
fault-tolerant properties and properties that can be recovered after a system crash or an
incorrect modification.

• Portability: This quality characteristic relates to effort that is needed to transfer soft-
ware from one environment to another. In this particular case, we may wish to save
properties in a database (such as Access, SQL Server or Oracle) or we may even wish
to export these properties to Excel or to OpenGL. All these wishes come true by the
application of design patterns (see Gamma et al., 1995) to the Property pattern. These
topics will be discussed in later chapters.

Another advantage of the Property pattern is that it can be specialised to many different
kinds of value types. For example, some clients may be unhappy with double precision

50 Financial Instrument Pricing Using C++

numbers because of rounding errors, in which case the value could be defined using a
class that represents infinite-dimension precision:

Property<string, PrecisionType> myProp(“Large”, 34438563946.927365353);

Now for the big moment! We introduce the Property pattern by first defining a template
class that models named values. This is thus a class having two underlying data types
and is defined as follows:

template <class Name = string, class Type = double> class Property

Notice the presence of default data types; in this case the default value type is double
(quite common) and the default ID or reference type is string (also quite common). As
a programmer you are free to choose how to specialise this template class. For example,
the following statements are equivalent:

Property<string, double> first(“r”, 0.06);
Property<string> first(“r”, 0.06);
Property<> first(“r”, 0.06); // N.B. funny syntax!

We now describe the interface of the Property class. First, we define constructors to
define instances of the class. They are:

• Default constructor (uses default constructors of the underlying types)
• Constructor using a name only
• Constructor using a name and type (value)
• Copy constructor.

Once a property has been created we can get its values by the use of the overloaded
operator ‘()’ as the following illustrative code shows:

Property<string, double> K("Strike Price", 65.0);
Property<string, double> T("Expiry date", 0.25);
Property<string, double> U("Underlying Asset", 60.0);
Property<string, double> sig("Volatility",0.30);

double tmp = sig() * sqrt(T());
double d1 = (log(U()/K()) + (b()+(sig()*sig())*0.5) * T())/ tmp;

// Changing the values in the properties
sig = Property<string,double>(0.20);
K = Property<string,double>(66.0);
T = Property<string,double>(1.0);
U = Property<string,double>(63.0);

Finally, we have defined a specific equality operator: Two properties are equal if and only
if their names are the same.

The source code on the CD contains a class for a heterogeneous PropertySet and an
example is that of a person having a name, address, age and date of birth; the properties
and their types look something like the following:

Name string
Address string
Age int
Date of birth Date

The Property Pattern in Financial Engineering 51

In this chapter, however, each property has the same (homogeneous) underlying data
type.

The full interface for the Property class is given as follows:

// property.hpp
//
// Base class for Properties. This is a concrete class.
//
// (C) Datasim Education BV 2001-2003

#ifndef PROPERTY_HPP
#define PROPERTY_HPP

#include <string>

template <class Name = string, class Type = double> class Property
{ // Property with a name and a value (notice default types)

private:
Name nam;
Type con;

// Assignment: we do not want client to use this!
Property<Name, Type>& operator = (const Property<Name, Type>& source);

public:
// Constructors and destructor
Property();
Property(const Name& name);
Property(const Name& name, const Type& t);
Property(const Property<Name, Type>& source);

virtual ~Property();

// Accessing function operators
virtual Type operator()() const;
virtual void operator()(const Type& t);

virtual Name name() const;
virtual void name(const Name& new_name);

bool operator == (const Property<Name, Type>& prop2);
};

5.3 AN EXAMPLE

Since this is a book about C++ for financial engineering it is useful to give some relevant
examples from this domain. As a warm-up, we discuss how we would model the attributes
of a plain option using the Property pattern. You can see that we modelled these attributes
as hard-coded built-in doubles in Appendix 1. First, we discuss how to create properties
and, second, we can now define a class representing plain options by defining option
attributes in terms of properties:

class ExactEuropeanOption
{

private:
// ...

52 Financial Instrument Pricing Using C++

public:
Property<string, double> r; // Interest rate
Property<string, double> sig; // Volatility
Property<string, double> K; // Strike price
Property<string, double> T; // Expiry date
Property<string, double> U; // Current underlying price
Property<string, double> b; // Cost of carry

// ...

// Functions that calculate option price and sensitivities
double Price() const;
double Delta() const;
double Gamma() const;
double Vega() const;
double Theta() const;
double Rho() const;
double Coc() const; // Cost of carry
double Elasticity(double percentageMovement) const;

};

The formulae for the option price and its sensitivities now use the properties, as the
following code shows in the case of Price() for a call option:

double ExactEuropeanOption::Price() const
{

double tmp = sig() * sqrt(T());

double d1 = (log(U()/K())+ (b() + (sig()*sig())*0.5) * T())/ tmp;
double d2 = d1 - tmp;

return (U()*exp((b()-r())*T())*N(d1))-(K()*exp(-r()*T())* N(d2));
}

The full source code is to be found on the accompanying CD.

5.4 EXTENDING THE PROPERTY PATTERN: PROPERTY SETS
AND PROPERTY LISTS

We would like to cluster or amalgamate the properties of some object into a single object
so that we can access this new object as one entity. To this end, we create an aggregate
class (see Buschmann et al., 1996) called SimplePropertySet. Each instance of this
class consists of a number of Property instances as shown in the UML diagrams in
Figure 5.1. Officially, an instance of class SimplePropertySet (called the Whole)
consists of zero or more instances of class Property (the so-called Parts). It is possible
to add and remove parts from the Whole at run-time. In the particular implementation
that we discuss here, we assume that each property occurs only once in the property set
and we are able to give the set a name. This latter is feasible because we can access the
property set by a unique reference ID.

The general requirements of a class for a property set are:

• It must be possible to create sets with an arbitrary number of properties
• It must be possible to add properties and other sets to the set
• It must be possible to remove properties from the set

The Property Pattern in Financial Engineering 53

SimplePropertySet

Property

*

'Part'

N, V

N, V

'Whole'

Figure 5.1 Properties and property sets

• It must be possible to iterate in the set (from beginning to end, for example)
• It must be possible to query if the set contains a given property
• There must be efficient access to the members of the property set.

We have designed and implemented this class using the STL list class as a basis. All
functions in our new property set delegate to other functions in the list. The class interface
is given by:

// SimplePropertySet.hpp
//
// Class that represents a list of named properties. This is simply
// a list of Property objects. Each property is a name/value pair.
// This kind of structure occurs in many applications, for
// example relational database theory.
//
// (C) Datasim Education BV 2002-2003

#ifndef SimplePropertySet_hpp
#define SimplePropertySet_hpp

#include "property.cpp"
#include <list>
#include <set>

using namespace std;

template <class N, class V> class SimplePropertySet
{
private:

N nam; // The name of the set

// The SimplePropertySet list using the STL list
list<Property<N,V> > sl;

public:
// User can use the STL iterator
typedef typename list<Property<N,V> >::iterator iterator;
typedef typename list<Property<N,V> >::const_iterator const_iterator;

// Constructors and destructor

54 Financial Instrument Pricing Using C++

SimplePropertySet(); // Default constructor
SimplePropertySet(const N& name); // Named property set
SimplePropertySet(const SimplePropertySet<N,V>& source);

virtual ~SimplePropertySet(); // Destructor

// Iterator functions
iterator Begin(); // Return iterator at begin of composite
const_iterator Begin() const; // Return const iterator
iterator End(); // Return iterator after end
const_iterator End() const; // Return const iterator after end

// Selectors
int Count() const; // The number of properties in the list
N operator ()() const; // The name of the property set
bool hasProperty(const N& search_name) const; // In list?

// Modifiers
void operator () (const N& name); // Change the name of PSet
Property<N,V> value(const N& name) const; // Get the Property

// Add and remove functions (sort of mixin or embedded
// inheritance)
void add(const Property<N,V>& p);
void add(const SimplePropertySet<N,V>& p);
void remove(const N& value); // Remove all elements with 'value'

// Operators
SimplePropertySet<N,V>& operator = (const SimplePropertySet<N,V>&

source);
};

#endif // SimplePropertySet_hpp

Note that we have provided two kinds of iterators (const and non-const versions) that
allow you to navigate in the set. In some cases you may just wish to read the properties
(const iterator) while in other cases you may wish to modify the property values in
some way (in that case you can use the non-const iterator).

The full source code is on the CD. However, it is not a bad idea to show how one of
the member functions (removing an element from the list) has been implemented:

template <class N, class V> void SimplePropertySet<N,V>::remove(const
N& value)

{ // Remove all elements with 'value' O(N)

// We iterate over the list until we find the value
iterator it;

for (it=sl.begin(); it!=sl.end(); it++)
{

if ((*it)() == value)
{
erase(it);

}
}

}

The SimplePropertySet will be used in very many classes and applications through-
out the rest of this book. Don’t leave home without it!

The Property Pattern in Financial Engineering 55

5.4.1 An example

Going back to the example in section 5.3 we show how clients can access all the prop-
erties in an Option class without having to go to the bother of accessing each property
individually. To this end, we create a public member function that adds all the prop-
erties to a property set and returns it to the client. The interface functions is defined
as follows:

// The option’s defining parameters
SimplePropertySet<string, double> properties() const;

The body of this function is given as follows (notice that we are only interested in the
names of the properties and not in their values):

// The option's defining parameters
SimplePropertySet<string, double> ExactEuropeanOption::properties()
const
{

SimplePropertySet<string, double> result;

result.add (Property<string, double> (r.name(), r()));
result.add (Property<string, double> (sig.name(), sig()));
result.add (Property<string, double> (K.name(), K()));
result.add (Property<string, double> (T.name(), T()));
result.add (Property<string, double> (U.name(), U()));
result.add (Property<string, double> (b.name(), b()));

return result;
}

We can then iterate over result in order to determine the kinds of properties the option
contains.

Finally, it is sometimes very useful to have a ‘snapshot’ of an option by computing an
option price along with its sensitivities in one simple function (simple for the client):

// Now give all values and sensitivities in a propertyset
SimplePropertySet<string, double> propertylist() const;

The source code for this function is:

SimplePropertySet<string, double> ExactEuropeanOption::propertylist()
const
{

SimplePropertySet<string, double> result;

result.add (Property<string, double> ("Option Value", Price()));
result.add (Property<string, double> ("Delta",Delta()));
result.add (Property<string, double> ("Gamma",Gamma()));
result.add (Property<string, double> ("Vega",Vega()));
result.add (Property<string, double> ("Theta",Theta()));
result.add (Property<string, double> ("Rho",Rho()));
result.add (Property<string, double> ("Cost of Carry",Coc()));

return result;
}

56 Financial Instrument Pricing Using C++

It is useful to have a look at some code that creates a future option call, initialises its
attributes and computes the price and sensitivity values for those attribute values. We then
‘toggle’ the option so that it becomes a put and we carry out the exercise again.

// tstOptionSensitivities.cpp
// Test program for the sensitivities for European options.
// Input taken from Haug 1998.
//
// (C) Datasim Component Technology BV 2003

#include "EOptionExact.hpp"
#include <iostream>

int main()
{ // All options are European

ExactEuropeanOption futureOption("C", "Future Option");
futureOption.U(105.0);
futureOption.K(100.0);
futureOption.T(0.5);
futureOption.r(0.10);
futureOption.sig(0.36);
futureOption.b(0.0);

// Calculate all interesting values
SimplePropertySet<string,double> r = futureOption.propertylist();

// Iterate over the result and print the values
SimplePropertySet<string,double>::const_iterator it;

cout << "\nDump the parameters, call prices ... \n";
for (it=r.Begin(); it!=r.End(); it++)
{

cout << (*it).name() << ", " << (*it)() << endl;
}

// We now examine the values when the option is a put
futureOption.toggle();

// !! Recalculate the prices again
r = futureOption.propertylist();

cout << "\nPut prices ...\n";
for (it=r.Begin(); it!=r.End(); it++)
{

cout << (*it).name() << ", " << (*it)() << endl;
}
return 0;

}

The output from this program is:

Dump the parameters, call prices ...
Option Value, 12.4317
Delta, 0.59462
Gamma, 0.0134938
Vega, 26.7785
Theta, -8.39709
Rho, -6.21587
Cost of Carry, 31.2176

The Property Pattern in Financial Engineering 57

Put prices ...
Option Value, 7.67559
Delta, -0.356609
Gamma, 0.0134938
Vega, 26.7785
Theta, -8.87271
Rho, -3.83779
Cost of Carry, -18.722

5.5 PROPERTIES AND EXOTIC OPTIONS

We have discussed how to model attributes of plain options. Our aim in this section is to
investigate how to model a number of exotic options by examining their attributes and
modelling them using the Property pattern (Haug, 1998). In particular, the attributes of an
exotic option are extensions of the attributes of plain options in some way. For example,
an executive option has all the properties of a plain option plus a property that models
the jump rate per year (λ). It would be nice to append this extra property to the property
set for the corresponding plain option.

Some examples of exotic options and their properties are:

Forward start options
α: scaling factor K = αS at time t

t : the elapsed time at which K = αS

Options on options
All properties of the ‘underlying’ option (as before)
T1: the time to maturity of the option on the option
K1: strike price of the option on the option.

Chooser option
All properties of the ‘underlying’ option (as before)
T1: At this stage decide if option is a call or put.

Let us take an example.

5.5.1 Example: Executive options

We show how to ‘extend’ plain options to support an exotic variant by examining how
to create a class for executive options. The technique used is called composition in con-
junction with a so-called delegation mechanism. In short, we create a class for executive
options that has its own specific properties (such as the jump rate) as well as having an
‘embedded’ plain option. In fact we can see an executive option as a wrapper for a plain
option. Furthermore, the formula for pricing an executive option is found by multiplying
the price of the corresponding plain option by an exponential factor, as shown in Haug
(1998). The UML diagram depicting the structural relationship between the two options
is shown in Figure 5.2.

The class interface for executive options is now shown. Note the presence of the
embedded plain option as member data, the constructors and a new member function for

58 Financial Instrument Pricing Using C++

Executive Option European Option

Property

*

1

*

Figure 5.2 Creating an Executive Option class from a European Option class

calculating the price of the executive option:

class ExecutiveOption
{
private:
// 'Kernel' functions for option calculations
double CallPrice() const;
double PutPrice() const;

public: // Properties
Property<string, double> jrate; // Jump rate
Property<string, ExactEuropeanOption> base; // Object inheritance

public: // Public functions
ExecutiveOption(); // Default call option
ExecutiveOption(const ExecutiveOption& option2);
ExecutiveOption (double jump_rate, const ExactEuropeanOption&

base_option);
virtual ~ExecutiveOption();

ExecutiveOption& operator = (const ExecutiveOption& option2);

// Functions that calculate option price and sensitivities
double Price() const;

// Modifier functions
void toggle(); // Change option type (C/P, P/C)

};

Most of the code for this class is straightforward but it is useful to show how the Price()
member function has been implemented. Notice how the pricing formula for an executive
option uses the pricing formula for a plain option:

double ExecutiveOption::Price() const
{
double expT = base().T();

return exp(-jrate() * expT) * (base().Price());
}

Indeed we see delegation at work: part of the price calculation is delegated to the plain
option where it has been implemented and tested.

The Property Pattern in Financial Engineering 59

What does a main program look like? In short, we create a plain option and embed it
in an executive option:

int main()
{ // All options are European

// Executive options

// Put option on a stock
ExactEuropeanOption stockOption("C", "Common Stock Option");
stockOption.U(60.0);
stockOption.K(64.0);
stockOption.T(2.0); // 2 years
stockOption.r(0.07);
stockOption.sig(0.38);

double q = 0.03; // Dividend yield
stockOption.b(stockOption.r() - q);

cout << "Call Option on Stock: " << stockOption.Price() << endl;

// Now define an executive option based on stock option. We clone
// the base stock option (copy all properties) and then delegate
ExecutiveOption eo(0.15, stockOption);

cout << "Executive Call Option on Stock: " << eo.Price() << endl;

return 0;
}

The output from this file is:

Call Option on Stock: 12.3161
Executive Call Option on Stock: 9.12396

These results are consistent with those in Haug (1998).
One final remark: Delegation and composition will play a major role in the chapters to

come. They are powerful mechanisms that allow us to create flexible software components
and will form the basis of the design patterns that appear later in this book (see Gamma
et al., 1995). Watch this space.

5.6 CONCLUSIONS AND SUMMARY

There are fundamental reasons why we prefer to use properties instead of ‘naked’ member
data in C++ applications, some of which we enumerate here:

• Classes for options, bonds and other derivative products can be modelled as lists of
properties, thus making it easier to understand and extend these classes.

• Properties and the classes that use them become self-aware or reflective; we can ask
the name of a property and we can ask an option if it contains a given property. This is
a form of run-time type identification (RTTI) that is necessary in certain applications.
Furthermore, it is possible to add properties to or remove them from an object at
run-time.

• Properties support serialisation: we can save the data in a list of properties to XML,
Excel and relational database formats in a seamless way. We come back to this topic
after we have given an introduction to STL.

60 Financial Instrument Pricing Using C++

• Developers can create new Option classes by customising the properties that are appro-
priate to the current application. This is no need to use hard-coded member data or to
create class hierarchies that are difficult to maintain.

• We can configure new kinds of options using properties without having to use static
C++ inheritance. This adds both to application flexibility and programmer productivity.

• Since Property is a class, we can apply the creational, structural and behavioural
design patterns to it in order to produce highly adaptable software (see Gamma et al.,
1995, for a definitive account of design patterns).

Part II

Building Block Classes

6

Arrays, Vectors and Matrices

6.1 INTRODUCTION AND OBJECTIVES

In Part II of the book we create several foundation class categories that will serve as
building blocks for future chapters. These classes build on STL and in general we are
interested in classes for several kinds of arrays, vectors and matrices. Furthermore, we
create generic functions for some intrinsic properties of these classes (such as their max-
imum and minimum values, inner products and norms). We also discuss how to solve
linear systems of equations using LU decomposition. Chapter 9 shows how we have
defined C++ classes for various categories of mathematical functions: scalar functions,
real-valued functions, vector functions and vector-valued functions. Finally, we discuss
how to model continuous and discrete probability distributions using C++.

In this chapter we design and implement flexible data structures for arrays and matri-
ces. We extend the STL classes to include support for numerical analysis and financial
engineering applications. We concentrate on one-dimensional and two-dimensional data
structures. In later chapters we shall extend this basic functionality to suit different con-
texts. To this end, we introduce basic foundation classes, namely:

• Array: sequential, indexible container containing arbitrary data types
• Vector: array class that contains numeric data
• Matrix: sequential, indexible container containing arbitrary data types
• NumericMatrix: matrix class that contains numeric data.

Of course, the classes Array and Vector are one-dimensional containers whose ele-
ments we access using a single index while Matrix and NumericMatrix are two-
dimensional containers whose elements we access using two indices. Furthermore, we
can introduce structure into these classes as introduced in Chapter 4:

• ‘Full’ arrays and matrices
• Banded arrays and matrices
• . . . and many more.

Patterned matrices are important when solving linear systems of equations. This topic will
be discussed in more detail in Chapters 7 and 8.

The structure of this chapter is as follows: in section 6.2 we discuss the rationale
behind creating Array and Matrix classes. Section 6.3 is an introduction to the high-
level design of these classes and the member functions they expose to clients, while
section 6.4 describes the detailed design. Section 6.5 gives some useful examples to
show how easy it is to use the Array and Matrix classes in applications. Section 6.6
introduces associative arrays.

64 Financial Instrument Pricing Using C++

6.2 MOTIVATION AND BACKGROUND

In this section we discuss the reasons why we have created a class hierarchy for arrays
and matrices. First, at the moment of writing there is no C++ ISO or ANSI standard
for such classes and the chances of one being written and accepted would seem to be
small. However, there are many commercial and free matrix libraries in the marketplace
and it is useful to investigate what is on offer. Most libraries tend to be highly spe-
cialised and geared to scientific and engineering applications. They may have a degree of
overkill for financial applications but, personally speaking, I find that less is more. Most
software systems are over-engineered and offer functionality that we hardly ever need
or use.

In this chapter we introduce a number of classes that we shall use when solving financial
engineering applications. These classes can be used as they are and the reader can easily
extend them to suit his or her own specific needs. We have designed the software using
object-oriented design principles and patterns.

A major problem with numerical algorithms in general (and with financial engineering
applications in particular) is that the code that implements them tends to be difficult to
understand, modify and adapt. The author has witnessed this problem when using C, C++
and Visual Basic in applications.

We have drawn up a list of requirements that we would like the current class library
to satisfy. If we are successful, we shall hopefully be more productive in our daily work.
We shall discuss the requirements detailed below.

Usability

Developers should be able to understand the class interfaces and use them in their appli-
cations, for example in the numerical solution of differential equations resulting from
finite difference methods for the Black–Scholes equation. In a sense, we would like to
use the classes as ‘black boxes’ without having to worry about their internal structure or
implementation details.

The classes in this chapter are easy to learn and use. The classes have similar interfaces
and once you learn one class it is not difficult to learn the interfaces of the other classes. A
lot of detail has been hidden from the client such as memory management, array indexing
and other annoying details that make us so unhappy. An added feature in this chapter
is that we document the relationships between classes using UML (Unified Modeling
Language) class diagrams. UML is the de-facto standard for documenting object-oriented
software systems.

Suitability

The classes will be used in financial engineering applications and should be highly relevant
to this domain. There is not much point creating classes that are not going to be used.
As we shall see, we have created a useful set of classes for vectors and matrices and the
corresponding mathematical operations such as multiplication and addition. You can do
all the things you did before in Visual Basic, IMSL, Maple and other products and, in
some cases, we offer more specialised functionality that is not always found in standard
software packages.

Arrays, Vectors and Matrices 65

Interoperability

We wish to export the data in arrays and matrices to the popular spreadsheet package
Microsoft Excel. Furthermore, we may wish to export the data to XML (Extensible
Markup Language) as this language is becoming more important as a lingua franca
between diverse financial systems. Finally, importing data from Excel into a vector or
matrix may also be a requirement.

Efficiency

It is not possible to create a ‘one size fits all’ matrix class that is going to please all
customers. Some clients work with matrices all of whose elements (at the intersection of
a row and a column) must be allocated and utilised while other clients may wish to define
sparsely populated matrices where only a small fraction of the elements are needed. We
must thus be able to conserve memory by creating the correct matrix structure for the
problem at hand. This issue is called resource efficiency. Furthermore, we may require
that mathematical operations on arrays and matrices be as efficient as possible. In this
case we speak of time efficiency.

Maintainability

This is a requirement that tends to get ‘lost in action’ as it were. Its absence in software
projects manifests itself by C++ code that is very difficult to understand and modify.
Another resulting problem is that once some part of the software has been changed, new
errors and bugs may enter the system. Instability then sets in.

We resolve possible maintainability problems by structuring and layering the classes
into well-defined units having clear responsibilities.

Reliability

This requirement has to do with fault tolerance and maturity of the software. In the
specific case of arrays and matrices we wish to avoid memory leaks and exceptions (for
example, accessing an element in an array that is outside the array’s bounds). To this end,
we design and implement our classes as templates, thus ensuring that we only have to
worry about memory allocation and deallocation once, while we can use the exception
handling mechanisms in C++ to handle out-of-bounds indexing problems.

Portability

This requirement has to do with the effort that is required to transfer the code from one
environment to another. An example is to transfer code from a Windows environment
to Linux. This is not a problem in practice unless you embed Windows-specific code
in the array and matrix (which we have not done). Furthermore, we recommend using
STL whenever possible because this library is part of the C++ standard and portability
problems should not arise.

In the rest of this chapter we shall show how we have realised these requirements with
our own array and matrix class library.

66 Financial Instrument Pricing Using C++

6.3 A LAYERED APPROACH

In this section we give an overview of the design principles underpinning the library.
This section has been written from the perspective of the developer who uses the library.
We partition the library into several layers:

• Layer 1: General data structure classes (for arbitrary data types)
• Layer 2: Data structure classes containing numeric data
• Layer 3: Specialised operations (for example, inner products of vectors)
• Layer 4: Matrix algebra and specific mechanisms.

We discuss the classes in Layers 3 and 4 in Chapters 7 and 8. In this book we discuss
the classes Array and Matrix in Layer 1 while the classes Vector and NumericMatrix are
the two main classes in Layer 2. The classes in Layer 2 use the services in Layer 1.

We pay special attention to defining matrices with a predefined structure as we saw
in Chapter 4. For example, it is possible to define full, sparse, banded and tridiagonal
matrices. In general, we model the life cycle of instances of classes in the library. To this
end, we can list the following function categories:

• Constructors: Creating arrays and matrices with given dimensions
• Accessing: Selector(get) and modifier(set) functions
• Mathematical Operations (for example, multiplication)

We give some remarks. First, C programmers prefer to index the elements of an array
starting at position 0 while Fortran programmers prefer to start with the value 1. Our
classes can accommodate both styles; in fact, it is even possible to have negative indices!
Second, it is not possible to increase or decrease the size of an instance once it has
been constructed. This is in contrast to STL where the class vector can be extended.
Finally, we iterate through the elements of arrays and matrices using standard looping
techniques in C++. We have not created customised iterators although it is certainly an
interesting option.

6.4 THE ARRAY AND MATRIX CLASSES IN DETAIL

We start with the class Array. This is the most fundamental class in the library and
its represents a sequential collection of values. This template class, which we denote by
Array<V, I, S>, has three generic parameters:

V: The data type of the underlying values in the array
I: The data type used for indexing the values in the array
S: The so-called storage class for the array.

The storage class is in fact an encapsulation of the STL vector class and it is here that the
data in the array is actually initialised. At the moment there are specific storage classes,
namely FullArray<V> and BandArray<V> that store a full array and a banded array
of values, respectively.

Please note that it is not possible to change the size of an Array instance once it has
been constructed. This is in contrast to the STL vector class in which it is possible to
let it grow.

Arrays, Vectors and Matrices 67

The declaration of the class Array is given by:

template <class V, class I=int, class S=FullArray<V> >
class Array
{
private:

S m_structure; // The array structure
I m_start; // The start index

};

We see that Array has an embedded storage object of type S and a start index. The
default storage is FullArray<V> and the default index type is int. This means that
if we work with these types on a regular basis we do not have to include them in the
template declaration. Thus, the following three declarations are the same:

Array<double, int, FullArray<double> > arr1;
Array<double, int> arr1;
Array<double> arr1;

You may choose the data types that are most suitable for your needs. The constructors in
Array allow us to create instances based on size of the array, start index and so on. The
constructors are:

Array(); // Default constructor
Array(size_t size); // Give length start index == 1
Array(size_t size, I start); // Length and start index
Array(size_t size, I start, const V& value); // Size, start, value
Array(const Array<V, I, S>& source); // Copy constructor

Once we have created an array, we may wish to navigate in the array, access the ele-
ments in the array and modify these elements. The member functions to help you in this
case are:

// Selectors
I MinIndex() const; // Return the minimum index
I MaxIndex() const; // Return the maximum index
size_t Size() const; // The size of the array
const V& Element(I index) const; // Element at position

// Modifiers
void Element(I index, const V& val); // Change element at position
void StartIndex(I index); // Change the start index

// Operators
virtual V& operator [] (I index); // Subscripting operator
virtual const V& operator [] (I index) const;

This completes the description of the Array class. We do not describe the class that actu-
ally stores the data in the array. The reader can find the source code on the accompanying
media kit.

The UML class diagram that describes the design of Array is shown in Figure 6.1.
Here we see that Array is a client of storage classes such as FullArray and

68 Financial Instrument Pricing Using C++

Array

. . .Vector

V,I

V,I

. . .Full Array
V

Band Array
V

1

Vector
V

Array structure

V

{abstract}

Figure 6.1 Array and Vector classes

BandArray. We now turn our attention to the class Matrix, which is defined as follows:

template <class V, class I=int, class S=FullMatrix<V> >
class Matrix
{
private:
S m_structure; // The array structure
I m_rowstart; // The row start index
I m_columnstart; // The column start index

// Redundant data
size_t nr, nc; // Number of rows and columns

};

Referring to Figure 6.2 we see that Matrix uses the services of storage classes, for
example FullMatrix. The main constructors in Matrix are:

// Default constructor
Matrix();

// Matrix with r rows, c columns, and given start indices
Matrix(size_t r, size_t c);

// Matrix with r rows, c columns, and given start indices
Matrix(size_t r, size_t c, I rowStart, I columnStart);

// Copy constructor
Matrix(const Matrix<V, I, S>& source);

The following four functions are selectors that give the minimum and maximum index
values along the row and column directions:

// Selectors
I MinRowIndex() const; // Return the minimum row index
I MaxRowIndex() const; // Return the maximum row index
I MinColumnIndex() const; // Return the minimum column index
I MaxColumnIndex() const; // Return the maximum column index

Arrays, Vectors and Matrices 69

Matrix

. . .NumericMatrix

V,I

V,I

. . .FullMatrix

V

BandMatrix

V

1

FullArray

V
BandArray

V

Block Band
Matrix

**

Matrix Structure

V

{abstract}

Figure 6.2 General Matrix and NumericMatrix classes

The next two functions tell us about the number of rows and columns in the matrix:

size_t Rows() const; // The number of rows
size_t Columns() const; // The number of columns

The following two useful functions allow us to replace the elements in a row or column
by another array of elements:

void Row(I row, const Array<V, I>& val); // Replace row
void Column(I column, const Array<V, I>& val); // Replace column

Finally, we have used operator overloading to allow us to access elements in a given row
and column in the matrix:

const V& operator () (I row, I column) const; // Get element
V& operator () (I row, I column);

The next three sub-sections show how to use the above member functions.

6.4.1 Simple print functions

We present simple code to show how to print arrays and matrices. You can use these
functions in many places in this book as a simple debugging and visualisation tool. The
code also shows how you can use the member functions in these classes. The simple print
function for Array is:

template <class V, class I> void print(const Array<V,I>& v)
{

cout << "\n\nMinIndex: " << v.MinIndex() << " , MaxIndex: " <<
v.MaxIndex() << endl;

70 Financial Instrument Pricing Using C++

cout << "\nARR:[";
for (I j = v.MinIndex(); j <= v.MaxIndex(); j++)
{

cout << v[j] << ",";
}
cout << "]";

}

The simple print function for Matrix is:

template <class V, class I> void print(const Matrix<V,I>& m)
{

cout << "\n\nMinRowIndex: " << m.MinRowIndex() << " , MaxRowIndex: " <<
m.MaxRowIndex() << endl;

cout << "MinColumnIndex: " << m.MinColumnIndex() << " , MaxColumnIndex: " <<
m.MaxColumnIndex() << endl;

cout << "\nMAT:[";
for (I i = m.MinRowIndex(); i <= m.MaxRowIndex(); i++)
{
cout << "\nRow" << i << "(";
for (I j = m.MinColumnIndex(); j <= m.MaxColumnIndex(); j++)
{

cout << m(i, j) << ",";
}
cout << ")";

}
cout << "]";
}

Of course, it will be necessary to provide more sophisticated display and output func-
tionality in later chapters, but the present functions are useful when you are writing new
classes and code and when you wish to test and run your code as efficiently and effectively
as possible. The objective at this stage is to get the code working.

6.4.2 Array example

We construct three arrays with various start indices and values.

// Create some arrays
Array<double, int> arr1(10); // Start index = 1
Array<double, int> arr2(10, -1); // Start index = -1

// An array with 10 elements, starting at 0 and all values == 3.14
Array<double, int> arr3(10, 0, 3.14);

print (arr1);
print (arr2);
print (arr3);

The output from the print function is:

MinIndex: 1 , MaxIndex: 10
ARR:[0,0,0,0,0,0,0,0,0,0,]

MinIndex: -1 , MaxIndex: 8
ARR:[0,0,0,0,0,0,0,0,0,0,]

Arrays, Vectors and Matrices 71

MinIndex: 0 , MaxIndex: 9
ARR:[3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,]

6.4.3 Matrix example

We construct a default matrix with 10 rows and 10 columns. The default start index is 1
and the default value in each cell is 0.0. The second matrix has 10 rows and 10 columns.
However, the start row is −2 and the start column is 0.

// Matrices
Matrix<double, int> m1(10, 10);
Matrix<double, int> m2(10, 10, -2, 0);

print (m1);
print (m2);

The output is:

MinRowIndex: 1 , MaxRowIndex: 10
MinColumnIndex: 1 , MaxColumnIndex: 10

MAT:[
Row 1 (0,0,0,0,0,0,0,0,0,0,)
Row 2 (0,0,0,0,0,0,0,0,0,0,)
Row 3 (0,0,0,0,0,0,0,0,0,0,)
Row 4 (0,0,0,0,0,0,0,0,0,0,)
Row 5 (0,0,0,0,0,0,0,0,0,0,)
Row 6 (0,0,0,0,0,0,0,0,0,0,)
Row 7 (0,0,0,0,0,0,0,0,0,0,)
Row 8 (0,0,0,0,0,0,0,0,0,0,)
Row 9 (0,0,0,0,0,0,0,0,0,0,)
Row 10 (0,0,0,0,0,0,0,0,0,0,)]

MinRowIndex: -2 , MaxRowIndex: 7
MinColumnIndex: 0 , MaxColumnIndex: 9

MAT:[
Row -2 (0,0,0,0,0,0,0,0,0,0,)
Row -1 (0,0,0,0,0,0,0,0,0,0,)
Row 0 (0,0,0,0,0,0,0,0,0,0,)
Row 1 (0,0,0,0,0,0,0,0,0,0,)
Row 2 (0,0,0,0,0,0,0,0,0,0,)
Row 3 (0,0,0,0,0,0,0,0,0,0,)
Row 4 (0,0,0,0,0,0,0,0,0,0,)
Row 5 (0,0,0,0,0,0,0,0,0,0,)
Row 6 (0,0,0,0,0,0,0,0,0,0,)
Row 7 (0,0,0,0,0,0,0,0,0,0,)]

Finally, we create a matrix and we use operator overloading to set the value of each
row–column intersection:

// 10 rows and 2 columns, values = 3.14
Matrix<double, int> m3(10, 10);
for (int i = m3.MinRowIndex(); i <= m3.MaxRowIndex(); i++)
{
for (int j = m3.MinColumnIndex(); j <= m3.MaxColumnIndex();

j++)

72 Financial Instrument Pricing Using C++

{
m3(i,j) = 3.14;

}
}

print (m3);

The output for matrix m3 is:

MinRowIndex: 1 , MaxRowIndex: 10
MinColumnIndex: 1 , MaxColumnIndex: 10

MAT:[
Row 1 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 2 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 3 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 4 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 5 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 6 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 7 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 8 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 9 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)
Row 10 (3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,3.14,)]

6.5 THE VECTOR AND NUMERICMATRIX CLASSES
IN DETAIL

These classes are derived from Array and Matrix, respectively (see Figures 6.1 and 6.2).
Thus all the functionality that we have described in the previous section remains valid for
these new classes, including the useful print functions in section 6.4.1. Furthermore, we
have created constructors for Vector and NumericMatrix classes as well. So what do
these classes have that their base classes do not have? The general answer is that Vector
and NumericMatrix assume that their underlying types are numeric. We thus model
these classes as implementations of the corresponding mathematical structures, namely
vector space and inner product spaces (see Ayres, 1965; Bronson, 1989; Varga, 1962).

We have implemented Vector and NumericMatrix as approximations to a vector
space. In some cases we have added functionality to suit our needs. However, we have
simplified things a little because we assume that the data types in a vector space are of
the same types as the underlying field. This is for convenience only and it satisfies our
needs for most applications in financial engineering.

Referring to Figure 6.1 again we see that Vector is derived from Array. Its definition
in C++ is:

template <class V, class I=int, class S=FullArray<V> >
class Vector: public Array<V, I, S>
{
private:
// No member data

};

We give the prototypes for some of the mathematical operations in Vector. The first
is a straight implementation of a vector space; notice that we have applied operator
overloading in C++:

Arrays, Vectors and Matrices 73

Vector<V, I, S> operator - () const;
Vector<V, I, S> operator + (const Vector<V, I, S>& v) const;
Vector<V, I, S> operator - (const Vector<V, I, S>& v) const;

The second group of functions is useful because it provides functionality for offsetting
the values in a vector:

Vector<V, I, S> operator + (const V& v) const;
Vector<V, I, S> operator - (const V& v) const;
Vector<V, I, S> operator * (const V& v) const;

The first function adds an element to each element in the vector and returns a new
vector. The second and third functions are similar except that we apply subtraction and
multiplication operators.

Referring to Figure 6.2 again, we see that NumericMatrix is derived from Vector.
Its definition in C++ is:

template <class V, class I=int, class S=FullMatrix<V> >
class NumericMatrix: public Matrix<V, I, S>
{
private:

// No member data
};

The constructors in NumericMatrix are the same as for Matrix. We may also wish
to manipulate the rows and columns of matrices and we provide ‘set/get’ functionality.
Notice that we return vectors for selectors but that modifiers accept Array instances (and
instances of any derived class!):

// Selectors
Vector<V, I> Row(I row) const;
Vector<V, I> Column(I column) const;

// Modifiers
void Row(I row, const Array<V, I> val);
void Column(I column, const Array<V, I> val);

Since we shall be solving linear systems of equations in later chapters we must provide
functionality for multiplying matrices with vectors and with other matrices:

• Multiply a matrix and a vector
• Multiply a (transpose of a) vector and a matrix
• Multiply two matrices.

Of course, we must abide by compatibility rules between matrices and vectors when
performing these operations:

NumericMatrix<V, I, S> operator * (const NumericMatrix<V, I, S>& m)
const;

friend Vector<V, I, S> operator * (const NumericMatrix<V, I, S>& m,
const Vector<V, I, S>& v);

friend Vector<V, I, S> operator * (const Vector<V, I, S>& v, const
NumericMatrix<V, I, S>& m);

74 Financial Instrument Pricing Using C++

Notice that the last two functions are not members of NumericMatrix but are non-
member friends. This ploy allows us to multiply a matrix by a vector or vice versa.

6.5.1 Vector example

We give some simple examples showing how to create vectors and how to perform some
mathematical operations on the vectors.

// Create some vectors
Vector<double, int> vec1(10, 1, 2.0); // Start = 1, value 2.0
Vector<double, int> vec2(10, 1, 3.0); // Start = 1, value 3.0

Vector<double, int> vec3 = vec1 + vec2;
Vector<double, int> vec4 = vec1 - vec2;
Vector<double, int> vec5 = vec1 - 3.14;

6.5.2 NumericMatrix example

We give an example to show how to use numeric matrices. The code is:

int rowstart = 1;
int colstart = 1;
NumericMatrix<double, int> m3(3, 3, rowstart, colstart);
for (int i = m3.MinRowIndex(); i <= m3.MaxRowIndex(); i++)
{

for (int j = m3.MinColumnIndex(); j <= m3.MaxColumnIndex();
j++)

{
m3(i, j) = 1.0 /(i + j -1.0);

}
}

print (m3);

The output from this code is:

MinRowIndex: 1 , MaxRowIndex: 3
MinColumnIndex: 1 , MaxColumnIndex: 3
MAT:[
Row 1 (1,0.5,0.333333,)
Row 2 (0.5,0.333333,0.25,)
Row 3 (0.333333,0.25,0.2,)]

6.6 ASSOCIATIVE ARRAYS AND MATRICES

One of the disadvantages of the classes in this chapter is that elements in vectors and
matrices must be accessed by integral indices. This is because the STL uses int as
the index type. In many applications we would like to have strings as subscripts. This
feature is seen in the SNOBOL4 language and the AWK language (see Aho et al., 1988).
Furthermore, Excel’s data structures (ranges, cells and sheets) are essentially associative
structures. Thus, it is important to show how to create associative vectors and matrices
in C++.

Arrays, Vectors and Matrices 75

We create a class that encapsulates an Array instance but also has a map of key values
to the internal integer values. Clients access elements in the array by using the associative
index (for example, a string) while the code maps this index to an integral index. The
header for this basic class is:

template <class V,class AI = string,class I=int,class S=FullArray<V> >
class AssocArray

{
private:

map<AI,I> internal_array; // The list of associative value

public: // N.B. for convenience only
Array<V, I, S> contents; // The numeric values

public:
// Constructors & destructor
AssocArray(const list<AI>& names, const Array<V, I, S>& source);

// New overloaded indexing operator for subscripting
virtual V& operator [] (const AI& index);
virtual const V& operator [] (const AI& index) const;

typedef std::map<AI,I>::iterator iterator;
typedef std::map<AI,I>::const_iterator const_iterator;

// Iterator functions
iterator Begin();
const_iterator Begin() const;
iterator End();
const_iterator End() const;

};

We see that we create an associative array by giving a list of keys or names and an array.
The code for this constructor is:

template <class V, class AI, class I, class S>
AssocArray<V, AI, I, S>::AssocArray(const list<AI>& names,

const Array<V, I, S>& source)
{

I curr = source.MinIndex();
list<AI>::const_iterator it;
for (it = names.begin(); it != names.end(); it++)
{
internal_array.insert(pair<AI,I>(*it, curr));
curr++;

}
contents = source;

}

We also see that there is functionality for navigating in the associative array and we have
the facility for accessing elements by the ‘[]’ operator.

We have created a useful function to print associative arrays. Here we see that a map
consists essentially of pairs of elements:

void print (const AssocArray<double, string>& assArr)
{

// Iterating in the map
AssocArray<double, string>::const_iterator i = assArr.Begin();

76 Financial Instrument Pricing Using C++

while (i != assArr.End())
{

cout << "Element pair [" << (*i).first << "," <<
(*i).second << "]\n";

i++;
}

}

The following is a test program:

int main()
{
list<string> names;
names.push_back("A1");
names.push_back("A2");
names.push_back("A3");
names.push_back("A4");

Array<double> myArr(4);
myArr[1] = 2.0;
myArr[2] = 3.0;
myArr[3] = 4.0;
myArr[4] = 5.0;

AssocArray<double, string> myAssocArray(names, myArr);

// Iterating in the map
print(myAssocArray);
print(myAssocArray.contents);

myAssocArray["A4"] = 99.99;

print(myAssocArray.contents);

return 1;
}

The output from the program is:

Element pair [A1,1]
Element pair [A2,2]
Element pair [A3,3]
Element pair [A4,4]

MinIndex: 1 , MaxIndex: 4
ARR:[2,3,4,5,]
MinIndex: 1 , MaxIndex: 4
ARR:[2,3,4,99.99,]

We see that it is possible to create sophisticated data structures using STL. In this case
we created an associative array class that essentially wraps or decorates a ‘normal’ array
class (see Gamma et al., 1995, for a discussion of the Decorator pattern). We see many
applications of this class for financial engineering, for example decision tables and Excel,
to mention just two.

Arrays, Vectors and Matrices 77

6.7 CONCLUSIONS AND SUMMARY

We have presented the classes Array and Matrix in this chapter. These classes and
their specialisations will play a vital role in later chapters and applications. In particular,
we use them in numerical linear algebra and when we solve linear systems of equations.
They are tuned to a numerical analysis world and this is why we have created them. Of
course, there are many other matrix libraries (many of which are certainly more complete
and possibly more efficient) but our classes are good enough for future work. At this
stage, we are of the opinion that less is more.

7

Arrays and Matrix Properties

7.1 INTRODUCTION AND OBJECTIVES

In Chapter 6 we introduced the classes Array, Matrix, Vector and NumericMa-
trix. In that chapter we concentrated on how to create instances of these classes using
various constructors and how to access the elements in these instances after they have
been created. Furthermore, we have discussed how to print arrays and matrices using the
standard output stream in C++.

In this chapter we extend the functionality of arrays and matrices. In particular, we
create new functions that implement vector and matrix operations. These functions will
be needed in later chapters. To this end, we introduce reusable functions and classes that
can be applied over and over again in your applications. In this sense we have created a
so-called BLAS (Basic Linear Algebra Subprograms) in much the same way as can be
found in commercial Fortran and C/C++ libraries.

7.2 AN OVERVIEW OF THE FUNCTIONALITY

When working in numerical analysis we often need to work with arrays, vectors, matrices
and other containers. There are many areas of numerical analysis where we need to
perform operations on these containers. Some major areas are:

• Numerical linear algebra (solution of matrix equations, eigenvalue analysis)
• Using vectors and matrices in statistics
• Inequality relationships in operations research
• Curve fitting and extrapolation

. . . and many more.
In this chapter we discuss a set of functions that serve as useful building blocks for the

above applications. In particular, we shall use them in later chapters of this book when
we propose finite difference schemes for parabolic partial differential equations and the
related one-factor and two-factor Black–Scholes equations. To this end, we have created
functions that we group into the following categories:

• Sums, averages and means of vectors
• Extremum operations on vectors
• Vector and matrix norms
• Measures of dispersion (in statistics)
• Moments, skewness and kurtosis (in statistics)
• Inequality operations with vectors and matrices (<, <=, == and so on)
• Some utility functions (for example, printing vectors and matrices with cout).

We are unable to deal with all the underlying mathematics of the functions in these
categories as this book is, after all, devoted to C++ programming. One the other hand, we

Arrays and Matrix Properties 79

feel that we must motivate how we produced our code and where the basic ideas came
from. To this end, we give the mathematics for those functions that calculate vector and
matrix norms and the mathematics is mapped or transformed to C++ code. The mapping
should be as transparent and as easy to understand as possible. To this end, we give a
detailed description of the activities in section 7.4.

7.3 SOFTWARE REQUIREMENTS

We must define the efficiency of our software library. They say that beauty is in the eye of
the beholder, but we must define the software requirements that our library should satisfy.
In general, customers are interested in both functional and non-functional requirements
and we, as software developers, should know what these requirements are before we
start programming. In this chapter we shall discuss some requirements that our software
satisfies and then show how we realise these requirements in C++.

7.3.1 Accuracy

Accuracy is a functional requirement and it states that the software should perform its
duties as expected or as agreed. In this case we state that the algorithms that implement
vector and matrix operations should be correct and should be correctly programmed in
C++. An algorithm (or its implementation) that is incorrect is at best useless and at
worst disastrous.

In order to reduce the cognitive gap between mathematical algorithms and C++ code
we try to use the same variables and variable names in the code as in the correspond-
ing algorithms.

7.3.2 Efficiency

This is a non-functional requirement that relates to the time and resource behaviour of
the software. In general, we are interested in how long it takes to perform a calculation
(response time) and how much memory resources are needed to perform that calculation.
Most of the algorithms in this chapter navigate sequentially in vectors and matrices; thus,
the performance depends on the number of elements in the container. As far as resources
are concerned, in some applications we create temporary workspace containers to store
intermediate results. This trick can improve response time at the expense of some extra
memory usage. These days, however, computer memory is not so expensive so it can be
a wise choice to sacrifice some computer memory (which is renewable) for the benefit of
customer satisfaction.

7.3.3 Reliability

This is a non-functional requirement that refers to properties of the software such as fault-
tolerance, the ability of the software to recover from an exception and the maturity of the
software in general. The functions in this chapter expect input to certain properties. If the
input has the necessary properties then the function can perform its duties. If not, the deal

80 Financial Instrument Pricing Using C++

is off as it were and the function should throw an exception to the calling code stating
what the problem was. In this chapter the following exceptional situations can arise:

• We attempt to divide by zero in some calculation
• We attempt to access an array/vector element outside its legal bounds
• Two vectors have mutually incompatible sizes
• In general, two containers cannot work together because of some mathematical

contradiction.

We shall see in a later section how these exceptions are designed and implemented in
C++ and how they are handled if a run-time error does occur.

7.3.4 Understandability

Understandability is a non-functional requirement that has to do with how easy it is to
understand the C++ code and how easily the functions can be used in other applications.
In fact, the current requirement is one of a triad in the Usability ISO 9126 (Kitchenham
and Pfleeger, 1996) characteristic:

• Understandability: How easy is it to understand the code at a ‘user’ level? (level 1)
• Learnability: How easy is it to learn the major workflow in the software and to use it

as a client? (level 2)
• Operability: How easy is it to learn the internals of the software, extend and customise

it and apply it to your own applications? (level 3)

In this book we hope to get the reader up to level 3 by giving enough examples of use
so that he or she can apply the functions in various financial engineering applications.

7.4 THE CORE PROCESSES

We now describe how we designed and implemented the C++ code for the function
categories in section 7.2. To this end, we focus on the category of functions that calculate
the norms of vectors and matrices. A norm is a precise mathematical concept (see Bronson,
1989) and we define it now in order to motivate the code. First, a semi-norm for vector
x is a mapping x → p(x) from the space of vectors to the real line such that

(1) p(x) ≥ 0

(2) p(λx) = |λ|p(x), λ real number (7.1)

(3) p(x + y) ≤ p(x) + p(y)

for any vectors x and y. If, in addition, the following holds:

(4) p(x) = 0 ⇔ x = 0 (7.2)

then we say that p is a norm.

Arrays and Matrix Properties 81

We now turn our attention to defining specific norms for vectors and matrices, starting
with vectors. We define the following four vector norms:

Euclidean (l2) norm: ||x||2 =

 n∑

j=1

x2
j

1
2

l1 norm: ||x||1 =
n∑

j=1

|xj |

l∞ norm: ||x||∞ = max1≤j≤n |xj |

lp norm: ||x||p =

 n∑

j=1

|xj |p

1
p

(7.3)

The next challenge is to map this mathematical notation to C++ code. We wish to keep
everything generic so we need two generic underlying types:

V: the data type of the elements of the vector
I: the index set in the vector.

Thus, each function in the ‘Norm’ category accepts a vector as input and produces a value
(the norm itself) as output. The function prototypes for the formulae in (7.3) now become:

template <class V, class I>
V innerProduct(const Vector<V,I>& x, const Vector<V,I>& y);

template <class V, class I>
V l1Norm(const Vector<V,I>& x);

template <class V, class I>
V l2Norm(const Vector<V,I>& x);

template <class V, class I>
V lpNorm(const Vector<V,I>& x, const I& p);

template <class V, class I>
V lInfinityNorm(const Vector<V,I>& x);

These are just normal C/C++ procedural functions that accept instances of class Vector
as argument. We have not tried to wrap them in some static class or attempted to force
them into an object-oriented framework.

The code for the inner product of two vectors is:

template <class V, class I>
V innerProduct(const Vector<V,I>& x, const Vector<V,I>& y)

{
// PREC: x and y have same size
V ans = V(0.0);
for (I j = x.MinIndex(); j <= x.MaxIndex(); j++)
{
ans += x[j] * y[j];

}
return ans / vector.Size();

}

82 Financial Instrument Pricing Using C++

Notice how we have applied the Information Hiding principle; the function for the inner
product of two vectors does not know about the internal structure or indexing scheme
used. All it needs to know is how to access the elements of the vectors.

For completeness, we now give the full source code for the function for the l2 norm.
We have increased the level of reusability because the value of the l2 norm is the square
root of the sum of squares of the elements and we have created a dedicated function for
the latter operation. This function can then be used by many other client functions.

template <class V, class I> V sumSquares(const Vector<V,I>& x)
{

V ans = V(0.0);
for (I j = x.MinIndex(); j <= x.MaxIndex(); j++)
{
ans += (x[j] * x[j]);

}
return ans;

}

We now use this function as a reusable module in the following function:

template <class V, class I> V l2Norm(const Vector<V,I>& x)
{
return sqrt(sumSquares(x));

}

We have also developed many functions that calculate norms of the difference of two
vectors. To take one example:

template <class V, class I> V l2Norm(const Vector<V,I>& vectorA, const
Vector<V,I>& vectorB)

{
Vector vecDiff = vectorA - vectorB;
return l2Norm(vecDiff);

}

It should be obvious that this code is relatively easy to understand and to debug. In fact,
we have built the software up in a layered fashion. Software at the higher levels use tested
and correct software at the lower layers.

We now turn our attention to matrix norms:

L1 norm: ||A||1 = maxj=1,...,n

(
n∑

i=1

|aij |
)

(largest column sum)

L∞ norm: ||A||∞ = maxi=1,...,n

 n∑

j=1

|aij |

 (largest row sum)

(7.4)

The function prototypes for the corresponding implementation are:

template <class V, class I>
V L1Norm(const NumericMatrix<V,I>& matrix);

template <class V, class I>
V FrobeniusNorm(const NumericMatrix<V,I>& matrix);

Arrays and Matrix Properties 83

template <class V, class I>
V LInfinity1Norm(const NumericMatrix<V,I>& matrix);

and the source code for the Frobenius (L2) norm is:

template <class V, class I>
V FrobeniusNorm(const NumericMatrix<V,I>& matrix)

{
V ans = V(0.0);
for (I i=matrix.MinRowIndex();i<=matrix.MaxRowIndex(); i++)
{
for (I j=matrix.MinColIndex(); j<=matrix.MaxColIndex(); j++)
{
tmp = matrix(i, j);
ans += tmp * tmp;

}
}
return sqrt(ans);

}

There are lots more C++ code on the CD that shows how the other functions have been
implemented.

7.4.1 Interactions between matrices and vectors

We conclude this section with a discussion of a number of formulae and functions that
involve both matrices and vectors as input. In this particular case we look at two specific
functions. These have applications in numerical linear algebra and eigenvalue analysis:

Quadratic form:
n∑

i=1

n∑
j=1

aij xixj

Rayleigh quotient: R(x) = (Ax, x)/(x, x)

L2 norm (Frobenius) : ||A||F =

 n∑

i=1

n∑
j=1

|aij |2

1
2

(7.5)

The formula for the quadratic form is often used to test the definiteness of a matrix (in
particular, if a matrix has an inverse) and the Rayleigh quotient gives an indication of the
size of the eigenvalues of a matrix (see Bronson, 1989).

The corresponding code for these two functions is:

template <class V, class I>
V quadraticForm(const NumericMatrix<V,I>& matrix, const
Vector<V,I>& x)

{
V ans = V(0.0);
for (I i=matrix.MinRowIndex();i<=matrix.MaxRowIndex(); i++)
{
for (I j=matrix.MinColIndex();j<=matrix.MaxColIndex(); j++)
{
ans += matrix(i,j) * x[i] * x[j];

84 Financial Instrument Pricing Using C++

}
}
return sqrt(ans);

}

template <class V, class I>
V RayleighQuotient(const NumericMatrix<V,I>& A, const
Vector<V,I>& x)

{
// PREC: Compatibility, number of cols of A == number of rows of x
// PREC: inner product does not evaluate to 0.0
Vector y = A * x;
return innerProduct(y, x) / innerProduct (x,x);

}

Notice that we have not carried out any range checking or compatibility checks in this
code. It is the responsibility of the client code (in this case) to ensure that the number
of columns in a matrix is the same as the number of rows in a vector if we wish to
multiply them. We shall see in a later section how this kind of problem can be identified
and resolved by using the exception handling mechanism in C++.

7.4.2 Some examples

We give some code to show how to use the functions in the ‘Norm’ category. For testing
purposes we have created a function

template <class V, class I>
SimplePropertySet<string, double> allNorms(const Vector<V,I>& x);

This is a handy function because you can call it and it calculates all relevant properties
of a vector and places the results in a property set. The source code for this function is:

template <class V, class I> SimplePropertySet<string, double>
allNorms(const Vector<V,I>& x)
{
SimplePropertySet<string, double> result; // Empty list
result.add(Property<string, V> ("l1", l1Norm(x)));
result.add(Property<string, V> ("l2", l2Norm(x)));
result.add(Property<string, V> ("linf", lInfinityNorm(x)));

return result;
}

We now give

Vector<double, int> myVector2(4); // Length 4, start index == 1
myVector2[1] = 1.0;
myVector2[2] = -10.0;
myVector2[3] = 9.0;
myVector2[4] = 2.0;
ans = allNorms(myVector2);
print(ans);

The output from this piece of code is:

l1: 22
l2: 13.6382
linf: 10

Arrays and Matrix Properties 85

7.5 OTHER FUNCTION CATEGORIES
We give a global overview of the functionality in the other categories. The function
prototypes are easy to understand and the structure of the source code is similar to that
in section 7.4. The functions have to do with statistics (see Spiegel, 1992) and you can
use them as reusable models in financial engineering and risk management applications.

7.5.1 Measures of central tendency

These are functions that we need in statistics and they are concerned mainly with various
kinds of averages of vectors. An average is a value that is typical, or representative of a
set of data. Since such typical values tend to lie centrally within a set of data arranged
according to magnitude, averages are also called measures of central tendency.

Sum
n∑

j=1

xj

Sum of reciprocals
n∑

j=1

(1/xj)

Sum of squares
n∑

j=1

x2
j

(Arithmetic) mean X =
n∑

j=1

(xj /n)

Weighted arithmetic mean
n∑

j=1

wjxj

/ n∑
j=1

wj

Geometric mean n
√

x1x2 . . . xn = n

√√√√ n∏
j=1

xj

Harmonic mean n

/
 n∑

j=1

(1/xj)

Quadratic (mean) (root mean square)

√√√√ n∑
j=1

(x2
j /n)

(7.6)

The function prototypes are:

template <class V, class I>
V mean(const Vector<V,I>& x);

template <class V, class I>
V weightedArithMean(const Vector<V,I>& x, const Vector<V,I>& w);

template <class V, class I>
V geometricMean(const Vector<V,I>& x);

template <class V, class I>
V harmonicMean(const Vector<V,I>& x);

template <class V, class I>
V quadraticMean(const Vector<V,I>& x);

86 Financial Instrument Pricing Using C++

7.5.2 Measures of dispersion

The degree to which numerical data tend to spread about an average value is called the
dispersion or variation of the data. There are several measures of this dispersion and we
shall discuss most of them in this section. These functions describe deviations from the
mean of a vector quantity.

Mean (average) deviation

n∑
j=1

|xj − X|

n

Standard deviation s =

√√√√√√
n∑

j=1

(xj − X)2

n

Variance

n∑
j=1

(xj − X)2

n

(7.7)

The function prototypes are:

template <class V, class I>
V deviationFromMean(const Vector<V,I>& x);

template <class V, class I>
V standardDeviation(const Vector<V,I>& x);

template <class V, class I>
V variance(const Vector<V,I>& x);

template <class V, class I>
SimplePropertySet<string, double> allDispersions(const Vector<V,I>& x);

7.5.3 Moments, skewness, kurtosis

These are useful functions that indicate the ‘centre’ of the distribution of some random
variable. An example is the mean() function described above. The current functions are
generalisations of this concept.

rth moment

 n∑

j=1

xr
j

/

n

rth moment with respect to origin A

 n∑

j=1

(xj − A)r

/

n

rth moment with frequencies and origin A mr =

 n∑

j=1

fj (xj − A)r

 /

n

Arrays and Matrix Properties 87

Skewness (mean-mode)/standard derivation

Moment coefficient of kurtosis m4/S
2 (7.8)

The function prototypes are:

template <class V, class I>
V rthMoment(const Vector<V,I>& x, const I& r);

template <class V, class I>
V rthMomentMean(const Vector<V,I>& x, const I& r);

template <class V, class I>
V rthMoment(const Vector<V,I>& x, const I& r, const V& A);

template <class V, class I>
V rthMoment(const Vector<V,I>& x, const Vector<V,I>& freq, const

I& r, const V& A);
template <class V, class I>

V median(const Vector<V,I>& x);
template <class V, class I>

V mode(const Vector<V,I>& x);
template <class V, class I>

V skewness(const Vector<V,I>& x);
template <class V, class I>

V momentCoeffKurtosis(const Vector<V,I>& x);

For more information on these and other formulae, see Spiegel (1992).

7.5.4 Inequalities

We have included a number of functions that are useful in optimisation theory. For
example, we can compare two vectors v1 and v2 in order to determine if all the elements
in v1 are greater than all the elements in v2. Some function prototypes are:

template <class V, class I>
bool positive(const Vector<V,I>& x);

template <class V, class I>
bool negative(const Vector<V,I>& x);

template <class V, class I>
bool positive(const NumericMatrix<V,I>& x);

A subset of the functionality is:

template <class V, class I>
bool operator < (const Vector<V,I>& v1, const Vector<V,I>& v2);

template <class V, class I>
bool operator <= (const Vector<V,I>& v1, const Vector<V,I>& v2);

For further information, please see the source code on the CD.

7.6 USING THE FUNCTIONS

We now give two examples on how to use the library functions. The examples are not very
difficult but our aim is to show that use of these functions leads to reliable, understandable
and maintainable code.

88 Financial Instrument Pricing Using C++

7.6.1 Calculating historical volatility

We give a short overview of a technique for calculating the historical volatility of stock.
In order to estimate the volatility of the price of stock empirically we can observe the
stock price at fixed intervals of time, for example every day (see Hull, 2000). Let

n + 1 = Number of observations

Sj = Stock price of end of j th interval, j = 0, . . . , n (7.9a)

τ = Length of time interval in years

Let
uj = ln(Sj /Sj−1), j = 1, . . . , n (7.9b)

The standard deviation of the u values is given by

s =

√√√√√ 1

n − 1

n∑
j=1

u2
j − 1

n(n − 1)

 n∑

j=1

uj

2

(7.9c)

In Hull (2000) it is shown that
σ = s∗ = s√

τ
(7.9d)

We now have an estimate for the volatility.

7.6.2 Variance of return of a portfolio

Portfolio theory describes how investors allocate their funds between various assets in
order to construct a basket (‘portfolio’) of assets that are held simultaneously. Let us
assume that we have a portfolio of n assets. Let us define the following notation:

x = Weights for assets

σii = Variance for ith asset (7.10)

σij = Covariance of expected returns on assets i and j

An important problem in portfolio theory is calculating the variance of a portfolio:

var(τp) =
n∑

j=1

x2
j σjj +

n∑
i=1

n∑
j=1

σij aij xixj (7.11)

7.7 AN INTRODUCTION TO EXCEPTION HANDLING

We now turn our attention to the things that can go wrong when clients call functions. In
order to reduce the scope, let us re-examine the source code for one of the functions:

template <class V, class I>
V sumReciprocals(const Vector<V,I>& x)

Arrays and Matrix Properties 89

{ // Sum of reciprocals
V ans = V(0.0);
for (I j = x.MinIndex(); j <= x.MaxIndex(); j++)
{
ans += 1.0/x[j];

}
return ans;

}

We see that if any one of the elements in the vector is zero we shall get a run-time
error and your program will crash. This is not what the doctor ordered! To circumvent
this problem we use the exception handling mechanism in C++ which provides the client
with software with a ‘net’, as it were, that will save the client if he or she falls off the
trampoline. We now discuss the fine details of this mechanism.

7.7.1 Try, throw and catch: A bit like tennis

In order to understand exception handling we must discuss the concept of a contract
between client code (the calling function) and the server code (the function being called).
Each party has its rights and responsibilities. The server states what the conditions and
rules are and the client should abide by these rules. If not, then there is no guarantee that
the results are correct (or indeed that a result is returned at all). So, the client defines
a block of code that captures any run-time errors, should they occur. The client calls a
server function in this block. If the server discovers an error it will throw a newly created
exception object back to the client.

In general, the steps at run-time are:

1. Client calls a server function in a try block .
2. Server function checks if contract has been honoured.
3. If contract has been honoured, the server’s postconditions are executed and control is

returned to the client.
4. If the contract has not been honoured, the server code throws exception object back

to the client which then catches it in its catch block .

The main challenges for the developer are:

• Determining what is and is not an exception.
• Deciding where to place the precondition code that checks for a break of contract in

the server.
• Determining the data that should be placed in the exception object to help the client to

figure out what he or she did wrong.

In general, we design exception classes so that they contain enough data to help the client
code in order to make decisions on what to do if an exception does occur at run-time.
Essential information includes the following:

• The type of exception thrown (e.g. DivideByZero, InvalidRange).
• The message text in the exception (this can be displayed on the client screen).
• The source of the exception (the server function in which the exception occurred).

90 Financial Instrument Pricing Using C++

It is important to realise that software should be as reliable as possible and steps should
be taken to ensure that our code can recover from incorrect input or calculations.

7.8 CONCLUSIONS AND SUMMARY

We have given an overview of some added-value functionality for vectors and matrices.
The functionality has been implemented as functions that take vectors and matrices as
input arguments. Included is functionality for statistics, norms, inequalities, extremum
properties and some utility properties (for example, printing vectors and matrices using
the standard stream library).

The functions are in fact modules that can be used in larger examples and applications.
The advantage of this function library is that you do not have to program it yourself.

8

Numerical Linear Algebra

8.1 INTRODUCTION AND OBJECTIVES
In this important chapter we introduce a number of methods that allow us to solve linear
systems of equations. This particular area of numerical analysis is called Numerical Linear
Algebra. It is a vast subject on which many books have been written. We are concerned
with an important subset, namely solving a matrix system by direct techniques. By ‘direct’,
we mean that the solution of a linear system of equations can be found in a finite,
predetermined number of steps. Furthermore, we introduce several matrix solvers that
are of relevance to financial engineering and option pricing (see, for example, Wilmott,
1998). For example, we shall use finite difference methods to discretise the one-factor
Black–Scholes equation and the resulting scheme is cast as a matrix system that we solve
at each time step. Furthermore, multi-factor models will also be solved as a sequence of
simpler equations which, in their turn, are solved by matrix solvers.

The structure of this chapter is as follows: in section 8.2 we give an introduction to
numerical linear algebra and the type of problems we are trying to solve. It may be skipped
if the reader has had some exposure to the subject. We discuss two competing strategies
for solving matrix systems in this book: first, direct methods produce the solution to the
problem in a finite number of arithmetic steps; second, iterative methods start with an
arbitrary initial approximation and an iterative scheme is devised that hopefully converges
to the exact solution. In this latter case we need to define a so-called stopping criterion that
indicates that the current solution is close enough to the exact solution. Having completed
with the motivation in section 8.3 we introduce specific direct methods (iterative methods
are discussed in further detail in Chapter 14). To this end, we introduce LU decomposition
as a means of breaking up a matrix problem into two simpler sub-problems. This is the
subject of section 8.3. An important special case is when the matrix is tridiagonal, and
here we give two efficient solvers.

Section 8.4 deals with an extension of LU decomposition for block triangular matrices.
These structures are found when finite difference methods are applied to systems of partial
differential equations – for example, if we reduce the Black–Scholes equation to a first-
order system that we then approximate using the Keller box scheme (see Keller, 1971).
Finally, section 8.5 discusses some necessary and sufficient conditions for a matrix system
to have a unique solution. In particular, we dwell on certain intrinsic properties of matrices
that ensure this uniqueness.

Matrix solvers and their applications to finance are discussed in Wilmott (1998) and
Tavella and Randall (2000). You should be able to incorporate the matrix solvers in your
C++ applications without too much hassle. You use them as ‘black boxes’.

8.2 AN INTRODUCTION TO NUMERICAL LINEAR ALGEBRA
We now give a very general overview of Numerical Linear Algebra. There is a vast
literature on this subject, which is one of the cornerstones of numerical analysis. In fact,
many problems can be reduced to a system of linear equations.

92 Financial Instrument Pricing Using C++

Our interest in this chapter is focused on the following problem: Given a vector F of
length n and a square matrix A (that is, one with n rows and n columns), find the unique
vector U that satisfies the linear system:

AU = F (8.1)

In general, we say that U is the solution of equation (8.1) and write it formally as

U = A−1F (8.2)

In general, we do not calculate the inverse of A directly because this is too cumbersome.
Instead we use so-called matrix solvers to compute the solution U . There are more efficient
and less resource-intensive techniques than using a sledgehammer algorithm to invert the
matrix A, but we shall discuss this in more detail in later sections.

Writing an equation in the form of (8.1) is not difficult in general (although, as we shall
see in later chapters, working out the equations involves a lot of basic and somewhat
tedious arithmetic) but there are a number of issues to be addressed:

• Does (8.1) have a solution in the first place?
• Can we find sufficient conditions on matrix A to produce a solution to (8.1)?
• How sensitive is the solution U to small perturbations in the matrix A?
• What are the different kinds of structures that A might have?
• Can we find efficient, reliable and accurate matrix solvers for (8.1)?

We shall discuss these topics in the course of this chapter, but first let us draw a distinction
between the zero and non-zero elements of the matrix A. If we know that some elements
of A are zero, and if the distribution of zeros follows a recognisable pattern, then we
might hope to develop matrix solvers that take these structures into account. Furthermore,
we do not need to store the zero elements in memory, thus adding to good resource
utilisation.

We are exposed to various kinds of matrix structures in numerical analysis. Related
to this issue is how to store the matrices in memory, how to access the matrix elements
(read and write) and how to solve systems of equations in which these matrices play the
role of the matrix A in equation (8.1). Some possible matrix structures are:

• Full matrix
• Sparse matrix
• Patterned matrix.

In a full matrix, all the elements must be stored in memory. Such matrices are common in
some applications (for example, solving integral equations) but they are not so common
in the finite difference method. In general, a full matrix with n rows and m columns
will require nm memory locations. A sparse matrix is one in which the majority of
elements has the value zero. This implies that we only have to store a small percentage
of the elements in memory. One of the challenges associated with the choice of data
structure is the problem of accessing the non-zero elements in the matrix. Sparse matrices
occur when modelling multidimensional problems using finite differences or the Finite
Element Method (FEM) and, again, there is a vast literature on the subject. A patterned
matrix is one in which the zero and non-zero elements bear a well-defined structural

Numerical Linear Algebra 93

relationship to each other. There are many kinds of patterns in the literature, some of
which we have discussed in Part I of this book, and we have presented some examples
in Figure 4.1 of this text. In general, a band matrix is one whose diagonal element and
2K off-diagonal elements are non-zero. An important special case is when K = 1; this
is the class of tridiagonal matrices. Thus, a tridiagonal matrix is one with three non-zero
diagonal elements. These matrices are very important when we come to the chapters on
finite differences methods for ordinary and partial differential equations when we employ
three-point difference schemes to discretise the space variable. A more general kind of
tridiagonal matrix is the so-called block tridiagonal matrix (see Isaacson, 1966). This
type of matrix is needed when we approximate systems of partial differential equations
by finite differences (for example, chooser options, see Wilmott, 1998) or when we reduce
a second-order parabolic partial differential equation to a first-order system in order to
get good approximation to the solution and its first derivative.

A lower triangular matrix is one whose non-zero elements are all on or below the main
diagonal while an upper triangular matrix is one whose non-zero elements are all on or
above the main diagonal.

We now discuss two major categories of methods for solving linear systems of the
form (8.1).

8.2.1 Direct methods

By a direct method for solving a system of linear equations (8.1), we mean a method
that gives the exact solution U after a certain finite number of steps. We mention some
common methods:

• Gaussian elimination for full matrices
• LU decomposition techniques
• Crout’s method

. . . and many more. In this book we are interested in solving systems (8.1) where the
matrix A is tridiagonal. We propose two schemes, one of which is a direct specialisation
of LU decomposition.

8.2.2 Iterative methods

An iterative scheme starts from a first approximation that is then successively improved
until a sufficiently accurate solution is obtained (Varga, 1962; Dahlquist, 1974). The big
question is: Does the algorithm implementing the iterative scheme converge, how efficient
is the algorithm and how many iterations are needed before the desired accuracy is
achieved? We shall devote some attention to these issues in Chapter 14, where we discuss:

• The Jacobi method
• The Gauss–Seidel method
• Successive Overrelaxation (SOR)
• The Conjugate Gradient method
• The Projected SOR method and its relationship with American option pricing.

In general, iterative methods are suitable for sparse matrix systems. We mention them
in this chapter as a resource for future work and because we need to understand the theory

94 Financial Instrument Pricing Using C++

underlying the Projected SOR method (Cryer, 1979; Wilmott, 1993) that is used when we
discretise the Black–Scholes equation for American options. In this case we get a system
of matrix inequalities having the general form:

(U − c) · (AU − b) = 0 (8.3)

where AU ≥ b, U ≥ c, c is a vector and the dot ‘.’ denotes the inner product of
two vectors.

8.3 TRIDIAGONAL SYSTEMS
We discuss two direct methods for solving systems of the form (8.1) in which the matrix
A is tridiagonal. This is a very important case in practice because when we apply three-
point difference schemes to the one-factor Black–Scholes equation we get a system of
the form (8.1) that must be solved at each time level. Furthermore, we shall need to solve
tridiagonal systems when we discuss Alternating Direction Implicit (ADI) and splitting
methods for two-factor and multi-factor Black–Scholes equations (see Thomas, 1998).

8.3.1 LU decomposition

This is a technique to decompose a matrix into the product of two simpler matri-
ces (see Keller, 1968). LU decomposition can be applied to general full matrices (see
Dahlquist, 1974) but this is too general for our needs at the moment. Our focus is on
tridiagonal matrices and to this end we write A as the product of a lower triangular matrix
L and an upper triangular matrix U (we use a slight change of notation when compared
with earlier sections; in this section U is a matrix when u is the solution of the original
system Au = r)

A = LU

Then the matrix problem Au = r can be decomposed into (hopefully) two simpler sub-
problems

Lz = r and Uu = z

where z is some intermediate vector having the same size as the final solution u. To
achieve this end, we must first of all find the coefficients of the matrices L and U and
second we must also devise the algorithms for solving Lz = r and Uu = z.

We assume a structure for the matrices L and U as follows:

L =

β1

a2 . . .
0

0 . . .
. . .

aJ βJ

 (8.4)

U =

1 γ1 0

. . .
. . .

γJ−1
. . .

0 1

(8.5)

Numerical Linear Algebra 95

We see that L is lower triangular and U is upper triangular and some simple (if sometimes
tricky/tedious) arithmetic shows that

β1 = b1, γ1 = c1/β1

βj = bj − aj γj−1, j = 2, 3, . . . , J (8.6)

γj = cj /βj , j = 2, 3, . . . , J − 1

You can convince yourself that these results are true by working out the equality A = LU .
Incidentally, designing and implementing algorithms involving matrices (and even finite
difference schemes) can be difficult because we have to worry about things like start and
end index values of vectors when working with discrete systems. These problems demand
that you work in a precise manner.

The matrix solver is a combination of two simpler problems:

Lz = r (8.7)

and
Uu = z (8.8)

Simple arithmetic shows how to calculate the vector z:

β1z1 = r1 �⇒ z1 = r1/β1

aj zj−1 + βjzj = rj �⇒ zj = β−1
j (rj − ajzj−1), j = 2, . . . , J

(8.9)

This is called the forward sweep. The backward sweep for Uu = r is given by the
algorithm

uJ = zJ

1.uj + γjuj+1 = zj �⇒ uj = zj − γjuj+1, j = J − 1, . . . , 2, 1
(8.10)

And now C++ for LU decomposition

template <class V, class I> class LUTridiagonalSolver
{ // Solve tridiagonal matrix equation

private:

// Defining arrays (input)
Vector<V,I> a; // The lower-diagonal array [2..J]
Vector<V,I> b; // The diagonal array [1..J] "baseline array"
Vector<V,I> c; // The upper-diagonal array [1..J-1]
Vector<V,I> r; // Right-hand side of equation Au = r [1..J]

// Work arrays
// Coefficients of Lower and Upper matrices: A = LU
Vector<V,I> beta; // Range [1..J]
Vector<V,I> gamma; // Range [2..J-1]
// Solutions of temporary and final problems
Vector<V,I> z; // Range [1..J]
Vector<V,I> u; // Range [1..J]

I J; // Largest index
void calculateBetaGamma(); // Calculate beta and gamma
void calculateZU(); // Calculate z and u

public: (partial)

96 Financial Instrument Pricing Using C++

// other stuff
LUTridiagonalSolver(const Vector<V,I>& lower_A,

const Vector<V,I>& diagonal_B, const Vector<V,I>& upper_C,
const Vector<V,I>& rhs_R);

// Integrity checks
bool validIndices() const; // Indices and size bound OK?
bool diagonallyDominant() const;

// Calculate the (final) solution to Au = r
Vector<V,I> solve();

};
template <class V, class I> void
LUTridiagonalSolver<V,I>::calculateBetaGamma()
{ // Calculate beta and gamma

// Constructor derived from Array (size, startIndex [,value])
beta = Vector<V,I> (J, 1);
gamma = Vector<V,I> (J - 1, 1);

beta[1] = b[1];
gamma[1] = c[1] / beta[1];

for (I j = 2; j <= J - 1; j++)
{

beta[j] = b[j] - (a[j] * gamma[j-1]);
gamma[j] = c[j]/beta[j];

}
beta[J] = b[J] - (a[J] * gamma[J-1]);

}

template <class V, class I> void
LUTridiagonalSolver<V,I>::calculateZU()
{ // Calculate z and u

z = Vector<V,I> (J, 1);
u = Vector<V,I> (J, 1);

// Forward direction
z[1] = r[1] / beta[1];

for (I j = 2; j <= J; j++)
{

z[j] = (r[j] - (a[j]*z[j-1])) / beta[j];
}

// Backward direction
u[J] = z[J];

for (I i = J - 1; i >= 1; i--)
{

u[i] = z[i] - (gamma[i]*u[i+1]);
}

}

template <class V, class I> Vector<V,I>
LUTridiagonalSolver<V,I>::solve()
{
calculateBetaGamma(); // Calculate beta and gamma
calculateZU(); // Calculate z and u

return u;
}

Numerical Linear Algebra 97

Examples

size_t J = 10;
// First test case, trivial solution == 1 (the sanity check)
// Constructors with size, start index, value (diagonals)
Vector<double, int> a(J-1,2,0.0); // Size J -1, start index 2
Vector<double, int> b(J,1 ,1.0);
Vector<double, int> c(J-1, 1, 0.0);
Vector<double, int> r(J, 1, 1.0); // Right-hand side
LUTridiagonalSolver<double, int> mySolver(a, b, c, r);
Vector<double, int> result = mySolver.solve();
cout << "Solution for LU:\n"; print(result);

// Matrix for boundary value problem u" + u = 0,u(0) = 0,u(1) = 1
double h = 1.0 / double(J);
Vector<double, int> A(J-1,2,1.0); // Size J -1, start index == 2
Vector<double, int> B(J,1,-2.0 + (h*h));
Vector<double, int> C(J-1,1,1.0);

Vector<double, int> R(J, 1, 0.0); // Right-hand side
R[R.MaxIndex()] = - 1.0;

LUTridiagonalSolver<double, int> secondSolver(A, B, C, R);
Vector<double, int> Result = secondSolver.solve();
cout << "Solution" << endl; print(Result);

Vector<double, int> exact(Result);
double d = ::sin(1.0);
double x = h;
for (int i = exact.MinIndex(); i <= exact.MaxIndex(); i++)
{
exact[i] = ::sin(x) / d;
x += h;

}
print(exact);

// Norm of difference
cout << "l2 norm of difference: " << l2Norm(Result, exact);
cout << "l1 norm of difference: " << l1Norm(Result, exact);
cout << "linf norm of difference: " << lInfinityNorm(Result, exact);

8.3.2 Godunov’s Double Sweep method

We shall now discuss a scheme that is used to solve systems of linear equations that
originate from finite difference discretisations of two-point value problems with Dirichlet
boundary conditions (Godunov, 1987). Note that we shall introduce boundary value prob-
lems and their finite difference discretisations in Chapter 13.

We shall now discuss Godunov’s scheme, which is typically used for solving linear
two-point value problems with Dirichlet boundary condition. Consider the problem

ajuj−1 + bjuj + cjuj+1 = fj , 1 ≤ j ≤ J − 1
u0 = ϕ, uJ = ψ

}
(8.11)

where ϕ and ψ are constants.
All constants, vectors and coefficients in (8.11) are known with the exception of the

vector u which must be found. To this end, Godunov employs a recurrence relationship

98 Financial Instrument Pricing Using C++

consisting of two sweeps. It requires some arithmetical juggling to convince yourself that
the algorithms are correct. We define the solution as follows:

uj = L
j+ 1

2
uj+1 + K

j+ 1
2

(8.12)

where
L

j+ 1
2

= −cj

bj + ajL
j− 1

2

K
j+ 1

2
=

fj − ajK
j− 1

2

bj + ajL
j− 1

2

Recurrence Relation

and the ‘initial’ values for the vectors K and L are given by

u0 = L 1
2
u1 + K 1

2
�⇒ L 1

2
= 0, K 1

2
= ϕ

u1 = L 3
2
u2 + K 3

2
�⇒ L 3

2
= −c1

b1
, K 3

2
= f − a1ϕ

b1

(8.13)

We now show how we coded parts of the algorithms in (8.13) and in (8.14) below:

template <class V, class I>
class DoubleSweep
{ // The Balayage method from Godunov

private:
// The vectors
Vector<V,I> a, b, c, f;
V left; // Left boundary condition
V right; // Right boundary condition

public:
// all the public stuff
DoubleSweep(const Vector<V,I>& lower,

const Vector<V,I>& diagonal, const Vector<V,I>& upper,
const Vector<V,I>& RHS, const V& bc_left,
const V& bc_right);

};

Summarising, the Godunov scheme is given by:

uJ = ψ

uj = L
j+ 1

2
uj+1 + K

j+ 1
2
, j = J − 1, . . . , 1

(8.14)

template <class V, class I, class AS>
Vector<V,I> DoubleSweep<V,I>::solve()
{ // Code to actually create the solution to the tridiagonal system

size_t N = a.Size() + 1;

Vector<V,I> U(N + 1, 0); // start index = 0; this vector will
// 'contain' the result

U[0] = left;
U[N] = right;

Numerical Linear Algebra 99

Vector<V,I> L(N, 0); // [0, N-1]
L[0] = 0.0;

for (I j = L.MinIndex() + 1; j <= L.MaxIndex(); j++)
{ // L
L[j] = (-c[j]) / (b[j] + (a[j] * L[j-1]));

}

Vector<V,I> K(N, 0); // [0, N-1]
K[0] = left;

for (j = K.MinIndex() + 1; j <= K.MaxIndex(); j++)
{// K
K[j] = (f[j] - (a[j] * K[j-1])) / (b[j] + (a[j] * L[j-1]));

}

for (j = N - 1; j >= 1; j--)
{ // U
U[j] = (L[j] * U[j + 1]) + K[j];

}

return U;
}

J = 10;
h = 1.0 / double(J);
Vector<double, int> A2(J-1, 1,1.0); // Size J, start == 1
Vector<double, int> B2(J-1, 1,-2.0 + (h*h));
Vector<double, int> C2(J-1, 1,1.0);
Vector<double, int> R2(J-1, 1, 0.0); // Right-hand side
R2[R2.MaxIndex()] = - 1.0;

LHS = 0.0;
RHS = 1.0;
DoubleSweep<double, int>
doubleSweepSolver(A2, B2, C2, R2, LHS, RHS);

Vector<double, int> ResultDS = doubleSweepSolver.solve();
print(ResultDS);

8.3.3 Designing and implementing tridiagonal schemes

We have tried to keep the cognitive distance between the mathematical notation and the
eventual C++ code as small as possible. There are three main reasons for this approach.
First, it helps the person writing the code because he or she is forced (in a nice way of
course) to work in a disciplined manner by mapping each variable in the mathematical
algorithm to a C++ object or class. Second, the resulting code is hopefully easier to
understand and to deploy in other applications. (We have learned from experience that
writing C++ spaghetti code is almost impossible to understand and to debug.) Finally,
code written in this way is usable and easy to maintain.

8.4 BLOCK TRIDIAGONAL SYSTEMS

The LU decomposition technique can be applied to block tridiagonal systems (recall the
definition from section 8.2. This is needed when we model first-order systems, partial

100 Financial Instrument Pricing Using C++

differential equations and integral equations (Keller, 1968, 1971). Consider the block
tridiagonal matrix

A =

A1 C1

B2 A2
. . . 0

. . .
. . .

. . .

. . .
. . .

. . .
0 Cn−1

Bn An

(8.15)

where Aj = square matrix of order mj

Bj , Cj = rectangular matrices that fit into the ‘pattern’.

Thus, Bj has mj rows and mj−1 columns and cj has mj rows and mj+1 columns. A
specials case is where mj = m, then all submatrices are square of order m.

We seek a factorisation in the form A = LU , where

L =

Ã1

B2 Ã2 0
.

. . .
. . .

0 Bn Ãn

(8.16)

and

U

I2 �2
. . .

. . . 0

0
. . .

. . .

In �n−1

 (8.17)

where Ij = identity matrices of order mj

Ãj = square matrix of order mj

�j = rectangular matrices with mj rows, mj+1 columns.

Formally, the equality A = LU can be decomposed as follows:

Ã1 = A1; �1 = A−1
1 C1

Ãj = Aj − Bj�j−1, j = 2, . . . , n (8.18)

�j = Ã−1
j Cj , j = 2, 3, . . .

This algorithm is a generalisation of the ‘scalar’ LU decomposition algorithm. However,
the details of the algorithms will be slightly more complicated because we are solving
linear systems with ‘embedded’ vectors. What does this mean? It means that we are
solving a system of equations similar to (8.1) except that each component of U is not

Numerical Linear Algebra 101

a scalar quantity but is in fact a vector itself. From a C++ point of view we speak of a
composite or nested vector. In general, we wish to solve the system

Ax = f, x =

x(1)

...

x(n)

 f =

f(1)

...

f(n)

 (8.19)

The vectors are now calculated by the following scheme:

Ly = f, Ux = y

y(1) = Ã−1
1 f(1)

y(j) = Ã−1
j

(
f(j) − β1y(j−1)

)
, j = 1, 2, . . . , n

 (8.20)

x(n) = y(n)

x(j) = y(j) − �j x(j+1), j = n − 1, n − 2, . . . , 1

}
(8.21)

This completes the algorithm for solving this problem.

8.5 WHAT REQUIREMENTS SHOULD OUR MATRIX SATISFY?
The matrix A in equation (8.1) should satisfy certain properties if the equation is to
have a solution. To this end, we give a short discussion of some necessary and sufficient
conditions for (8.1) to have a unique solution. We shall deal with specific examples and
cases in later chapters when we model parabolic partial differential equations by finite
differences. Furthermore, the concepts will be needed in Chapter 14 when we introduce
the Projected SOR method.

8.5.1 Positive-definite matrices and diagonal dominance

A matrix A is said to be positive definite if

t v.A.v > 0 (8.22)

for any vector. This is equivalent to saying that the quadratic form is positive. We have
programmed this as a function in the ArrayMechanisms package that we discussed in
Chapter 7. Recall the prototype for this function:

template <class V, class I>
V quadraticForm(const NumericMatrix<V,I>& A,
const Vector<V,I>& x);

In general, it is difficult to prove that a matrix is positive definite so we need other
conditions. One useful criterion is that of diagonal dominance. A matrix A is said to be
diagonally dominant if for each row the absolute value of the diagonal element is greater
than or equal to the sum of the absolute values of its non-diagonal elements for that row:

A = (aij)i,j=1,...,n

|aii | ≥
n∑

j=1
i �=j

|aij | for j = 1, . . . , , n

 (8.23)

102 Financial Instrument Pricing Using C++

In the case where the matrix A is tridiagonal, this inequality takes on the form:

|bj | ≥ |aj | + |cj |, j = 1, . . . , n (8.24)

where we have used the same notation for the vectors a, b and c as in section 8.3.
Diagonally dominant matrices will be very important in later chapters. In particular,

we see diagonal dominance as a very desirable property in a matrix. If it is not satisfied,
all sorts of strange things start to happen, for example oscillating solutions, non-physical
solutions and other anomalies.

8.5.2 M -Matrices

We introduce another very important class of matrices that arises when modelling con-
vection-diffusion equations and other difficult boundary-layer and singular perturbation
problems (see Duffy, 1980; Morton, 1996; Farrell et al., 2000). An M-matrix is very
attractive, as we shall see in later chapters. For example, the exponentially fitted schemes
(Duffy, 1980) for the Black–Scholes equation produce schemes of the form (8.1)
where A is an M-matrix, whereas some traditional finite differences schemes (such
as Crank–Nicolson) produce matrices that are not M-matrices. In the latter case the
matrix will have complex eigenvalues that lead to the famous spurious oscillation problem
associated with the Crank–Nicolson method.

We say that a square matrix A is an M-matrix if it is non-singular, its inverse is
non-negative and its off-diagonal elements are less than or equal to 0

A−1 ≥ 0
aij ≤ 0, i �= j, ∀ 1 ≤ i, j ≤ n

}
(8.25)

Sufficient conditions for the inverse of a matrix to be non-negative are given in Farrell
et al. (2000) and Varga (1962). We restate the major result:

Lemma : Suppose that the matrix A is irreducibly diagonally dominant and

aij ≤ 0, i �= j

aii > 0

}
∀ 1 ≤ i, j ≤ n

Then A is non-singular and its inverse is strictly positive.

8.6 CONCLUSIONS AND SUMMARY

We have introduced the topic of Numerical Linear Algebra. This area is one of the corner-
stones of numerical analysis and is essential when we approximate differential equations
using finite differences. In particular, in Part IV we apply LU decomposition to solve
linear systems of equations arising from discretisation of the Black–Scholes equations.

We shall continue our discussion of matrices in Chapter 14 when we consider matrix
inequalities and how to solve them as well as their applications to American option
pricing.

9

Modelling Functions in C++

9.1 INTRODUCTION AND OBJECTIVES
In this chapter we deal with the problem of modelling various kinds of mathematical
functions as classes and objects. Instead of using naked function pointers we model
functions as first-class objects in C++. Having done that, we shall have the full power of
encapsulation, inheritance and polymorphism at our disposal as well as the spectrum of
creational, structural and behavioural design patterns (Gamma et al., 1995). These features
promote flexibility in our applications. In later chapters we shall use these new classes in
financial engineering applications.

Much of mathematics can be described as functions or mappings between different
spaces. To this end, it is vital that we can model them in C++. In this chapter we offer
the reader three choices:

• Using normal function pointers in C++
• Function objects (functors) in STL
• Creating your own template classes to model scalar, vector, vector-valued and real-

valued functions.

You can choose the option that is most suitable to the current situation. Function pointers,
for example, are simple to define and use but they lack flexibility. They are not first-
class objects.

Scalar functions (sometimes called univariate functions) accept a single real parameter
as input and produce a single real value as output. Although scalar functions get the lion’s
share of the attention, we shall give some guidelines on approximating functions in two
dimensions – that is, functions that have two input arguments and produce a real value
as output.

9.2 FUNCTION POINTERS IN C++
C++ can be seen as a ‘better C’ and it is possible to use it without applying any object-
oriented features at all. In particular, every feature in classic C can be used directly in C++
applications. To this end, what interests us in this chapter is how to model mathematical
functions using C++. There are different ways of achieving this end and the choice depends
on the level of flexibility that you desire in your application. In this chapter we discuss
three ways to model functions in C++:

• Traditional function pointers in C/C++
• Function objects in STL
• Creating your own classes that model functions.

In this section we discuss function pointers and give an example to show how they work.
In general, pointers to functions can be assigned, placed in arrays, passed to functions,
returned by functions, and so on.

104 Financial Instrument Pricing Using C++

We declare a function pointer by defining its input arguments, return type and its name
by using pointer arithmetic. We now give an example of a function declaration with an
embedded function pointer:

void genericFunction (double myX, double myY, double (*f) (double x,
double y))

{
// Call the function f with arguments myX and myY
double result = (*f)(myX, myY);

cout << "Result is: " << result << endl;
}

This is the declaration of a function called genericFunction. It accepts two arguments
myX and myY that will be passed to the function pointer f. You can then call generic-
Function by giving any two arguments and a specific function that has two arguments
of type double and whose return type is a double, as in the following example:

double add(double x, double y)
{
cout << "** Adding two numbers: " << x << ", " << y << endl;
return x + y;

}

double multiply(double x, double y)

{
cout << "** Multiplying two numbers: " << x << ", " << y << endl;

return x * y;
}

double subtract(double x, double y)

{
cout << "** Subtracting two numbers: " << x << ", " << y << endl;

return x - y;
}

The advantage of using function pointers is that functions using them are not hard-wired
into specific functions but a primitive form of polymorphism is offered.

Continuing with the above example, we define the basic operations for addition, mul-
tiplication and subtraction and these functions will be called from genericFunction
that accepts a function pointer, calls it and then prints the answer. We now show how
this is done by giving the source code for the individual operations. We call generic-
Function three times from the main() program:

int main()
{
double x = 3.0;
double y = 2.0;

genericFunction(x, y, add);
genericFunction(x, y, multiply);
genericFunction(x, y, subtract);

return 0;
}

Modelling Functions in C++ 105

The output from this program is:

** Adding two numbers: 3, 2
Result is: 5
** Multiplying two numbers: 3, 2
Result is: 6
** Subtracting two numbers: 3, 2
Result is: 1

There is nothing inherently wrong with this code except that the function calls are hard-
coded into the main program and the design may not be flexible enough for certain
applications. In general, a function pointer is not a first-class object in the object-oriented
sense. We shall see in section 9.4 how to resolve some practical limitations of the function
pointer mechanism. In particular, we define classes that encapsulate function pointers as
member data, thus opening the possibility for application of all the powerful features of
the object-oriented paradigm such as encapsulation, inheritance, polymorphism and the
ability to integrate function classes with design patterns (we devote Part V of this book
to design patterns).

We shall see in later chapters how to embed function pointers as member data in classes.
For example, in Chapters 11 and 12 we shall look at ordinary differential equations
(ODEs) and stochastic differential equations (SDEs). For example, the interface speci-
fication for an ODE is:

template <class V> class ScalarIVP // du/dt + a(t)u = f(t), u(0) = A
{ // Scalar initial value problem (first order). Mainly for test cases

// and illustration of theory and models.

private:
V ic; // Initial condition
Range<V> ran; // The interval that we are interested in

V (*rhs)(const V& t); // Forcing term f(t),
V (*a)(const V& t); // Coefficient zero order term

public:
// Other public stuff

// Choosing functions in equation
void Rhs(V (*fp)(const V& x)); // f(t)
void Coeff(V (*fp)(const V& x)); // a(t)

// Calculate the values of the functions
V RhsCalc(const V& t) const; // f(t)
V CoeffCalc(const V& t) const; // a(t)

};

In this example we embed two function pointers as private member data and we must
create set/get member functions because other client classes will need access to them. Each
programmer has his or her own way of conjuring up names for these set/get functions.
The situation is just about tenable for this simple equation, but what about a two-factor
Black–Scholes model where we might have up to 10 coefficients that must be modelled
as function pointers? This leads to code that is difficult to understand and to maintain. In
short, this solution does not scale well. There must be a better way. The next two sections
hope to throw some light on this problem.

106 Financial Instrument Pricing Using C++

9.3 FUNCTION OBJECTS IN STL

A function object (or functor) in STL is an object that can be called using an ordinary
function call syntax. Function objects contain function pointers as a special case; put
another way, a function pointer is a function object. Furthermore, any class that imple-
ments operator() can be used as a function object. In fact, a function object is an entity
that you execute, and in this sense it is similar to a Command design pattern (see Gamma
et al., 1995).

Functors are objects that behave like functions but have all the properties of objects.
In particular, they can be generalised, passed as parameters or have their state modi-
fied – something that is not possible with normal function pointers (Breymann, 1998).

STL provides a number of templated functions, but we shall concentrate on two main
groups. The first group has to do with functions taking zero, one or two arguments having
the names:

• Zero argument: Generator
• One argument: Unary function
• Two arguments: Binary function

In practice STL has this level of functionality because its algorithms do not require
function objects that have more than two arguments. Generator is a function object that
is called with no arguments. A Unary is a function object that is called with a single
argument while a Binary is a function object that is called with two arguments.

In order to write your own unary functions, you should derive your class from the
empty base class unary_function:

template<class Arg, class Result>
struct unary_function
{

typedef Arg argument_type;
typedef Result result_type;

};

The following simple example shows how to define your own unary function class called
Greater and apply it in an example. In this case, we iterate through the elements of
a vector and apply the predicate function that we have just created to each element in
the container.

class Greater: public unary_function<int, bool>
{ // A sledgehammer to ... but it works nonetheless

public:
// You must overload operator ‘()’
result_type operator ()(argument_type k)
{

if (k > 10)
return true;

else
return false;

}
};

Modelling Functions in C++ 107

The test program is:

vector<int> v1;
for (int i = 0; i <= 5; i++)
{
v1.push_back(5*i);

}
// Print the values in the vector
vector<int>::iterator it;
for (it = v1.begin(); it != v1.end(); it++)
{
cout << (*it) << ", ";

}

// Count number of elements whose value > 10 from start to end
int result = count_if(v1.begin(), v1.end(), Greater());
cout << "\nNumber of elements greater than 10: " << result;

The output from this program is:

0, 5, 10, 15, 20, 25,
Number of elements greater than 10: 3

In order to write your own binary functions, you should derive your class from the empty
base class binary_function:

template<class Arg1, class Arg2, class Result>
struct binary_function
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};

The following simple example shows how to define your own binary function class that
averages two values and we then apply it to an example where we iterate through the
elements of two vectors to calculate the element-wise averages.

template <class Type> class Average : binary_function<Type, Type, Type>
{

public:
result_type operator ()(first_argument_type a,
second_argument_type b)
{
return (a + b) * 0.5;

}
};

A test program is:

// Now calculate the element-wise averages of vectors v1 and v2
// and place them in a vector v3
vector<double> v1(10, 2.1); // Size 10, value 2.1
vector<double> v2(v1); // Copy (for convenience)
vector<double> v3(v1.size());

transform(v1.begin(), v1.end(), v2.begin(),
v3.begin(), Average<double>());

108 Financial Instrument Pricing Using C++

cout << "Elements of averaged vector\n";
vector<double>::iterator itd;

for (itd = v3.begin(); itd != v3.end(); itd++)
{

cout << (*itd) << ", ";
}

The output from this program is:

Elements of averaged vector
2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1,

9.3.1 Comparison functions

STL provides a large number of template classes for comparisons. These comparison
functions are binary functions and are thus derived from binary_function. Most of
the functions have to do with equality, inequality, greater than, less than and so on. For
example, the equal_to() class is defined as follows:

template<class Type>
struct equal_to : public binary_function<Type, Type, bool>
{

bool operator()(
const Type& left, const Type& right) const;

};

An example of use: in this case we iterate over two vectors and test if the values (element-
wise) are equal:

// We now mutate one element in v2 and test if its elements are
// pairwise equal with those of v1 (v2 is above)
v2[3] = 4.5;
vector<double> resultArr(10);
transform(v2.begin(), v2.end(), v3.begin(),

resultArr.begin(), equal_to<double>());
cout << "\nResult of pairwise comparison \n";
for (itd = resultArr.begin(); itd != resultArr.end(); itd++)
{

cout << (*itd) << ", ";
}

The output from this program is:

Result of pairwise comparison
1, 1, 1, 0, 1, 1, 1, 1, 1, 1,

9.3.2 STL and financial engineering

STL is a useful library for many low-level operations in C++. The function objects
in STL are not powerful enough for what we wish to do in our financial engineering
applications. In particular, we would like to create classes for modelling functions that

Modelling Functions in C++ 109

we meet in mathematics, numerical analysis and finance. Some requirements on these
classes are:

• We wish to access functions by some identifier, for example a string. In this case we
speak of named functions.

• Create a hierarchy of functions; scalar functions, vector functions, vector-valued func-
tions and functions of a real variable. In general, we wish to model the functions that
are used in mathematics.

• The ability to create C++ classes for deterministic, random (stochastic) and other kinds
of functions (for example, Brownian motion and fuzzy sets).

• The ability to explicitly model inherent properties of functions such as points of dis-
continuity, calculating function values, inverse functions and so on.

• We can apply the GOF creational, structural and behavioural design patterns (Gamma
et al., 1995) to function classes. This will improve the flexibility of our applications.
Such flexibility is not possible with function pointers or STL function objects.

You can survive in C++ land without needing to define or use function classes in
your financial engineering applications but experience has shown that the resulting code
becomes very messy and difficult to maintain. Thus, we show how to create user-defined
function classes and the reader can choose if it is worth the effort to use them or just
stick with good old function pointers.

9.4 SOME FUNCTION TYPES
A function (or mapping) f between elements of a space D (called the domain of f) and
a space R (called the range of f) is an association in which each value of a variable
x in D is mapped to one and only one variable y in R. See Figure 9.1 for a pictorial
representation of a function where we are given the impression that it is a mapping from
one space D to another space R.

A function is a particular kind of relation and we can then view the function as a set
of ordered pairs (x, y) with x in D and y in R.

A common notation for a function f from D to R is

f : D → R (9.1)

Functions can be composed. For example, suppose f is a mapping from D to R1 and g

is a mapping from R1 to R2 then the composition of g and f is defined by

(gf)(x) = g(f (x)) for all x in D (9.2)

Notice that the range of the composed mapping gf is R2.

D R

f

(mapping)

Domain Range

Figure 9.1 Functions as mappings

110 Financial Instrument Pricing Using C++

In equation (9.1) we have said nothing about the structure or ‘texture’ of the spaces
D and R. For example, these spaces may be continuous or discrete, deterministic, fuzzy
and so on. We concentrate in this chapter on deterministic functions only and the possible
kinds of mappings are:

G1: Continuous to continuous
G2: Continuous to discrete
G3: Discrete to continuous
G4: Discrete to discrete.

In order to reduce the scope even further, we distinguish the following kinds of functions:

• Scalar-valued function (maps a double to a double, for example)
• Vector function (maps a double into a vector)
• Real-valued function (maps a vector into a double)
• Vector-valued function (maps a vector into a vector).

See Figure 9.2 for a pictorial representation of these four function categories.
A scalar-valued function takes a single scalar argument as input and produces a single

scalar result as output. A vector function takes a scalar as input and produces a vector
as output. Thus, a vector function can be seen as an array of scalar-valued functions.
A real-valued function accepts a vector as input and produces a scalar result as output.
Finally, a vector-valued function accepts a vector as input and produces a vector result
as output. A summary of the properties of the various categories is given in Figure 9.3.

R1

R1

Scalar
function

y1

y2

ym
R1

Vector
function

m

x1

x2

xn

R1

Real-valued
function

n

x1

x2

xn

y1

y2

ym

Vector-valued
function

n m

Figure 9.2 Function universe

Modelling Functions in C++ 111

Scalar

Vector

Vector-valued

Real-valued Scalar

Vector

Domain Range

Scalar

Vector

Vector

Scalar

Scalar

Vector

Figure 9.3 Summary

9.4.1 Applications in numerical analysis and financial engineering

There are many areas of numerical analysis and financial engineering where function
classes can be used:

• Interpolation: Approximating a function based on its values at a discrete set of points.
• Numerical Integration: Methods for calculating the approximate value of the integral

of some function.
• Numerical Differentiation: Numerical techniques for approximating the derivatives of

a given function.

9.4.2 An example: Functions in option pricing

We return to the specific example that we discuss in Appendix 1. Here we are interested
in calculating the price of an option (and possibly its sensitivities) based on the option’s
parameters. This is nothing shocking but we can view this problem as a vector-valued
function that maps n-dimensional space as represented by the interest rate, volatility
and other option parameters into m-dimensional space as represented by the following
functions (which, of course, will be calculated at a specific point):

// Functions that calculate option price and sensitivities
double Price() const;
double Delta() const;
double Gamma() const;
double Vega() const;
double Theta() const;
double Rho() const;
double Coc() const;
// Cost of carry
double Elasticity(double percentageMovement) const;

This insight has consequences for the flexibility of our designs because we can then tailor
a vector-valued function to suit the kinds of parameters (this is the domain space) and
the kinds of functions that we wish to calculate (the range space). The object-oriented
paradigm allows us to configure our software to suit different needs.

A special case of a vector-valued function is a real-valued function. In this case the
range is a scalar. An example relating to options is when we are only interested in
calculating the price of an option without needing to know what its sensitivities are.

9.5 CREATING YOUR OWN FUNCTION CLASSES
We wish to create a hierarchy of classes that model the mathematical functions in
section 9.4. There is not enough flexibility in STL for our applications and to this end we

112 Financial Instrument Pricing Using C++

...

TwoVarDFunction

bind<pair<D1, D2>, R>

SFunction
D,R

Function
D,R

DFunction
D,R

AtomicDFunction
D,R

Figure 9.4 Function class hierarchy

build highly generic classes for functions. See Figure 9.4 where the following template
classes are introduced:

• Function<D,R> base class for all functions with domain D and range R

• DFunction<D,R> deterministic functions
• AtomicDFunction<D,R> essentially scalar functions from D to R

• SFunction<D,R> stochastic functions (not implemented, futureware)
• TwoVarDFunction<D,R> function of two variables.

In later chapters we shall concoct even more sophisticated classes, but here we concentrate
on the classes AtomicDFunction and TwoVarDFunction. The first class can be
used to approximate functions for ordinary differential equations while the second class
will be used to model functions of the form a(S, t) in the Black–Scholes equation, for
example. In this case S is the value of the underlying stock while t represents time.
The advantage of classes for functions is that they not only become first-class entities
but also become amenable to the application of all the powerful features in the object-
oriented and generic programming paradigms, for instance polymorphism, encapsulation,
delegation and run-time switching. We shall return to these topics in Part V when we
discuss design patterns.

We shall now discuss the two major classes and give some preliminary examples to
motivate how to use them. The header files are:

template <class D, class R> class AtomicDFunction : public DFunction<D, R>
{

private:
R (*f)(const D& x); // Hidden C-type function

Modelling Functions in C++ 113

public:
AtomicDFunction();
AtomicDFunction (R (*fp)(const D& x)); // Function pointer
AtomicDFunction(const AtomicDFunction<D, R>& f2);
virtual ~AtomicDFunction();
AtomicDFunction<D, R>& operator=(const AtomicDFunction<D, R>& f2);

virtual R calculate(const D& x) const;

// Choosing a new function
void function(R (*fp)(const D& x));

};

This class is essentially an encapsulation of a function pointer. Note the presence of set/get
functions to access the embedded function pointer and the function calculate(). This
is a well-known universal name for all kinds of function classes. The reader has only to
remember one name!

The interface for a class having two input parameters is:

template <class D1, class D2, class R>
class TwoVarDFunction : public AtomicDFunction<pair<D1, D2>, R>

{ // A class representing a function of two variables.

private:

public:
// Constructors
TwoVarDFunction();

TwoVarDFunction (R (*fp)(const pair<D1,D2>&));

TwoVarDFunction(const TwoVarDFunction<D1,D2,R>& f2);
virtual ~TwoVarDFunction();

TwoVarDFunction<D1, D2, R>& operator = (
const TwoVarDFunction<D1, D2,R>& f2);

// We need to instantiate both d1 and d2 and give an R!
R calculate(const D1& d1, const D2& d2) const;

};

We give some examples of using the function class TwoVarDFunction. First, we define
two ‘normal’ C-type functions:

int addition(const pair<double, double>& p)
{

return (int) (p.first + p.second);
}

int multiplication(const pair<double, double>& p)
{

return (int) (p.first * p.second);
}

We now show how to encapsulate these functions in function classes.

int main()
{

// A two-variable function representing addition
TwoVarDFunction<double, double, int> myfun;

114 Financial Instrument Pricing Using C++

myfun.function(addition);
cout << "Call addition: " << myfun.calculate(1.0, 2.0) << endl;

// A two-variable function representing multiplication
TwoVarDFunction<double, double, int> myfun2;
myfun2.function(multiplication);
cout << "Call multiplication: " << myfun2.calculate(20.0, 2.0);
return 0;

}

The output from this program is:

Add 1 and 2: 3
Multiply 20 and 2: 40

In the following sections we give some examples of function classes to show how they
can be used. We instantiate all underlying generic data types and we avoid creating new
classes because, first, they make the code more difficult to understand and, second, it is
not always necessary to create a new class in order to get new functionality! In fact, we
combine template classes by nesting, for example:

• Arrays and matrices of atomic and two-variable functions
• Atomic functions having arrays as domain and/or range
• Property sets of functions.

There is a lot of opportunity to extend and modify the code to suit your own needs.
In order to be concrete we assume that all values have the type double and indexing
uses int.

9.6 ARRAYS OF FUNCTIONS

This is a fairly straightforward case of defining an array whose elements are functions.
Why not? In this case we concentrate on functions of two variables. Template classes (and
in particular, nested template classes) can be a bit difficult to read so we use a common
shorthand notation as follows:

typedef Array<TwoVarDFunction<double, double, double>, int>
FunctionArray;

We can use the new name in all future code, for example the function to calculate the
value of the array of functions for a specific value:

Array<double, int> calculate(const FunctionArray& funArr, double first,
double second)
{
Array<double, int> result(funArr.Size());
for (int i=funArr.MinIndex(); i<=funArr.MaxIndex(); i++)
{

result[i] = funArr[i].calculate(first, second);
}
return result;

}

Modelling Functions in C++ 115

Notice that this function returns an array of doubles. A simple test program is as
follows:

// Array of functions; myfun and myfun2 are as in section 9.5
FunctionArray myFunArr(2);
myFunArr[1] = myfun;
myFunArr[2] = myfun2;

Array<double, int> arr = calculate(myFunArr, 1.0, 2.0);

print (arr);

9.7 VECTOR FUNCTIONS
A vector function maps a double to an array and is in fact an array of scalar functions.
We model this class as a property set in this case and we access elements in the set using
a string (of course, other implementations are possible):

typedef SimplePropertySet<string, AtomicDFunction<double, double> >
VectorFunction;

We see the power of generic programming in this code. We take the cognitive leap by
saying that a vector function is a set of atomic functions. We can then navigate in the
vector function class by using iterators in the property set. The following code shows
how this is done; please note that an array of doubles is returned:

Array<double, int> calculate(const VectorFunction& vvfun, double d)
{

VectorFunction::const_iterator it;

Array<double, int> result(vvfun.Count());
int j = result.MinIndex();

for (it = vvfun.Begin(); it != vvfun.End(); it++, j++)
{// Optimise this loop
Property<string, AtomicDFunction<double, double> >
tmp = (*it);
result[j] = tmp().calculate(d);

}
return result;

}

9.8 REAL-VALUED FUNCTIONS
These are functions that map an array to a double. In essence we define a scalar function
whose domain is n-dimensional space:

double realValuedFunction(const Vector<double, int>& arr)
{

// Simple test case; return sum of the elements
return sum(arr); // 'sum' is in ArrayMechanisms

}

Here is a test case that shows how to apply the concept:

// Real-valued functions
AtomicDFunction<Vector<double, int>, double> rvFun;

116 Financial Instrument Pricing Using C++

rvFun.function(realValuedFunction);

// Create vector: length 10, start index 1, value 2.0
Vector<double, int> myArr(10, 1, 2.0);
print(myArr);
cout << "Value of RVF: " << rvFun.calculate(myArr) << endl;

9.9 VECTOR-VALUED FUNCTIONS

These are functions that map points in n-dimensional space to an array of functions. We
leave this case as an exercise for the reader.

9.10 CONCLUSIONS AND SUMMARY

We have given an introduction to the problem of modelling functions in C++. Our ultimate
objective in this book is to create C++ classes for scalar, vector, vector-valued and real-
valued functions. We chose between function pointers, STL function objects and user-
defined classes. In the latter case we speak of first-class entities and these are amenable
to multiple rounds of design patterns (see Gamma et al., 1995). We discuss this topic in
Part V.

We shall use the function classes from this chapter in later chapters when we approx-
imate boundary value problems and initial boundary value problems by the finite differ-
ence method.

10

C++ Classes for Statistical Distributions

10.1 INTRODUCTION AND OBJECTIVES

In this chapter we develop C++ classes that model continuous and discrete probability
distributions. For each distribution type, we encapsulate essential information about it in
a single class. Clients can then instantiate the class to produce objects that can be used
in various applications. In fact, we have created a reusable class library of C++ classes.
You can use these classes in your applications without having to worry about how they
were implemented. This promotes understandability of the resulting code.

This chapter discusses a number of traditional aspects of object-oriented programming
in C++:

• Encapsulation and information hiding
• Single inheritance hierarchies
• Polymorphism (pure virtual and default virtual functions)
• Run-time switching.

These topics are discussed in many C++ books. In this chapter we apply the above tech-
niques in combination with the template mechanism to produce highly reusable classes.

For an introduction to probability and statistics, see Meyer (1970) and Spiegel (1992).

10.2 DISCRETE AND CONTINUOUS PROBABILITY
DISTRIBUTION FUNCTIONS

We model each probability distribution as a C++ class. Furthermore, we distinguish
between discrete and continuous distributions. In Chapter 12 we shall give a more detailed
discussion of these categories but the focus at the moment is on the object-oriented pro-
gramming aspects. We do not wish to mix the maths and the C++ too much at this stage.

We create the initial class hierarchy as shown in Figure 10.1. We distinguish between
discrete and continuous categories. Each class in Figure 10.1 is abstract because it will
have a number of abstract (pure virtual) member functions. Of course, we must carry
out an analysis to discover what these functions are and what their full signature (input
parameters, name and return type) are. In general, we must model two very important
functions for each kind of distribution, for example:

• Probability distribution function (we call it pdf)
• Cumulative distribution functions (we call it cdf).

Furthermore, each distribution, whether it be discrete or continuous, has an expected value
and a variance function.

Discrete probability distributions are easier to program than continuous distributions
mainly because we are working with discrete variables while, in the latter case, we

118 Financial Instrument Pricing Using C++

ProbabilityDistribution

{abstract}

DiscreteDistribution

{abstract}

ContinuousDistribution

{abstract}

Pdf()
Cdf()
Expected()
Variance()

Pdf()
Cdf()
Expected()
Variance()

Figure 10.1 Initial class hierarchy

are often confronted with integrals that must be evaluated using numerical integration
techniques or by using some approximate analytical formula.

The interface for the discrete probability base class is:

template <class T, class I>
class DiscreteDistribution : public ProbabilityDistribution<T>

{ // T is the range set, I the index set

private:

public :
DiscreteDistribution();
virtual T pdf(const I& k) const = 0;
virtual T cdf(const I& k) const;

virtual T expected() = 0; // Expectation
virtual T variance() = 0; // Variance

T probability (const I& k) const; // Prob(RV has value k)
};

The interface for the continuous probability base class is:

template <class Domain, class Range>
class ContinuousDistribution

: public ProbabilityDistribution<Domain, Range>
{ // Abstract base class for continuous probability distributions

private:
// ...

public:
// Constructors
ContinuousDistribution();
ContinuousDistribution(const ContinuousDistribution<Domain,
Range>& d2);

virtual ~ContinuousDistribution();

C++ Classes for Statistical Distributions 119

// Selector member functions
virtual Range pdf(const Domain& x) const = 0;
virtual Range cdf(const Domain& x) const;

// Selectors
virtual Range expected() const = 0;
virtual Range variance() const = 0;
virtual Range std() const { return ::sqrt(variance()); }

// Calculating probabilities
virtual Range probability (const Domain& a, const Domain& b)
const;

};

In the continuous case we witness a combination of pure virtual and default virtual
functions. You must define and implement pure virtual functions in derived classes while
you may implement default virtual functions in derived classes.

10.3 CONTINUOUS DISTRIBUTIONS

The class hierarchy for a number of important continuous probability distributions is
shown in Figure 10.2. The hierarchy is quite shallow except in the case of the Gamma
distribution. This is a generalisation of the exponential and chi-squared distributions. We
now discuss each distribution in some detail in the following sub-sections.

10.3.1 Uniform (rectangular) distribution

A random experiment in which all outcomes are equally likely is said to have a uniform
distribution. We consider the one-dimensional case on an interval (a, b) and give formulae
for the probability density function f (x), cumulative distribution function F(x), expected

ContinuousDistribution

{abstract}

Uniform Normal Lognormal Gamma Weibull

Chi-Squared Exponential

Figure 10.2 Continuous distribution

120 Financial Instrument Pricing Using C++

value E(x) and variance V (x):

f (x) =
{

1/(b − a), a ≤ x ≤ b

0, elsewhere

F(x) = P(x ≤ x) =
∫ x

−∞
f (x)dx

= (x − a)/(b − a) if a ≤ x < b

= 0 if x < a

= 1 if x �= b

E(x) = (a + b)/2

V (X) = E(x2) − [E(x)]2 = (b − a)2/12

(10.1)

The difference (b − a) is sometimes called the scale parameter.
The C++ interface is:

template <class T>
class Uniform : public ContinuousDistribution<T, T>
{ // Uniform distribution in one dimension).

private:
T a; // Lower end of interval
T b; // Upper

public:
// Constructors
Uniform(); // On unit interval [0,1]
Uniform(const T& left, const T& right); // Interval [left, right]

// Selector member functions
T expected(const Uniform<T>& u);
T variance(const Uniform<T>& u);

T pdf(const T& x) const;
T cdf(const T& x) const;

// Calculating probabilities
T probability (const T& upper, const T& lower) const;

};

We examine some of the code for the member functions that implement the formulae in
equation (10.1).

template <class T> T Uniform<T>::expected()const
{
return(a + b) * 0.5;

}

template <class T> T Uniform<T>::variance()const
{
double t = a - b;
return((t*t)/12.0);

}

C++ Classes for Statistical Distributions 121

template <class T> T Uniform<T>::pdf(const T& x) const
{ // The density function

return (1.0/(b - a));
}

template <class T> T Uniform<T>::cdf(const T& x) const
{ // The cdf function

return (x - a) / (b - a);
}

// Calculating probabilities
template <class T> T Uniform<T>::probability (const T& xUpp,

const T& xLow) const
{

return (xUpp - xLow) / (b - a);
}

10.3.2 Normal distribution

This distribution is probably (no pun intended) one of the most important distributions. It
is so important that it was depicted on the old 10 Deutschemark bank notes. The formula
is due to the famous German mathematician Gauss.

The probability function, expected value and variance are given by:

f (x) = 1√
2πσ

exp

(
−1

2

[
x − µ

σ

]2
)

− ∞ < x < ∞

E(x) = µ (10.2)

V (x) = σ 2

A closed-form solution for the cdf is not available and some kind of approximation must
be used; see, for example, Haug (1998). The basic code in C++ is:

double N(double x)
{ // The approximation to the cumulative normal distribution

double a1 = 0.4361836;
double a2 = -0.1201676;
double a3 = 0.9372980;

double k = 1.0/(1.0 + (0.33267 * x));

if (x >= 0.0)
{
return 1.0 - n(x)* (a1*k + (a2*k*k) + (a3*k*k*k));

}
else
{
return 1.0 - N(-x);

}
}

We can embed this code in the function Normal::cdf(). Please see the accompanying
CD for the source code.

122 Financial Instrument Pricing Using C++

A special case of the normal distribution with mean equal to 0 and standard deviation
equation equal to 1:

f (x) = ϕ(x) = 1√
2π

e−x2/2 (10.3)

10.3.3 Lognormal distribution

This is an important distribution in finance because it is used to model stock price
behaviour (see, for example, Hull, 2000). The probability function, expected value and
variance are given by:

f (x) = 1

xσ
√

2π
exp

{−[log x/m]2

2σ 2

}
, 0 ≤ x ≤ ∞

E(x) = m exp

(
1

2
σ 2

)
(10.4)

V (x) = m2w(w − 1), w = exp(σ 2)

In this case the parameter m is called the scale factor.

10.3.4 Gamma distribution and its specialisations

We now discuss the Gamma distribution and some of its specialisations. The approach
taken here leads to some reusability gains. In short, the Gamma distribution is very general
and its specialisations are generated by some kind of value restriction. The probability
function, expected value and variance are given by:

f (x) =

α

�(r)
(αx)r−1e−αx, x > 0

0, elsewhere

E(X) = r/α

V (X) = r/α2, 0 < r shape parameter
0 < α scale parameter

(10.5)

where the gamma function is given by the integral

�(p) =
∫ ∞

0
xp−1e−x dx, p > 0, p = n, a positive integer (10.6)

When p is integral (p = n) the gamma integral reduces to a simpler form:

�(n) = (n − 1)! (10.7)

template <class T>
class Gamma : public ContinuousDistribution<T, T>
{
protected:

T r;
T a;

C++ Classes for Statistical Distributions 123

public :
// Constructors
Gamma(); // r == 1, a == 1
Gamma(const Gamma<T>& distrib2); // Copy constructor
Gamma(const T& alpha, const T& rr); // Two parameters

// Accessing the parameters
T alpha() const;
T rcoeff() const;

T pdf(const T& x) const; // Probability density
T cdf(const T& x) const;

T expected() const; // Expected value
T variance() const; // Variance

};

The cdf for this class is (see Meyer, 1970)

F(x) = 1 −
∫ ∞

αx

ur−1e−u

(r − 1)!
du, u ≡ αs

= 1 −
r−1∑
k=0

e−αx(αx)k/k!, x > 0

(10.8)

template <class T> T Gamma<T,I>::cdf(const T& x) const
{ // Meyer, p. 195; the cdf of Gamma can be written as a sum of pdfs of

// the Poisson distribution. Note that this is valid only when the
// parameter r is a positive integer.

T res = 0.0;
T t = a * x;
Poisson<T, int> pois_dist(t); // int is 'dummy'

// Take into account that r needs to be integral; what we
// do is convert it to an integer and use this value.
int ir = int(r);
for (int k = 0; k <= ir-1; k++)
res += pois_dist.pdf(k);

return 1.0 - res;
}

We thus see that the cumulative distribution function for the Gamma distribution may
be expressed in terms of the Poisson distribution (which we discuss in the next section).
We now discuss the exponential distribution and why we see it as a specialisation of the
gamma distribution:

f (x) =
{
α e−αx, x > 0

0, otherwise
F(x) =

{
1 − eαx, x ≥ 0

0, otherwise

E(X) = 1/α

V (X) = 1/α2

(10.9)

How do we implement this class? Basically we demand that the parameter r in the Gamma
distribution has the value 1. Of course, we have to redefine constructors but the other
member functions are ‘free’. Some code now follows:

124 Financial Instrument Pricing Using C++

template <class T> Exponential<T>::Exponential(const T& par) : Gamma<T>
(par, 1)
{

}

template <class T> T Exponential<T>::cdf(const T& x) const
{ // We redefine the cdf() here because it is simpler than the
// inheritance from the gamma distribution

if (x > T(0.0))
return 1.0 - exp(-alpha() * x);

return T(0.0);
}

We have redefined cdf() for readability reasons but we have not redefined pdf()
because it is inherited from the class Gamma.

10.4 DISCRETE DISTRIBUTIONS

The class hierarchy for a number of important discrete probability distributions is shown in
Figure 10.3. We now discuss each distribution in some detail in the following sub-sections.

10.4.1 Poisson distribution

This is an important distribution in financial engineering because it models the following
kinds of events:

• Jumps in the spot price of commodity futures
• Spikes in energy, oil and gas spot prices (Pilipović, 1998)
• Real option theory (Mun, 2002)

The details are:

P(X = k) = e−ααk

k!
, k = 0, 1, . . . , n

E(X) = α, α > 0 (10.10)

V (X) = α

To give an example, we see that start-up ventures and other R&D initiatives usually
follow a jump-diffusion process. Business operations continues with its ups and downs
for a few years, after which a product or initiative becomes highly successful and then
takes off (Mun, 2002). In general, we assume that the probability of jumps follows a
Poisson distribution and we then get a process of the form:

dX = f (X, t)dt + g(X, t)dq

where f and g are known and where the probability function is given by

dq = 0 with probability 1 − λ dt

dq = 1 with probability λ dt

C++ Classes for Statistical Distributions 125

DiscreteDistribution

{abstract}

Binomial Poisson Pascal
Hyper-

geometric

Bernoulli Geometric

Figure 10.3 Discrete distribution

10.4.2 Binomial and Bernoulli distributions

The Bernoulli distribution is one that has only two discrete values. Let us call them A

and B and the probability of occurrence is

P(A) = p, P (B) = q,

where q = 1 − p. Notice that the probabilities add up to 1.
Repeating a Bernoulli experiment n times and examining the number of occurrences k

of a given value generate the binomial distribution. The formulae are:

P(X = k) =
(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . .

E(X) = np (10.11)

V (X) = npq

The C++ interface for the binomial distribution is given by:

template <class T, class I>
class Binomial : public DiscreteDistribution<T, I>

{

private:

T p; // Probability of success on each trial
I N; // The number of trials(N repetitions of an experiment)

public :

// Constructor
Binomial(const T& prob, const I& ntrial);

// Selector
T pdf(int k) const; // Probability that an event occurs k times
T expected() const;
T variance() const;

};

126 Financial Instrument Pricing Using C++

It is interesting to examine how we have implemented the combinatorial function in
equation (10.11). To this end, we have to create a class called MISCFUN containing static
functions, one of which satisfies our current needs:

template <class T, class I> T Binomial<T, I>::pdf(int k) const
{
double tmp = MISCFUN::combination(N,k); // n!/(k!(n-k)!)
return (tmp * pow(p,k) * pow(1.0 - p, N - k));

}

The actual code for calculating n!/k!(n − k)! is given by:

double MISCFUN::fact(int n)
{ // The n-factorial; by default 0! == 1! == 1. Note the use of
// the recursive function call (this feature is not present in
// all languages). For example, it Fortran it is necessary to use
// an internal array to simulate the stack mechanisms in recursion.
// Precondition: n cannot be negative
if (n < 0)

return 0.0;

if ((n == 0) || (n == 1))
return 1.0;

return (double (n) * fact(n-1));
}

double MISCFUN::combination(int n, int k)
{ // The binomial coefficient. This is equivalent to the number of ways
// of choosing k out of n different objects, disregarding order.

// Precondition: n > 0 and 0 <= k <= n
if (n <= 0 || k < 0 || k > n)

return 0.0;

// At this stage we are assured that the fact function is
// never zero, so division by zero is not possible.
double t1 = fact(n);
double t2 = fact(n-k) * fact(k);
return(t1/t2);

}

10.4.3 Pascal and geometric distributions

The Pascal distribution has to do with the following kinds of experiment: continue an
experiment until a particular event A occurs for the rth time. If

P(A) = p, P (not A) = q = 1 − p

on each repetition then we define the random variable X as being the number of repetitions
needed in order to have A occur exactly r times. Then

P(X = k) =
(

k − 1
r − 1

)
prqk−r , k = r, r + 1, . . .

E(X) = r/p, V (X) = rq/p2, q = 1 − p

(10.12)

C++ Classes for Statistical Distributions 127

The geometric distribution is a specialisation of the Pascal distribution. Let us define
a random variable as the number of repetitions required up to and including the first
occurrence of A. Let us assume that X takes the values 1, 2, . . . Then X = k if and only
if the first (k − 1) repetitions of an experiment are not(A) we have

P(X = k) = qk−1p, k = 1, 2, . . . , q = 1 − p (10.13)

while the expectation and variance are given by

E(X) = 1/p

V (X) = q/p2
(10.14)

10.5 TESTS

We give two very simple examples to show how to use the classes for continuous and
discrete probability distributions.

10.5.1 Continuous distributions

In this example we show how to define Uniform variables.

#include "unifdist.cxx"
#include <iostream>
using namespace std;

int main()
{

// Uniform distribution
Uniform<double> linseg(0.0, 2.0); // Interval of interest
cout << "Mean value: " << linseg.expected() << endl;
cout << "Variance: " << linseg.variance();

return 0;
}

10.5.2 Discrete distributions

In this example we show how to define Poisson variables.

#include "poisdist.cxx"
#include <iostream>
using namespace std;

int main()
{

Poisson<double, int> p(1.2);
cout << p.expected();

return 0;
}

128 Financial Instrument Pricing Using C++

10.6 CONCLUSIONS AND SUMMARY

In this chapter we have created a C++ class hierarchy for a number of discrete and
continuous probability distribution functions. This library is reusable and you can use it in
your financial engineering applications without having to know the mathematical formulae
that implement the probability distribution function, cumulative distribution functions,
expectation or variance.

We have designed the library along traditional object-oriented lines. We make use of
pure virtual and default virtual member functions and the classes have been templated so
that clients can choose their own specific data types for specific applications.

Part III
Ordinary and Stochastic Differential

Equations

11
Numerical Solution of Initial Value Problems:

Fundamentals

‘Tus maith leath na hoibre (a good start is half the work)’

11.1 INTRODUCTION AND OBJECTIVES
Part III deals with the problem of approximating ordinary and stochastic differential
equations by the finite difference method (FDM). The chapters in this part are very
important because they discuss FDM for readers who do not necessarily have any back-
ground in this area. Furthermore, having understood the basics for ordinary differential
equations, it is then a relatively small step in motivating FDM for partial differential
equations in Part IV of this book.

The main reason for the selection of the chapters in this part is that they have only one
independent variable.

Part III is concerned with finding approximations to the solution of ordinary differential
equations (ODEs) and stochastic differential equations (SDEs) with special emphasis
on financial engineering. In this book we concentrate on finite difference schemes and
methods (FDMs). To this end, Chapter 11 is the first chapter in a series that introduces
and elaborates the finite difference method. In particular, we shall show how to construct
simple and effective finite difference schemes for first-order differential equations. In
short, Chapter 11 has three objectives:

• We wish to introduce the reader to finite differences by discussing a well-defined
and tractable problem. In this case we introduce schemes for linear scalar problems
in one dimension. In many cases we can find an exact or analytic solution to the so-
called continuous problem and can benchmark various finite difference schemes against
this exact solution. We pay attention to how well the solution to the finite difference
scheme approximates the solution of the continuous problem. In general, we want the
two solutions to be close in some sense.

• We are interested in applying our results to financial engineering problems. Studying
the equations in this chapter will help us to understand interest-rate modelling problems,
stochastic behaviour of assets, interest rates and other basic quantities. Furthermore, the
schemes in this chapter will be extended to the approximation of the Black–Scholes
equation and its generalisations. These and other relevant topics will be discussed in
due course.

• We shall develop algorithms and pseudo-code based on the finite difference schemes;
the algorithms will then be programmed in C++. We emphasise reusability and to this
end we shall use a number of the classes that we developed in Parts I and II, in
particular Range, Vector and other related template classes from the STL.

Summarising, this chapter introduces several fundamental concepts and techniques that
will be needed in later chapters. You can consider this chapter to be a self-contained
overview of the finite difference method.

132 Financial Instrument Pricing Using C++

11.2 A MODEL PROBLEM

Consider a bounded interval [0, T], where T > 0. This interval could represent time or
distance, for example, but in most cases we shall view this interval as representing time
values. In the interval we define the initial value problem (IVP)

Lu ≡ u′(t) + a(t)u(t) = f (t), t ∈ [0, T] with
u(0) = A a(t) ≥ α > 0, ∀ t ∈ [0, T]

}
(11.1)

where L is a first-order linear operator involving the derivative with respect to the time
variable and a = a(t) is a strictly positive function in [0, T]. The term f (t) is sometimes
called the inhomogeneous forcing term and is independent of u. Finally, the solution to
the IVP must be specified at t = 0; this is the so-called initial condition.

In general, the problem (11.1) has a unique solution given by

u(t) = I1(t) + I2(t)

I1(t) = A exp

(
−

∫ t

0
a(s) ds

)
(11.2)

I2(t) = exp

(
−

∫ t

0
a(s) ds

) ∫ t

0
exp

(
−

∫ x

0
a(s) ds

)
f (x) dx

(see Hochstadt, 1964, where the so-called integration factor is used to determine a
solution).

A special case of (11.1) is when the right-hand term f (t) is zero and a(t) is constant;
in this case the solution becomes a simple exponential term without any integrals and
this will be used later in this chapter when we examine difference schemes to determine
their feasibility. In particular, a scheme that behaves badly for the above special case
will be unsuitable for more general or more complex problems unless some modifications
are introduced.

11.2.1 Qualitative properties of the solution

Before we introduce difference schemes for (11.1) we discuss a number of results that
allow us to describe how the solution u behaves. First, we wish to conclude that if the
initial value A and inhomogeneous term f (t) are positive, then the solution u(t) should
also be positive for any value t in [0, T]. This so-called positivity result should be reflected
in our difference schemes (unfortunately, not all schemes possess this property). Second,
we wish to know how the solution u(t) grows or decreases as a function of time. The
following two results deal with these issues.

Lemma 11.1 (Positivity): Let w be a well-behaved function satisfying the inequalities

Lω (t) ≥ 0, ∀ t ∈ [0, T]
ω (0) ≥ 0

(11.3)

Then the following results holds true:

ω(t) ≥ 0, ∀ t ∈ [0, T] (11.4)

Numerical Solution of Initial Value Problems: Fundamentals 133

Roughly speaking, this lemma, which states that you cannot get a negative solution
from positive input, has been proved in Duffy (1980); you can verify this by examining
equations (11.2) because all terms are positive.

The following results gives bounds on the growth of u(t).

Theorem 11.1: Let u(t) be the solution of (11.1). Then

|u(t)| ≤ (N/α) + |A|, ∀ t ∈ [0, T] (11.5)

where |f (t)| ≤ N, ∀ t ∈ [0, T].

This result states that the value of the solution is bounded by the input data. We wish
to replicate these properties in our difference schemes for (11.1).

11.3 DISCRETISATION
The interval or range where the solution of (11.1) is defined is [0, T]. When approximating
the solution using finite difference equations we use a discrete set of points in [0, T] where
the discrete solution will be calculated. To this end, we divide [0, T] into N equal intervals
of length k, where k is a positive number called the step size. We number these discrete
points as shown in Figure 11.1. In general all coefficients and discrete functions will be
defined at these so-called mesh points. We must draw a distinction between those functions
that are known at the mesh points and the solution of the corresponding difference scheme.
We adopt the following notation:

an = a(tn), f n = f (tn)

an,θ = a(θtn + (1 − θ)tn+1), 0 ≤ θ ≤ 1, 0 ≤ n ≤ N − 1 (11.6)

un,θ = θun + (1 − θ)un+1, 0 ≤ n ≤ N − 1

Not only do we have to approximate functions at mesh point but we also have to come
up with a scheme to approximate the derivative appearing in (11.1). There are several
possibilities and they are based on divided differences. For example, the following divided
differences approximate the first derivative of u at the mesh point t = n ∗ k;

D+un ≡ un+1 − un

k

D−un ≡ un − un−1

k

D0u
n ≡ un+1 − un−1

2k

(11.7)

0 T
t

k

t0 t1 tn tn+1 tN

Figure 11.1 Continuous and discrete spaces

134 Financial Instrument Pricing Using C++

The first two divided differences are called one-sided differences and give us first-
order accuracy to the derivative, while the last divided difference is called a centred
approximation to the derivative. In fact, by using a Taylor’s expansion (assuming sufficient
smoothness of u) we can prove the following:

|D±u(tn) − u′(tn)| ≤ Mk, n = 0, 1, . . .

|D0u(tn) − u′(tn)| ≤ Mk2, n = 0, 1, . . .

}
(11.8)

We now decide on how to approximate (11.1) using finite differences. To this end, we
need to introduce two new concepts:

• One-step and multi-step methods
• Explicit and implicit schemes.

A one-step method is a finite difference scheme that calculates the solution at time-level
n + 1 in terms of the solution at time-level n. No information at levels n − 1, n − 2, . . .,
is needed in order to calculate the solution at level n + 1. To draw an analogy, we could
view a one-step scheme as a Markov chain because the future value (that is, at level
n + 1) of the difference scheme depends only on the present state and not on the past
history (see Hsu, 1997). A multi-step method, on the other hand is a difference scheme
where the solution at level n + 1 is determined by values at levels n, n − 1 and previous
time-levels. Multi-step methods are of course more complicated than one-step methods
and we concentrate solely on the latter methods in this book.

An explicit difference scheme is one where the solution at time n + 1 can be calculated
from the information at level n directly. No extra arithmetic is needed, for example, when
using division or matrix inversion. An implicit finite difference scheme is one in which
the terms involving the approximate solution at level n + 1 are grouped together and only
then can the solution at this level be found. Obviously, implicit methods are slightly more
difficult to program than explicit methods.

11.4 COMMON SCHEMES

We now introduce a number of important and useful difference schemes that approximate
the solution of (11.1). These schemes will pop up all over the place in later chapters.
Understanding how the schemes work in a simpler context will help you to appreciate
them when we tackle partial differential equations based on the Black–Scholes model.
The main schemes are:

• Explicit Euler
• Implicit Euler
• Crank–Nicolson (or Box scheme)
• The trapezoidal method

The explicit Euler method is given by:

un+1 − un

k
+ anun = f n, n = 0, . . . , N − 1

u0 = A

(11.9)

Numerical Solution of Initial Value Problems: Fundamentals 135

whereas the implicit Euler method is given by:

un+1 − un

k
+ an+1un+1 = f n+1, n = 0, . . . , N − 1

u0 = A

(11.10)

Notice the difference: in (11.9) the solution at level n + 1 can be directly calculated in
terms of the solution at level n while in (11.10) we must rearrange terms in order to
calculate the solution at level n + 1.

The next scheme is called the Crank–Nicolson, or Box, scheme and it can be seen as
an average of explicit and implicit Euler schemes. It is given as:

un+1 − un

k
+ a

n,
1
2 u

n,
1
2 = f

n,
1
2 , n = 0, . . . , N − 1

uo = A where u
n,

1
2 ≡ 1

2 (un + un+1)

(11.11)

It is useful to know that the three schemes can be merged into one generic scheme as it
were by introducing a parameter θ :

un+1 − un

k
+ an,θun, θ = f n,θ

un,θ ≡ θun + (1 − θ)un+1, 0 ≤ θ ≤ 1 (11.12)

f n,θ ≡ f (θtn + (1 − θ)tn+1)

and the special cases are given by

θ = 0, explicit Euler

θ = θ, implicit Euler (11.13)

θ = 1
2 , Crank–Nicolson

The solution of (11.12) is given by

un+1 = (1 − kθan,θ)un + kf n,θ

1 + k(1 − θ)an,θ
(11.14)

This equation is useful because it can be mapped to C++ code and will be used in other
schemes by defining the appropriate value of the parameter θ .

Finally, the trapezoidal method is similar to Crank–Nicolson but takes a slightly dif-
ferent averaging mechanism:

un+1 − un

k
+ 1

2 (anun + an+1un+1) = 1
2 (f n + f n+1), n = 0, . . . , N − 1

uo = A

(11.15)

136 Financial Instrument Pricing Using C++

11.5 SOME THEORETICAL ISSUES
Having developed some difference schemes we would like to have some way of deter-
mining if the discrete solution is a good approximation to the exact solution. Although
we do not deal with this issue in great detail (for more, see Dahlquist, 1974), we do look
at stability and convergence issues.

Definition 11.1: The one-step difference scheme L(k) is said to be positive if

L(k)wj ≥ 0, j = 0, . . . , N − 1, wj ≥ 0 (11.16)

implies that wj ≥ 0, ∀ j = 0, . . . , N .
Based on this definition we see that the implicit Euler scheme is always positive while

the explicit Euler scheme is positive if the term

1 − kan ≥ 0 or k ≤ (1/an), n ≥ 0 (11.17)

is positive. Thus, if the function a(t) achieves large values (and this happens in practice)
we shall have to make k very small indeed in order to produce good results. Even worse,
if k does not satisfy the inequality in (11.17) the discrete solution looks nothing like
the exact solutions and so-called spurious oscillations occur. This phenomenon occurs in
other finite difference schemes and we propose a number of remedies for them later in
this book.

Definition 11.2: A difference scheme is stable if its solution is bounded in much the
same way as the solution of the continuous problem (11.1) (see Theorem 11.1), that is

|un| ≤ N

α
+ |A|, n ≥ 0 (11.18)

where

a(tn) ≥ α, n ≥ 0

|f (tn)| ≤ N, n ≥ 0

and
u0 = A

Based on the fact that a scheme is stable and consistent (see Dahlquist, 1974) we can
state in general that the error between the exact and discrete solutions is bounded by some
polynomial power of the step-size k:

|un − u(tn)| ≤ Mkp, p = 1, 2, . . . (11.19)

where M is a constant that is independent of k. For example, in the case of some of the
above schemes we have:

Implicit Euler |un − u(tn)| ≤ Mk, n = 0, . . . , N

Crank–Nicolson (Box) |un − u(tn)| ≤ Mk2, n = 0, . . . , N
(11.20)

Explicit Euler |un − u(tn)| ≤ Mk, n = 0, . . . , N

if 1 − ank > 0.

Numerical Solution of Initial Value Problems: Fundamentals 137

Thus, we see that the Box method is second-order accurate and is better than the implicit
Euler scheme, which is only first-order accurate.

11.6 FITTING: SPECIAL SCHEMES FOR DIFFICULT
PROBLEMS

We now introduce a special class of schemes with desirable properties. These are schemes
that are suitable for problems with rapidly increasing or decreasing solutions. In the
literature these are called stiff or singular perturbation problems (see Duffy, 1980). We
can motivate these schemes in the present context. Let us take the problem (11.1) when
a(t) is constant and f (t) is zero. The solution is given by a special case of (11.2),
namely:

u(t) = A exp(−at) (11.21)

If a is large then the derivatives of u(t) tend to increase; in fact, at t = 0, the derivatives
are given by:

dku(0)

dtk
= A(−a)k, k = 0, 1, 2, . . . (11.22)

The physical interpretation of this fact is that a boundary layer exists near t = 0 where
u is changing rapidly and it has been shown that classical finite difference schemes fail
to give acceptable answers when a is large (typically values between 1000 and 10 000).
We get so-called spurious oscillations and this problem is also encountered when solving
one-factor and multi-factor Black–Scholes equations using finite difference methods. We
have resolved this problem using so-called exponentially fitted schemes. We motivate
the scheme in the present context and later chapters describe how to apply it to more
complicated cases.

In order to motivate the fitted scheme, consider the problem of constant a(t) and
f (t) = 0. We wish to produce a difference scheme in such a way that the discrete solution
is equal to the exact solution at the mesh points. We introduce a so-called fitting factor
σ in the new scheme:

σ

(
un+1 − un

k

)
+ an,θun,θ = f n,θ , n = 0, . . . , N − 1, 0 ≤ θ ≤ 1

u0 = A,

(11.23)

The motivation for finding the fitting factor is to demand that the exact solution (which
is known) has the same values as the discrete solution at the mesh points.

Plugging the exact solution (11.21) into (11.23) and doing some simple arithmetic we
get the following representation for the fitting factor:

σ = ak(θ + (1 − θ)e−ak)

1 − e−ak
(11.24)

Having found the fitting factor for the constant coefficient case we generalise to a scheme
for the case (11.2) as follows:

138 Financial Instrument Pricing Using C++

σn,θ un+1 − un

k
+ an,θun,θ = f n,θ , n = 0, . . . , N − 1, 0 ≤ θ ≤ 1

u0 = A (11.25)

σn,θ = an,θ k(θ + (1 − θ) exp(−an,θ k))

1 − exp(−an,θ k)

In practice we work with a number of special cases:

θ = 0 (implicit)

σ n,o = an+1k/[exp(an+1k) − 1]

θ = 1
2 (fitted Box)

θ
n,

1
2 = a

n,
1
2 k

2

1 + exp(−a

n,
1
2 k)

1 − exp(−a
n,

1
2 k)

= an, 1
2k

2
coth

an, 1
2k

2
(Il’in)

(11.26)

In the final case coth(x) is the hyperbolic tangent function.
In Duffy (1980) we have proved that the implicit fitted method in (11.26) has first-order

accuracy irrespective of the size of a. In other words, the inequality (11.19) holds with
p = 1 and the constant factor M is independent of both k and the coefficient a. Thus
we can say that the fitted scheme is insensitive to a. This is a remarkable property of the
scheme! We say that the scheme is uniformly convergent, a property that traditional finite
difference schemes do not share.

In later chapters we shall apply the fitting scheme to the one-factor and multi-factor
Black–Scholes equations and we shall show that we get good approximations to the
option price and its delta in all regions of (S, t), where S is the underlying asset and t is
time (up to maturity T). This is in stark contrast to the Crank–Nicolson scheme where
the infamous spurious oscillations are seen, especially when the underlying S is near the
strike price K or when the payoff function is discontinuous.

11.7 NON-LINEAR SCALAR PROBLEMS
AND PREDICTOR–CORRECTOR METHODS

Real-life problem are very seldom linear. In general, we model physical and financial
applications using non-linear IVPs:

u′ ≡ du

dt
= f (t, u), t ∈ (0, T]

u(0) = A

(11.27)

Here f (t, u) is a non-linear function of u in general. Of course, equation (11.27) contains
equation (11.1) as a special case. However, it is not possible to come up with an exact
solution for (11.27) in general and we must resort to some numerical techniques. Approx-
imating (11.27) poses challenges because the resulting difference schemes may also be
non-linear, thus forcing us to solve the discrete system at each time level by Newton’s

Numerical Solution of Initial Value Problems: Fundamentals 139

method or some other non-linear solver. For example, consider applying the trapezoidal
method to (11.27):

un+1 = un + k

2
[f (tnun) + f (tn+1, un+1)], n = 0, . . . , N − 1 (11.28)

where f (t, u) is non-linear. Here see that the unknown term u is on both the left- and
right-hand sides of the equation and hence it is not possible to solve the problem in the
way that we did for the linear case. However, all is not lost and to this end we introduce
the predictor–corrector method, which consists of a set of two difference schemes; the
first equation uses the explicit Euler to produce an intermediate solution that is then used
in what could be called a modified trapezoidal rule.

Predictor: un+1 = un + k f (tn, un)
(11.29)

Corrector: un+1 = un + k

2
[f (tn, un) + f (tn+1un+1)]

or

un+1 = un + k

2
{f (tn, un) + f (tn+1, un + k f (tn, un))}

The predictor–corrector is used in practice, and can be used with non-linear systems and
stochastic differential equations (SDEs).

11.8 EXTRAPOLATION TECHNIQUES

We now give an introduction to a technique that allows us to improve the accuracy of
finite difference schemes. This is called Richardson extrapolation in general. We take a
specific case to show the essence of the method, namely the implicit Euler method (11.10).
We know that it is first-order accurate and that it has excellent stability properties. We
now apply the method on meshes of size k and k/2 and can show that the approximate
solutions can be represented as:

vk = u + mk + 0(k2)

vk/2 = u + m

(
k

2

)
+ 0(k2) (11.30)

Then
2vk/2 − vk = u + 0(k2)

The constant m is independent of k and this is why we can eliminate it in the first
equations to get a scheme that is second-order accurate. The same trick can be employed
with the Crank–Nicolson scheme to get a fourth-order accurate scheme as follows:

vk = u + mk2 + 0(k4)

vk/2 = u + m

(
k

2

)
+ 0(k4) (11.31)

Then
4
3vk/2 − 1

3vk = u + 0(k4)

140 Financial Instrument Pricing Using C++

In general, with extrapolation methods we tell what accuracy we desire and the code
divides the interval [0, T] into smaller sub-intervals until the difference between the
solutions on consecutive meshes is less than a given tolerance.

A thorough introduction to extrapolation techniques for ordinary and partial differential
equations (including one-factor and multi-factor parabolic equations) can be found in
Marchuk and Shaidurov (1983).

11.9 C++ DESIGN AND IMPLEMENTATION

We now need to develop the steps for the C++ code that implements one-step finite
difference schemes for initial value problems. In particular, we need to unambiguously
describe the following:

A1: The input to the continuous problem
A2: The input to the discrete problem
A3: The output from the discrete problem
A4: The activities to be executed in order to produce output from input.

These four activities allow us to describe the problem correctly and completely. In order
to motivate this section we concentrate on the scalar linear problem (11.1).

The code that realises the finite difference schemes for (11.1) has been kept simple so
that we can understand the essential details without being bogged down in irrelevant detail.
To this end, we model (11.1) as a class called ScalarIVP. If we look at equation (11.1)
we see that we must design and implement the following elements:

• The linear coefficients a(t) and f (t)

• The initial condition A

• The range of integration [0, T].

We model functions as normal C function pointers (this is acceptable for the moment)
and the range of integration as a Range instance. Of course, we use template classes for
extra reusability. The interface is as follows:

template <class V> class ScalarIVP // du/dt + a(t)u = f(t), u(0) = A
{ // Scalar initial value problem (first order). Mainly for test cases
// and illustration of theory and models.

private:
V ic; // Initial condition
Range<V> ran; // The integration interval

V (*rhs)(const V& t); // Forcing term f(t)
V (*a)(const V& t); // Coefficient of zero order term

public:
ScalarIVP();
ScalarIVP(const Range<V> range, const V& initialCond);
ScalarIVP(const ScalarIVP<V>& source);

virtual ~ScalarIVP();

ScalarIVP<V>& operator = (const ScalarIVP<V>& source);

// Choosing functions in equation

Numerical Solution of Initial Value Problems: Fundamentals 141

void Rhs(V (*fp)(const V& x)); // Choose function f(t)
void Coeff(V (*fp)(const V& x)); // Choose function a(t)

// Selector functions
Range<V> range() const; // Interval of interest
V startValue() const; // Give initial value
V RhsCalc(const V& t) const; // Calculate f(t)
V CoeffCalc(const V& t) const; // Calculate a(t)

};

A major advantage of modelling the IVP in this way is that all logically related entities
are brought together in one place. We can then access the IVP as a single entity.

Let us now take an example. We first of all define the needed functions:

double RHS(const double& d)
{ // Define the RHS f(t) in IVP

return 0.0;
}

double a(const double& d)
{ // Define the coefficient a(t) in IVP

return 1.0;
}

Now we are ready to define an instance of the class:

ScalarIVP<double> ivp1(Range<double>(0.0, 1.0), 1.0);

ivp1.Rhs(RHS);
ivp1.Coeff(a);

We now must decide on how to model finite difference schemes in C++. In this case we
create a new class ScalarIVPSolver that is a client of ScalarIVP and encapsulates
the specific difference schemes that we discuss in this book. To this end, we define an
enumeration to reflect the schemes:

enum FDMType {EEuler, IEuler, Box, Trap,
Fitted, FittedBox, ExtrapEuler, PC};

The public interface for ScalarIVPSolver is:

template <class V, class I> class ScalarIVPSolver
{ // Set of finite difference to solve scalar linear IVP

private:
ScalarIVP<V>* ivp; // Pointer to 'parent' IVP
FDMType typ; // Which scheme?

I N; // The number of subdivisions

V k; // Calculated step length
Vector<V, I> res; // Results of calculation

// private functions
void eeuler();
void fitted();
void predictorCorrector();
// etc.

142 Financial Instrument Pricing Using C++

public:
ScalarIVPSolver();
ScalarIVPSolver(ScalarIVP<V>& source, FDMType type);

virtual ~ScalarIVPSolver();

// Modifier functions
void steps(const I& Nsteps);
void setType(FDMType type);

// Output
V stepSize() const;
Vector<V, I> result(); // The result of the calculation

};

We have thus applied the separation of concerns techniques; in one class we define
the parameters of the continuous problem and in the other class we have defined the
parameters of the discrete problem. The latter class uses the interface functions of the
former class. Furthermore, the output of the finite difference calculation is placed in a
Vector instance. For each kind of scheme in the enumeration FDMType we have defined
a private function to do the job. For example, the code for the explicit Euler scheme in
equation (11.9) is:

template <class V, class I> void ScalarIVPSolver<V,I>::eeuler()
{
for (I i = res.MinIndex() + 1; i <= res.MaxIndex(); i++)
{

res[i] = res[i-1]*(1.0 - (k* ivp->CoeffCalc((i-1)*k)))
+ (k* ivp->RhsCalc((i-1)*k));

}
}

The C++ code for the fitted scheme in equation (11.26) is given by:

template <class V, class I> void ScalarIVPSolver<V,I>::fitted()
{ // Exponentially fitted scheme

V f, coeff;
for (I i = res.MinIndex() + 1; i <= res.MaxIndex(); i++)
{

if (ivp->CoeffCalc(i*k) == 0.0) // An extreme case
f = 1.0;

else
{
coeff = (ivp->CoeffCalc(i*k)) * k;
f = coeff / (::exp(coeff) - 1.0);

}

res[i]=(f*res[i-1]+k*ivp->RhsCalc(i*k)))
/(f+(k*ivp->CoeffCalc(i*k)));

}
}

The code for the predictor–corrector method (11.29) is interesting because it combines
explicit Euler and trapezoidal methods:

template <class V, class I> void
ScalarIVPSolver<V,I>::predictorCorrector()

Numerical Solution of Initial Value Problems: Fundamentals 143

{ // Predictor-corrector method

for (I i = res.MinIndex() + 1; i <= res.MaxIndex(); i++)
{

// First get the predictor (Explicit Euler)
V predictor = res[i-1]*(1.0 - (k*ivp->CoeffCalc((i-1)*k)))
+ (k* ivp->RhsCalc((i-1)*k));

// Corrector (this IS the solution)
V vup = 1.0 - (k * 0.5 *ivp->CoeffCalc((i-1)*k));
V pTerm = (k * 0.5 * ivp->CoeffCalc(i*k)) * predictor;

V favg = k*0.5*(ivp->RhsCalc(i*k)+ivp->RhsCalc((i-1)*k));

res[i] = (res[i-1] * vup - pTerm + favg) ;
}

}

Having discussed the internal of ScalarIVPSolver in some detail we finish this section
by giving an example of use:

ScalarIVPSolver<double, int> ivpSol(ivp1, EEuler);
ivpSol.steps(10);

res = ivpSol.result();
print(res);

11.10 GENERALISATIONS
The theory and examples in this chapter were chosen in order to explain the essential
features of finite difference methods and their mapping to C++ code. Of course, real-
life is more complex than just modelling linear scalar initial-value problems but the
schemes in this chapter will reappear and resurface throughout the rest of this book. In
particular, we shall apply these schemes when we approximate one-factor and multi-factor
Black–Scholes equations and extensions. By taking time to understand this chapter you
will be in a good position to appreciate the numerical methods in the rest of this book.
In particular, the theory will be extended to more complex non-linear systems of ODEs.
Recalling the linear IVP

u : R1 → R1

du

dt
+ a(t)u = f (t), t ∈ (0, T]

u(0) = A

(11.32)

we generalise it to non-linear systems

u : Rn → R1, u(t) = (u(t), . . . , un(t))

dU

dt
= f (t, U), t ∈ (0, T)

U(0) = A

(11.33)

Here U is a vector function by which we mean a function mapping time to an array
of scalar functions. A special and common case of (11.33) is when we discretise linear

144 Financial Instrument Pricing Using C++

parabolic differential equations by the Method of Lines (MOL) to produce a linear system
of ODEs as follows:

U : R1 → Rn, U(t) = (u1(t), . . . , un(t))

du

dt
+ M(t)U = F(t), t ∈ (0, T] (11.34)

U(0) = A

In this case F = F(t) is a vector function, M = M(t) is a matrix of scalar functions and
A is a vector that represents the initial condition in the IVP.

Later chapters will discuss numerical schemes and C++ code for problems (11.33)
and (11.34).

11.11 CONCLUSIONS AND SUMMARY

This chapter is a concise and compact introduction to the Finite Difference Method (FDM)
applied to the simplest differential equation in the differential equation galaxy, namely
first-order, scalar, linear initial value problems (IVP). We have chosen this example
because it is easy to understand and can also be extrapolated to more complex equations
and applications. We shall see in later chapters how useful this experience has been. For
example, in Chapter 12 we introduce finite difference schemes for stochastic differential
equations (SDEs). An SDE is like an extension to an ODE with a random process added
on, and we shall see that many of the schemes can also be used in this case albeit with
calculations using random variables.

We took the following approach in this chapter:

• Examination of the continuous problem
• Introduction to FDMs and suitable schemes that approximate the solution of the con-

tinuous problem
• How ‘good’ is the approximate solution?
• Developing C++ classes and code to model finite difference schemes.

In this chapter we have tried to adopt an object-oriented approach by grouping similar
structure and behaviour into classes that correspond to the continuous and discrete parts
of the problem.

12
Stochastic Processes and Stochastic

Differential Equations

12.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce stochastic differential equations (SDEs) and show how to
apply the finite difference method to produce approximations to them. To this end, we
define what we mean by random variables and random (or stochastic) processes because
these are part of an SDE. In general, we can say that an SDE is an ODE with some
additional noise terms. These noise terms are Wiener processes in this chapter. We focus
on scalar, linear SDEs and do not discuss non-linear systems of SDEs. Most of the finite
difference schemes will be familiar to you if you have studied Chapter 11. In fact, the
schemes in this chapter have the same form as those in Chapter 11 except that we need
to take care of the noise terms.

12.2 RANDOM VARIABLES AND RANDOM PROCESSES

We introduce a number of concepts and definitions that are needed if we wish to under-
stand stochastic differential equations. In probability, any process of observation is called
an experiment, and the results of an experiment are called the outcome of the experiment.
A random experiment is one whose outcomes cannot be predicted. The set of all possible
outcomes of a random experiment is called the sample space and is usually denoted by
S. An element in S is called a sample point. Thus, each outcome of a random experiment
corresponds to a sample point.

We shall give a simple example. Consider the experiment of tossing a coin twice. We
get either heads (H) or tails (T) and there are four possible outcomes given by the sample
space {HH, HT, TH, TT}.

A sample space is called discrete if it consists of a finite number of sample points
while it is called continuous if the sample points constitute a continuum. Any subset
of the sample space is called an event while a sample point is called an elementary
event. For instance, in the above example the set of outcomes containing heads {HH,
HT, TH} is an event while the outcome that always gives heads {HH} is an elemen-
tary event.

12.2.1 Random variables

A random variable X(s) is a real-valued function that assigns a real number (called the
value) to each sample point s in S. Thus, a random variable is in fact a function and not
a variable. The sample space is called the domain of the random variable and the real
line is called the range of the random variable. For example, in tossing a coin once, we
could define the random variable X as follows:

X(H) = 1, X(T) = 0

Andrey
trading software col

146 Financial Instrument Pricing Using C++

There is nothing magical about this function and we could have defined other variables
on this sample space as follows:

Z(H) = 0, Z(T) = 1

Z(H) = 0, Z(T) = 0

If X is a random variable and x is a fixed number we define the event {X = x} as

{X = x} = {s: X(s) = x}

Similarly, we can define other events in which equality is replaced by some inequality,
for example:

{X ≤ x} = {s: X(s) ≤ x}

Events have probabilities, for example:

P(X = x) = P {s: X(s) = x}
P(X ≤ x) = P {s: X(s) ≤ x}

Having defined random variables, we move on to a discussion of distribution functions.
The distribution function (or cumulative distribution function, cdf) is defined as:

FX(x) = P(X ≤ x), −∞ < x < ∞ (12.1)

The cdf determines much of the behaviour about a random experiment defined by the ran-
dom variable X. From definition (12.1) we can compute different probabilities as follows:

P(a < X ≤ b) = FX(b) − FX(a)

P (X > a) = 1 − FX(a) (12.2)

P(X < b) = FX(b−), b− = lim
0<ε→0

b − ε

We are interested in two kinds of probability function, called discrete and continuous
functions. First, suppose that the jumps occur at the points x1, x2 and let us assume that
xi < xj for i < j . Then

FX(xi) − F(xi−1) = P(X ≤ xi) = P(X ≤ xi−1) − P(X = xi) (12.3)

Let
PX(x) = P(X = x) (12.4)

then PX(x) is called the probability mass function (pmf) of the discrete random variable X.
The cdf and pmf are related by the formula

FX(x) = P(X ≤ x) =
∑
xk≤x

PX(xk) (12.5)

Stochastic Processes and Stochastic Differential Equations 147

An important example of a discrete random variable is the Poisson random variable with
parameter λ > 0, whose pmf is given by:

PX(k) = P(X = k) = e−λ λk

k!
, k = 0, 1, . . . (12.6)

and the corresponding cdf is:

FX(x) = e−λ

n∑
k=0

λk

k!
, n ≤ x < n + 1 (12.7)

We now turn our attention to continuous random variables and we define the pdf as:

fX(x) = dFX(x)

dx
(12.8)

We are interested in two special cases, namely the Uniform distribution and the Normal
distribution. For the Uniform distribution on an interval (a, b) we have the follow-
ing formulae:

fX(x) =

1

b − a
, a < x < b

0, otherwise

FX(x) =

0, x ≤ a

x − a

b − a
, a < x < b

1, x ≥ b

(12.9)

The Normal (or Gaussian) distribution has the following pdf and cdf:

fX(x) = 1√
2πσ

e−(x−µ)2/2σ 2

FX(x) = 1√
2π

∫ (x−µ)/σ

−∞
e−y2/2dy

(12.10)

The source code for the formulae in (12.10) can be found in the StatisticsMechanisms
package.

This completes our short introduction to random variables. For a more detailed discus-
sion on random variables, we refer the reader to Hsu (1997), for example.

12.2.2 Generating random variables

When approximating the solutions of stochastic differential equations we often have to
come up with some techniques for generating random numbers on a computer. True
randomness is impossible on a computer because random number generation occurs in a
deterministic and entirely predictable way on such machines. For this reason, we prefer
to use the term pseudo-random when we wish to stress the difference.

148 Financial Instrument Pricing Using C++

In general, pseudo-random numbers are generated by so-called linear congruential gen-
erators (this topic is a part of Number Theory; see Ayres, 1965, or Hunter, 1964, for
example). These are defined by the recursion

Xj+1 = aXj + b(mod M), j = 1, 2, . . . (12.11)

where a and M are positive integers and b is non-negative. For an initial value (or seed)
for X when n = 0, scheme (12.11) generates a pseudo-random sequence. When a, b and
M are chosen properly, the numbers

Uj = Xj/M (12.12)

often seem to be uniformly distributed in the interval [0, 1].
In practice, most computers and operating systems provide some kind of random num-

ber generators and many commercial generators are available. For this book, we used
generators under both Linux and Windows. For Linux, we use drand48() to generate
uniform random numbers in [0, 1] and on Windows we have used the function rand()
as the basis for a uniform random number generator. In general, each function supplies
specific values for a, b and M in the recursion relation (12.11).

Our main objective is in generating Gaussian random variables because we need them
when working with SDEs. To this end, we discuss two techniques for generating such
numbers from uniformly distributed numbers:

• The Box–Muller method
• The Polar–Marsaglia method (see Kloeden, Platen and Schurz, 1994)

Each method accepts two uniform variables as input and produces two Gaussian variables
as output. The formula for the Box–Muller is:{

θ = 2πU2, ρ = √−2 log U1

Z1 = ρ cos θ, Z2 = ρ sin θ
(12.13)

and the formula for Polar–Marsaglia is:

Vj = 2Uj − 1(W = V 2
1 + V 2

2 < 1)

Z1 = V1

√−2 log(W)/W

Z2 = V2

√−2 log(W)/W

(12.14)

Polar–Marsaglia is a variation of Box–Muller but it avoids the time-consuming calcu-
lation of trigonometric functions. We use it in applications and show how it has been
programmed as a ‘flat’ function in C++ (Linux version):

void PolarMarsaglia (double & N1, double & N2)
{
double W;
double V1, V2;

do
{

double U1 = drand48(); // Uniform (0,1) random variables

Stochastic Processes and Stochastic Differential Equations 149

double U2 = drand48();

V1 = 2 * U1 - 1; // Uniform (-1,1) random variables
V2 = 2 * U2 - 1;

W = V1*V1 + V2*V2;
} while(W>1);

double W_function = sqrt(-2 * log(W) / W);

N1 = V1 * W_function;
N2 = V2 * W_function;

return;
}

In later experiments we shall generate arrays of normally distributed numbers. The C++
code uses the Polar–Marsaglia formula and places the results in a Vector object:

void Random::Normal (Vector<double,int> & v, const int & iNumber,
const double & Mu, const double & Var)

{
int size = iNumber + (iNumber%2); // Add 1 if odd

Vector<double, int> tmp(size, 1); // Temporary vector

double Sd = sqrt(Var); // Standard deviation

for(int i=1; i<=size; i+=2)
{
double N1;
double N2;

PolarMarsaglia (N1,N2); // Uniform U1 and U2

tmp[i] = N1 * Sd + Mu;
tmp[i+1] = N2 * Sd + Mu;

}

v = tmp;

return;
}

On Windows, we have used the following code:

double(rand()) / double(RAND_MAX) ;

as an estimate, where RAND_MAX is the maximum value that can be returned by the
rand() function. This information can be used in order to write your own uniform
random number generator under Windows.

We give an example of how to generate uniformly distributed numbers under Windows.

// tstrandom.cpp
//
// Random number stuff
//
// (C) Datasim Education BV 2003

#include <stdlib.h>
#include <time.h>

150 Financial Instrument Pricing Using C++

#include <iostream.h>

int main()
{
srand ((unsigned) time (NULL)); // Define seed for generator
cout << "\nFirst bunch\n";
for (int i = 1; i <= 10; i++)
{

cout << double(rand()) / double(RAND_MAX) << ", ";
}

cout << "\nNext bunch\n";
for (i = 1; i <= 10; i++)
{

cout << double(rand()) / double(RAND_MAX) << ", ";
}
return 0;

}

The output from this program is:

First bunch
0.378216, 0.172918, 0.204382, 0.0794397, 0.397015, 0.562822, 0.36961,
0.557573, 0.105808, 0.813807,

Next bunch
0.0647298, 0.388043, 0.0874966, 0.786981, 0.376598, 0.799158, 0.691275,
0.833857, 0.554155, 0.634297,

A more detailed discussion on generating random numbers from a computational finance
point of view is given in Seydel (2003). You might consider purchasing a commercial
random number generator.

12.2.3 Random (stochastic) processes

A random or stochastic process is a family of random variables {X(t)} defined on a
given probability space and indexed by the parameter t that we assume to be in a set T .
A random process is really a function of two variables {X(t, s)} where t is in T and s is in
the sample space S. For a fixed t , X is a random variable while for a fixed s in the sample
space it is a function of t only. In the latter case it is called a realisation or path of X.
The index set T is called the parameter set of the random process. The values assumed
by X(t) are called states and the set of all possible values forms the state space E of
the random process. If the set T is discrete then the process is called a discrete-parameter
or discrete-time process. If T is continuous then we have a continuous-parameter or
continuous-time process. If the state space E is discrete the process is called a discrete-
state process while if E is continuous the process is called a continuous-state process. It
is possible to classify random processes (see Hsu, 1997):

• Stationary process
• Wide-sense stationary process
• Independent process
• Process with stationary independent increments
• Markov process

Stochastic Processes and Stochastic Differential Equations 151

• Normal process
• Ergodic process

A full discussion of these processes is, however, beyond the scope of this book. We are
interested in the so-called Wiener process and we shall explain it because it is important
for SDEs. The rest of this section dwells on defining the essentials of the Wiener process.

A random process {X(t): t ≥ 0} is said to have independent increments if whenever

0 < t1 < t2 < . . . < tn (12.15)

the differences

X(0), X(t1) − X(0), X(t2) − X(t1), . . . , X(tn) − X(tn−1) (12.16)

are independent. Furthermore, if {X(t), t ≥ 0} has independent increments and X(t) −
X(s) has the same distribution as X(t + h) − X(s + h) for non-negative s, t and h with
s < t , then the process X(t) is said to have stationary independent increments.

Definition 12.1 (Wiener process): A random process {X(t), t ≥ 0} is called a Wiener
process if

• X(t) has stationary independent increments
• The increments X(t) − X(s) (when t > s) are normally distributed
• E[X(t)] = 0 (the mean or expected value)
• X(0) = 0.

The importance of the Wiener process in finance is that it models the behaviour of
stock prices and other underlying assets (see Hull, 2000). It is not the only model in the
world but it has been (almost) universally accepted as a good approximation to stock
price behaviour. We usually use the notation W(t) to denote the Wiener process. We
note that var(W(t) − W(s)) = t − s (see Kloeden, Platen and Schurz, 1994) and hence
W(t) − W(s) is a normal N(0, t − s) Gaussian distribution.

The Wiener process is similar to the concept of Brownian motion. The British botanist
Brown first noticed the perpetual motion of small particles of colloidal size immersed in
a fluid in 1826. The chaotic behaviour of a typical particle is called Brownian motion and
this motion is caused by collisions with the molecules of the surrounding fluid (Schuss,
1980). This model has been applied to modelling the random changes in a stock’s price.

12.3 AN INTRODUCTION TO STOCHASTIC DIFFERENTIAL
EQUATIONS

In this section we give a very basic introduction to SDEs. We do not try to provide rigour
but our goal is to give enough background to help us to understand what an SDE is so
that we can then approximate it using finite difference schemes. For the moment, we
concentrate on scalar problems. To this end, we examine the general scalar SDE{

dX = a(t, X) dt + b(t, X) dW

X(0) = X0
(12.17)

with an initial condition X(0) = A.

152 Financial Instrument Pricing Using C++

In fact, equation (12.17) is meaningless in a mathematical sense because we should
really write it as an integral equation

Xt(w) =
∫ t

t0

a(s, Xs(w)) ds +
∫ t

t0

b(s, Xs(w)) dWs(w) (12.18)

The theory of SDEs can be found in many books, for example Schuss (1980), Steele
(2001). However, we view (12.17) as a differential equation with a random term defined
by the Wiener process tagged onto it.

Some special cases of equation (12.17) are found by instantiating the coefficients
a(t, X) and b(t, X) by specific functions:

Geometric Brownian motion:

dXt = A(t)Xt dt + B(t)Xt dWt (12.19a)

Square root process:

dXt = aXt dt + b
√

Xt dWt (12.19b)

Many underlying assets in financial applications are determined by one of these forms;
for example, stock, interest rates and commodities. It can be said that (12.17) is a gener-
alised Wiener process. For example, in order to model the term structure of interest rates
we employ the model

dr = m(r) dt + s(r) dW (12.20)

where r is the short-term rate, m is the instantaneous drift and s is the instantaneous
standard deviation (Hull, 2000). Notice that these coefficients are independent of t . There
are many special cases of (12.20), for example the Vasicek model

dr = a(b − r) dt + r dW (12.21)

We now describe how to approximate the solution of these one-factor models using finite
difference schemes, starting with the easiest and the one that is most unstable. The test
equation is (12.17).

12.4 SOME FINITE DIFFERENCE SCHEMES
We have laid the foundation for finite difference schemes for SDEs because of the equiv-
alence:

SDE = ODE + Random process

Thus, when approximating SDEs by finite differences we use the results for ODEs (as
discussed in Chapter 11) and we must examine how to approximate the Wiener process
at discrete times. To this end, the explicit Euler scheme is given by:

Yn+1 = Yn + a(tn, Yn)k + b(tn, Yn)

{
Wtn+1 − Wtn︸ ︷︷ ︸

�Wn

}

k = tn+1 − tn, ∀n ≥ 0

Y0 = X0

(12.22)

Stochastic Processes and Stochastic Differential Equations 153

Here we use a divided difference to approximate the Wiener process. The increments of
the Wiener process are generated by Polar–Marsaglia (for example) at each time level n.
The step-length k in equation (12.22) must be chosen small enough, otherwise the discrete
solution will oscillate wildly (as was seen in the ODE case). This stability problem is
resolved by employing the implicit Euler scheme as follows:

Yn+1 = Yn + a(tn+1, Yn+1)k + b(tn+1, Yn+1)�Wn

Y0 = X0

(12.23)

The only problem is that this scheme is non-linear if the term b(t, X) is non-linear; for
example, the square root process in equations (12.19). The situation can be rectified by
using the Predictor–Corrector scheme

Predictor: Y n+1 = Yn + a(tn, Yn)k + b(tn, Yn)�Wn (12.24a)

Corrector: Yn+1 = Yn + {αaη(tn+1, Y n+1) + (1 − α)aη(tn, Yn)}k
+ {ηb(tn+1, Y n+1) + (1 − η)b(tn, Yn)}�Wn (12.24b)

with α ∈ [0, 1], η ∈ [0, 1] and aη = a − ηb(∂b/∂X). (See Kloeden, Platen and Schurz,
1994.)

A new-fangled scheme is the so-called Milstein scheme

Yn+1 = Yn + a(tn, Yn)k + b(tn, Yn)�Wn + 1
2bb

′ {(�Wn)
2 − k}

b
′ = ∂b(t, X)

∂X

(12.25)

Of course, the Predictor–Corrector and Milstein schemes become easier to understand
and to program if b(t, X) is a linear function of X only.

12.4.1 Improving the accuracy: Richardson extrapolation

Although the Euler scheme is not always what we would expect, we can apply extrapo-
lation techniques in order to achieve second-order accuracy. We have already discussed
this topic in Chapter 11. The steps are:

YN(k) = Xt + e(T)k + 0(k2)

Y2N(k/2) = Xt + 1
2e(T)k + 0(k2)

ZN(k) = 2Y2N(k/2) − YN(k)

(12.26)

where e(T) is the error associated with the difference scheme.

12.5 WHICH SCHEME TO USE?
We now discuss the stability and accuracy of the different schemes in section 12.4 and
base our conclusions on our own experiments. The reader can carry out his or her own
experiments by using the code provided on the CD. Here are our conclusions:

• Explicit Euler is easy to program but does not converge very quickly.
• Implicit Euler is always stable but is difficult to apply to non-linear equations.

154 Financial Instrument Pricing Using C++

• The Milstein scheme provides no real advantages when compared to explicit Euler. This
is strange because it is often referred to in the literature (see, for example, Jäckel, 2002).

• The Predictor–Corrector scheme converges consistently (and quickly) and performs
well under most conditions. It can be scaled to non-linear systems of SDEs.

• Richardson extrapolation is another excellent scheme, but coding this scheme can be a
bit tricky.

We stress that these are only guidelines but they should help you to determine the most
suitable scheme for your particular problem.

12.6 SYSTEMS OF SDEs

The discussion in this chapter was restricted to scalar problems. In general, we can define
systems of SDEs (see Kloeden, Plateu and Schurz, 1994). A treatment of finite difference
schemes for such problems is outside the scope of this book.

12.7 CONCLUSIONS AND SUMMARY

We have given an introduction to finite difference methods for approximating stochastic
differential equations. Several good and not-so-good schemes were proposed for linear
scalar problems. We have tried to demystify this area of mathematics by a gradual build-
up from random variables to random processes up to SDEs. Many of the schemes should
be familiar at this stage because they are ‘perturbations’ of similar schemes for ODEs.
The only (big) difference is that a white noise term has been added to the equation and
in order to solve the equations we must use random number generators (for example,
Polar–Marsaglia or Box–Muller).

13

Two-Point Boundary Value Problems

13.1 INTRODUCTION AND OBJECTIVES

In this pivotal chapter we introduce the finite difference method for solving a class of
second-order ordinary differential equations on a finite interval. In general, we must
provide two extra boundary conditions (one at each end of the interval) in order to
specify a unique solution. We discuss different ways of specifying a boundary condition
that must then be approximated numerically.

This chapter is important for two main reasons. First, it deals with several non-trivial
topics that the reader must master if he or she wishes to progress to finite difference
schemes for the Black–Scholes equation. In particular, we discuss the following funda-
mental issues:

• Discretising boundary value problems by finite difference schemes
• Centred difference schemes and when/why they break down
• Exponentially fitted schemes for problems with a large convection term (Il’in, 1969;

Duffy, 1980; Farrell et al., 2000; Morton, 1996)
• How to approximate Dirichlet, Neumann, Robin and linearity boundary conditions by

one-sided differences and ‘ghost points’.

These are important issues to be addressed and we have included them in one chapter
for easy access. Second, the C++ classes that we develop in this class use results from
previous chapters. In this way we achieve a high level of reusability and usability because
we build on what has gone before and hide low-level detail in other classes. We use these
classes in new code and applications. We (re)use of the following classes:

• Vector and NumericMatrix
• Classes that model scalar functions (AtomicDFunction)
• Classes to solve tridiagonal systems of equations (for example, LUTridiagonal-
Solver)

• The functionality in the ArrayMechanisms package.

For an excellent introduction to the theory of boundary value problems and their numerical
approximation using finite differences, we refer the reader to Herbert Keller’s monograph
(Keller, 1968).

This chapter provides basic training in finite difference schemes for boundary value
problems. It is not very difficult, especially if you have studied and understood Chapter 11
where we introduced finite difference schemes for first-order equations.

13.2 DESCRIPTION OF PROBLEM
We introduce the two-point boundary value problem (TPBVP) by formulating the most
general case. Consider a bounded interval (a, b) with a < b and let f be some non-linear

156 Financial Instrument Pricing Using C++

function that depends on three variables. The exercise is to find a function u = u(x) in
the interval (a, b) that satisfies the second-order equation

u′′ = f (x, u, u′) on (a, b) (13.1)

in conjunction with the boundary conditions

α0u(a) + α1u
′(a) = α |α0| + |α1| �= 0

β0u(b) + β1u
′(b) = β |β0| + |β1| �= 0

(13.2)

In this latter equation all parameters are known with the exception of the (unknown)
solution u and its derivative.

Equation (13.1) is non-linear and in general we say that devising robust numerical
schemes for such equations in combination with the boundary conditions (13.2) is a real
challenge. The problem may have no solution or it may even have multiple solutions.
Fortunately, the situation is simpler in this book as we use a class of linear TPBVP that
is general enough to model problems in financial engineering. Nonetheless, it is still a
challenge to devise robust schemes for such problems, as we shall see later in this chapter.

In general, we can state the following result:

f = f (x, u1, u2) (13.3)

Let
∂f

∂u1
> 0,

∣∣∣∣ ∂f

∂u2

∣∣∣∣ ≤ M

and α0α1 �= 0, β0β1 �= 0, |α0| + |β0| �= 0

Then problem (13.1), (13.2) has the unique solution.
In this chapter we examine a special case of (13.1)

Lu ≡ −u′′ + p(x)u′ + q(x)u = r(x) (13.4)

This is a linear equation that is general enough for most of the work in this book. If we
take the special case of p(x) = q(x) = r(x) = 0 and if we then integrate the equation
u′′ = 0 twice, we see that the solution has the form:

u(x) = Ax + B

where A and B are integration constants. We conclude that we must be given two extra
conditions in order to specify a unique solution. To this end, we usually specify one
constraint at x = a and another constraint at x = b. There are four main possibilities:

Dirichlet boundary conditions

u(a) = α, u(b) = β (13.5)

Neumann conditions
u′(a) = α, u′(b) = β (13.6)

Robin conditions (these have already been discussed – see equation (13.2)).

Two-Point Boundary Value Problems 157

Linearity boundary condition (see Tavella and Randall, 2000, p. 122)

u′′(a) = 0, u′′(b) = 0 (13.7)

Of course, we can give combinations of the above boundary conditions. For example,
we can give a Dirichlet condition at x = a and a Neumann condition at x = b and so
on. Equation (13.7) is used when a derivative quantity has a payoff that is at most linear
in the underlying (see Wilmott, 1998, p. 642). We are in fact saying that the option
value is nearly linear with respect to the spot price. Note that the pure Neumann bound-
ary conditions (13.6) do not always produce a solution to the corresponding boundary
value problem.

13.3 (TRADITIONAL) CENTRED-DIFFERENCE SCHEMES
We divide the interval (a, b) into J equal sub-intervals and let h be the length of each sub-
interval. Thus, we set up a finite difference scheme on a uniform mesh by approximating
the first and second derivatives of u at each mesh point:

Lhuj ≡ −
(

uj+1 − 2uj + uj−1

h2

)
+ p(xj)

(
uj+1 − uj−1

2h

)
+ q(xj)uj

= r(xj), 1 ≤ j ≤ J − 1

u0 = α, uJ = α

(13.8)

where we have taken Dirichlet conditions for the moment. Grouping terms in (13.8) we
can then write the equations as a matrix system (as shown in Chapter 8):

AU = r

A =

b1 c1

a2
. . .

. . . 0
. . .

.

0 cJ−1
. . .

. . .

aJ bJ

(13.9)

where the coefficients of the matrix A are given by

aj ≡ − 1
2

[
1 + 1

2h · p(xj)
]

bj ≡ [
1 + 1

2h2 · q(xj)
]

cj ≡ − 1
2

[
1 − 1

2h · p(xj)
] (13.10)

with 1 ≤ j ≤ J − 1, and the vectors are given by:

U = t (u1, . . . , uJ−1)

r =

r1
...

rJ−1

 = h2

2

r(x1)

...

r(xJ−1)

 −

a1α

...

cJ β

 (13.11)

158 Financial Instrument Pricing Using C++

Incidentally, the reader can check how the boundary conditions have been incorporated
into the vector r in (13.11).

We call scheme (13.8) a standard difference scheme because it approximates the coef-
ficients and derivatives using conventional divided difference schemes. We shall see that
the numerical solution shows oscillatory behaviour precisely because we approximate
the first derivative by centred divided differences. Unfortunately, this approach is used
in financial engineering literature and authors tend to use workarounds to avoid spurious
oscillations.

Another sufficient condition for (13.8) to have a unique solution is that the matrix in
(13.9) is diagonally dominant, that is:

|bj | > |aj | + |cj |, j = 1, 2, . . . , J (a1 ≡ c1 ≡ 0) (13.12)

In this case the matrix A is non-singular and (13.8) will have a unique solution.

13.3.1 Does the discrete system have a solution?

Can we give sufficient conditions for the system (13.8) to have a unique solution and can
we bound the solution by its input? We can state the following:

Assume |p(x)| ≤ P ∗, and

0 < Q∗ ≤ q(x) ≤ Q∗, a ≤ x ≤ b (13.13)

Let h < 2/P ∗. Then scheme (13.8) has a unique solution.
We see that the coefficient of the first derivative plays an important role. If it has large

values then the mesh-size h must be chosen small. It turns out in practice that if this is
not so then spurious oscillations arise in the numerical solution and its divided differences
occur, as is borne out in the engineering and financial engineering literature. In fact, the
reader can take a test case and experiment with different values of h and p(x) using
LU decomposition (see Chapter 8) in order to solve the system of equations. The results
speak for themselves. For some other counter-examples, see Farrell et al. (2000).

13.3.2 Extrapolation

The scheme (13.8) is second-order accurate when the mesh-size h is constant (otherwise
it is only first-order accurate!) and if the conditions in (13.13) are true. As in Chapter 11,
we can apply extrapolation techniques to improve the accuracy of the solution to fourth-
order. To this end, we must create meshes of size h and h/2 and solve the finite difference
equations on each one. The result is:

uj (h) − u(xj) = h2e(xj) + O(h4)

uj ≡ 4
3u2j (h/2) − 1

3uj (h)
(13.14)

13.4 APPROXIMATION OF THE BOUNDARY CONDITIONS

The financial literature tends to be a bit fuzzy when it comes to discussing boundary
conditions for Black–Scholes equations and their numerical approximations.

Two-Point Boundary Value Problems 159

We now discuss how to approximate boundary conditions using finite differences. The
main challenge lies in deciding how to approximate the first and possibly second deriva-
tives of the unknown solution at the end-points. We concentrate on the general Robin
boundary conditions for the moment (notice that it includes the Dirichlet and Neumann
conditions as special cases). Furthermore, we look at the problem at the left-hand boundary
x = a. There are two main techniques for approximating the Robin boundary condition:

• Taking one-sided differences to approximate the first derivative.
• Defining ‘ghost points’ and using centred differences to approximate the first derivative

at the boundary point (Thomas, 1998).

Let us be specific by looking at the boundary condition

α0u(a) + α1u
′(a) = α (13.15)

We take a one-sided approximation to the first derivative to get the discrete Robin bound-
ary condition: {

α0u0 + α1

h
(u1 − u0) = α or

(α0h − α1)u0 + α1µ1 = αh

(13.16)

This is a first-order approximation and it destroys the second-order accuracy of scheme
(13.8). In short, the first-order accuracy that we achieved at the boundary percolates as it
were into the interior of the interval (a, b). In order to preserve second-order accuracy at
the boundary we introduce so-called ghost or fictitious points. These are points that fall
outside the interval (a, b). Then we approximate the boundary condition (13.15) at x = a

by the following scheme:

{
α0u0 + α1

2h
(u1 − u−1) = α or

2hα0u0 + α1(u1 − u−1) = 2hα

(13.17)

We now eliminate the value at the ghost point from (13.17) by assuming that the difference
scheme in (13.8) is satisfied at j = 0. This leads to the difference equation

−
(

u1 − 2u0 + u−1

h2

)
+ p(x0)

(
u1 − u−1

2h

)
+ q(x0)u0 = r(x0) (13.18)

We then use the expression for the value at the ghost point from (13.17) in (13.18),
thus eliminating the ghost point entirely from the system of equations while at the same
time preserving second-order accuracy. This technique can be applied to parabolic partial
differential equations in general and to the Black–Scholes equation in particular (see
Thomas, 1998, p. 15).

13.4.1 Linearity boundary condition

We now discuss how to approximate the boundary conditions (13.7). These are quite
common but I have not been able to find a mathematical argument in their favour. Anyway,

160 Financial Instrument Pricing Using C++

we use ghost points. The approach is similar to that taken for Robin boundary conditions
and in this case we have:

u1 − 2u0 + u−1

h2
= α (13.19)

Again, we eliminate the value at the ghost point from the two equations (13.19)
and (13.18).

13.5 EXPONENTIALLY FITTED SCHEMES AND
CONVECTION–DIFFUSION

Let’s go back to the result in section 13.3.1 where there are restrictions on the size of h if
we wish to have a stable and unique approximate solution to the boundary value problem
by the traditional centred difference scheme (13.8). In other words, if the coefficient p(x)

is large (and we are talking value of the order of 10 000 for example) we will need to
choose h to be very small. It is then time to go for coffee, go to the gym for a workout and
then come back to your workstation because the calculations will be very time-consuming.
In this case we speak of convection-dominated problems (see Morton, 1996) or singular
perturbation problems. It has been known for more than 50 years that traditional finite
difference methods are not up to the job and many solutions have been found that can
handle such problems (an early solution can be found in de Allen and Southwell, 1955).
This has relevance to financial engineering because similar problems arise in these cases,
especially when the volatility is small or when we wish to calculate option sensitivities
(delta, gamma).

Concluding, the exponentially fitted method produces a uniformly stable and convergent
scheme of order h. We can improve convergence by use of extrapolation techniques. We
shall extend the scheme to the Black–Scholes equation in a later chapter based on the
schemes in Duffy (1980).

13.6 APPROXIMATING THE DERIVATIVES
The difference scheme (13.8) gives terrible results if the first and second derivatives are
defined by the following divided differences:

u′(xj) ∼ uj+1 − uj−1

2h

u′′(xj) ∼ uj+1 − 2uj + uj−1

h2

(13.20)

We can show mathematically and by computer experiment that these approximations
exhibit spurious oscillations. Similar problems are noted in Tavella and Randall (2000,
p. 191). In this case the solution itself exhibits spike behaviour so there is little chance
that approximation of the sensitivities will be much better (in fact, they are worse!).

So, how do we proceed? There are various solutions. For example, the exponen-
tially fitted method gives good approximation to the delta while the approximation to
the gamma tends to be a bit ‘flat’ when compared to the exact solution (see Cooney,
1999). Another solution is to reformulate the problem (13.4) as a two-by-two system of
first-order equations consisting of the solution u and its first derivative. We then approx-
imate this system by a so-called exponentially fitted Box scheme, the scalar version of

Two-Point Boundary Value Problems 161

which we introduced in Chapter 11. We discuss this briefly here and base the discussion
on Emel’yanov (1975, 1978).

Consider the Dirichlet boundary value problem

εu′′ + a(x)u′ − b(x)u = f (x), x ∈ (0, 1) (13.21)

u(0) = µ0, u(1) = µ1

ε > 0 small parameter

a(x) ≥ α > 0, b(x) ≥ 0

We transform this problem into a first-order system as follows:

L1(u1v) ≡ εv′ + av − εbu = εf

L2(u1v) ≡ v − εu′ = 0

u(0) = µ0, u(1) = µ1

(13.22)

We now approximate (13.22) by the fitted Box scheme:

L1(u
h, vh) ≡ γ

vh
j+1 − vh

j

h
+ a

j+ 1
2

(
vh

j+1 + vh
j

2

)

−γ b
j+ 1

2

(
uh

j+1 + uh
j

2

)
= γf h

j+ 1
2

L2(u
h, vh) = vh

j+1 + vh
j

2
− γ

(
uh

j+1 − uh
j

h

)
= 0

(13.23)

where

γ ≡ γ
j+ 1

2
=

a
j+ 1

2
h

2
coth

a
j+ 1

2
h

2ε
(13.24)

Then, the major convergence result is:

||u − uh||∞ + ||εu′ − vh||∞ ≤ Mh (13.25)

This result states that we get uniform convergence of u and its derivative v always. Thus,
there are no spurious oscillations.

In a later chapter we examine the time-dependent version of this problem when we
introduce the Keller Box scheme for the Black–Scholes equation. Again, we get good
results for the option price and its delta.

13.7 DESIGN ISSUES

Having defined the continuous problem and the discrete problem for BVP we must now
make a shot at a design that will eventually be implemented in C++. It is possible
to design a system that is very malleable and flexible. However, the solution may be
over-engineered, by which we mean that it contains so many whistles and bells that the
customer is never going to use. On the other hand, we do not wish to hard-wire data

162 Financial Instrument Pricing Using C++

structures or algorithms in C-like functions because we may wish to extend the software
in the future. Finally, it is not our objective in this book to deliver production code and
executable systems but we are interested in analysing and designing difficult numerical
problems and showing how they are implemented in C++.

In the current chapter we approximate the solution of two-point boundary value prob-
lems using finite difference schemes. The core process is to produce an array of values
that approximates the exact solution on some meshes. The main activities that we need
to execute in order to realise this process are:

1. Set up the coefficients of the BVP (equation (13.4)).
2. Determine the type of boundary condition for the BVP.
3. Approximate the BVP by centred-difference, fitted or one-sided schemes.
4. Approximate the boundary conditions in step 2 by one-sided differences or by using

ghost points.
5. Assemble and build the discrete scheme.
6. Solve the system of equations by LU decomposition or by the Double Sweep method,

for example.
7. Present the results to clients (for example, as an output function that writes to Excel).

In order to reduce the scope in this chapter we must make some assumptions and take
certain standpoints. The main requirements and restrictions are:

• Use the Datasim function classes.
• Examine Dirichlet conditions only.
• There must be flexibility in switching between different kinds of finite difference

schemes.
• We use LU decomposition to solve systems of equations.
• Use classes and code from previous chapters.
• Make tradeoffs: we have a limited amount of time to get results (gold-plating comes

later).

The UML class diagram is shown in Figure 13.1. Here we see the classes:

• BVP: encapsulates the essence of the continuous problem.

BVP

uses

uses

BVPSolver Type
1 *

LuSolver Centred Fitted . . .

states

Figure 13.1 Class diagram for finite difference solution

Two-Point Boundary Value Problems 163

• BVPSolver: central coordinator class for all finite difference schemes that approximate
the continuous problem.

• Type: base class for all different kinds of difference schemes.

13.8 CONCLUSIONS AND SUMMARY

We have given a compact introduction to finite difference schemes for two-point bound-
ary value problems. We considered both centred-difference schemes and a new class of
exponentially fitted schemes that avoid some of the spurious oscillation problems that we
encounter with traditional finite difference schemes. We also introduced Dirichlet, von
Neumann and Robin boundary conditions and we proposed both first-order and second-
order accurate approximation to them. Finally, we discussed the steps to be taken when
actually setting up the C++ code for solving this class of problems.

The knowledge built up in this chapter will be invaluable when we come to discuss
parabolic initial boundary value problems and the Black–Scholes equation in later
chapters.

14

Matrix Iterative Methods

14.1 INTRODUCTION AND OBJECTIVES

This chapter discusses how to solve linear systems of equations using iterative methods
and it may be skipped on a first reading of this book without loss in continuity. We have
included this chapter because iterative methods are an alternative to the direct methods
that we introduced in Chapter 8.

In Chapter 8 we showed how LU decomposition is used to solve matrix systems. We
restricted our attention to tridiagonal and block tridiagonal matrices. We employed direct
methods to find a solution to the system of linear equations in a finite number of steps.
In this chapter we take a completely different approach. Here we start with some initial
approximation to the solution of the matrix system and we then construct a sequence
of estimates to the solution where each estimate is closer to the exact solution than the
previous one. We are thus in the realm of iterative methods for solving systems of linear
equations. The main methods of interest are:

• The Jacobi method
• The Gauss–Seidel method
• Successive Overrelaxation (SOR)
• The Conjugate Gradient method
• Projected SOR method (for matrix inequalities).

These methods are particularly suitable for sparse matrices. Furthermore, we generalise
these methods to solve Linear Complementarity Problems (LCP) of the form

Ax ≥ b, x ≥ c

(x − c)ž(Ax − b) = 0
(14.1)

Here A is a square positive-definite matrix, b and c are given vectors and we seek a
solution x that satisfies the conditions in (14.1). Here we speak of vector inequality;
by definition, a vector v1 is greater than a vector v2 if each element in v1 is greater
than the corresponding element in v2. Please recall that C++ functions that test inequal-
ity relationships between vectors are discussed in Chapter 7 and you should use the
ArrayMechanisms package if you plan to write your own LCP programs. It saves you
having to reinvent the wheel.

We propose an algorithm for solving (14.1). The method was invented by C.W. Cryer
(1979) and has gained wide acceptance in the financial engineering world (see Wilmott
et al., 1993). This algorithm is called the Projected SOR method, which we shall discuss
in section 14.7.

We now give a general introduction to solving linear systems of equations using itera-
tive methods.

Matrix Iterative Methods 165

14.2 ITERATIVE METHODS

In general we wish to find the solution of the linear system written in matrix form:

Ax = b (14.2)

We give some motivation on finding iterative methods to solve (14.2) and show how they
work. For a definitive and very clear discussion, see Varga (1962). Let us rewrite matrix
A in the following equivalent form

A = D(L + I + U) (14.3)

where D is the diagonal matrix with value zero everywhere except on the main diagonal
where the values are equal to the diagonal elements of A. The matrix I is the identity
matrix, U is upper triangular and L is lower triangular. We can then rewrite the matrix
equation Ax = b in the equivalent form

x = −Lx − Ux + D−1b or x = Bx + c (14.4)

where B = −(L + U) and c = D−1b.
This equation contains the unknown x on both left- and right-hand sides. Now is the

crux: we define a ‘one-step’ sequence of vectors as follows:

x(k+1) = Bx(k) + c, k = 0, 1, 2, . . . (14.5)

Starting with some initial approximation to the solution we hope that the sequence will
converge to the exact solution x as k increases. As mathematicians we must prove that
the sequence does converge; for more information, we refer again to Varga (1962).

There are a number of ways to choose the iteration in (14.4), and we shall discuss each
one in turn.

14.3 THE JACOBI METHOD

This is the simplest iterative method. The terms Lx and Ux in (14.4) are both evaluated
at level k and the Jacobi scheme in matrix form is given by:

x(k+1) = −(L + U)x(k) + D−1b (14.6)

or in component form:

x
(k+1)
j =

−
n∑

i=1
i �=j

ajix
(k)
i + bj

ajj

j = 1, . . . , n (14.7)

We usually take the initial approximation to be that vector all of whose values are zero.
With this method we do not use the improved values until after a complete iteration.

166 Financial Instrument Pricing Using C++

14.4 GAUSS–SEIDEL METHOD

This method is similar to the Jacobi method except that the term Lx is evaluated at the
level k + 1:

x(k+1) = −Lx(k+1) − Ux(k) + D−1b (14.8)

In component form, Gauss–Seidel is:

x
(k+1)
j =

−
j−1∑
i=1

ajix
(k+1)
i −

n∑
i=j+1

ajix
(k)
i + bj

ajj

j = 1, . . . , n (14.9)

We can rewrite (14.9) to produce a more algorithmic depiction that is suitable for C++
development:

x
(k+1)
j = x

(k)
j + r

(k)
j

r
(k)
j =

−
j−1∑
i=1

ajix
(k+1)
i −

n∑
i=j+1

ajix
(k)
i + bj

ajj

j = 1, . . . , n (14.10)

STOP? ||r(k)
j || ≤ TOL

Notice that, in contrast to the Jacobi method, the Gauss–Seidel method uses the improved
values as soon as they are computed. This is reflected in equation (14.10).

14.5 SUCCESSIVE OVERRELAXATION (SOR)

By a simple modification of the Gauss–Seidel method it is often possible to make a
substantial improvement in the rate of convergence, by which we mean the speed with
which the sequence of approximations converges to the exact solution x of (14.2). To this
end, we modify (14.10) by introducing a so-called relaxation parameter ω as a coefficient
of the residual term:

x
(k+1)
j = x

(k)
j + ωr

(k)
j , j = 1, . . . , n (14.11)

For ω = 1 we get the Gauss–Seidel method as a special case. A major result is

SOR converges if 0 < ω < 2

Furthermore, it has also been shown by experiment that for a suitably chosen ω the
number of approximations needing to be computed may be reduced by a factor of 100
in some cases. Indeed for certain classes of matrices this optimal value is known. See
Dahlquist (1974) or Varga (1962) for more information.

14.6 OTHER METHODS

We discuss two methods that are related to the current discussion.

Matrix Iterative Methods 167

14.6.1 The conjugate gradient method

This is a direct method that is useful in practice. We assume that A is positive definite
having n rows and n columns. We start with an initial vector U0. Then for j = 1, 2, 3, . . . ,
n compute

r0 = F − AU0

p0 = r0

}
(14.12a)

For j = 1, . . . , n compute:

aj = ||rj ||22/(tpjApj)

Uj+1 = Uj + ajpj

rj+1 = rj − ajApj (14.12b)

bj = ||rj+1||22
||ri ||22

pj+1 = rj+1 + bjpj

Then Un will be the solution of the linear system AU = F if rounding errors are neglected.

14.6.2 Block SOR

We can generalise the SOR method to the case where the matrix A is partitioned into
sub-matrices

A = (Aij), Aii square, x = (Xi), b = (Bj) (14.13)

For example, A could be a block tridiagonal matrix (recall that we discussed this problem
in Chapter 8). We thus propose the following block SOR method (see Cryer, 1979):

R
(k)
i = Bi −

∑
j<i

AijX
(k+1)
j −

∑
j>i

AijX
(k)
j

AiiX
(k+1/2)

i = AiiX
(k)
i + R

(k)
i

X
(k+1)
i = X

(k)
i + ω(X

(k+1/2)

i − X
(k)
i)

(14.14)

A special case is when A is a block tridiagonal matrix. We can then combine LU decom-
position with the block SOR because the intermediate vector in (14.14) is a candidate for
LU decomposition.

14.6.3 Solving sparse systems of equations

When approximating multidimensional partial differential equations by finite difference
methods the resulting matrices are often sparse. An example is when we discretise the
Black–Scholes equation for an option based on the maximum of two assets. When the
matrix is sparse we can resort to sparse matrix solvers. There is a vast literature on this
subject and a full treatment is outside the scope of this book. For applications to financial

168 Financial Instrument Pricing Using C++

engineering, see Tavella and Randall (2000). It is possible to use both direct methods
and iterative methods to solve such systems although iterative methods are possibly more
popular. For an introduction to direct methods for sparse systems, see Duff et al. (1990). In
general, if you discretise a multidimensional problem directly in all directions, an iterative
solver is more flexible; on the other hand, if you use Alternating Direction Implicit (ADI)
or some other splitting method, a direct method is more flexible because we solve the
problem as a sequence of tridiagonal systems for which we use LU decomposition.

14.7 THE LINEAR COMPLEMENTARITY PROBLEM

We now give an introduction to solving problems as shown in (14.1). These are the
so-called Linear Complementarity Problem (LCP) methods and they arise in financial
engineering applications when we discretise Black–Scholes equations with an early
exercise option. For the moment, we present the Projected SOR algorithm (PSOR) that
solves (14.1) (see Wilmott et al., 1993):

1. Choose: x(0) ≥ c

2. y
(k+1)
j = 1

ajj

bj −

j−1∑
i=1

ajix
(k+1)
i −

n∑
i=j+1

ajix
(k)
i

x
(k+1)
j = max(cj , x

(k)
j + w(y

(k+1)
j − x

(k)
j))

3. Check: ||x(k+1) − x(k)|| ≤ TOL

The interface for the class that implements the PSOR method is:

template <class V, class I> class ProjectedSOR
{ // The Projected SOR method

private:
// Ingredient of problem, this is
//
// Ax >= b, x >= c
// (x - c).(Ax - b) == 0 (inner product)

NumericMatrix<V, I>* A; // The matrix
Vector<V, I>* b; // The right-hand side vector
Vector<V, I>* c; // The lower-bound on the solution

// Temporary work space
Vector<V, I> OldVec; // The solution at level k
Vector<V,I> NewVec; // The solution at level k+1
Vector<V,I> InterVec; // The intermediate vector

V tol; // Determines how many iterations

public:
// For you my friend

};

We leave it as an exercise to write the code for this class. It is a simple extension of the
code for the Gauss–Seidel method.

Matrix Iterative Methods 169

14.8 IMPLEMENTATION

The header file for the iterative scheme is:

enum MatrixIterativeType {Jacobi, GaussSeidel};

template <class V, class I>
class MatrixIterativeSolver

{
private:

// Input to class
NumericMatrix<V, I>* A; // The matrix to be inverted
Vector<V, I>* b; // The right-hand side vector
V tol; // Tolerance for convergence
MatrixIterativeType itype;
MatrixIterativeSolver();
MatrixIterativeSolver (const MatrixIterativeSolver<V,I>& s2);
MatrixIterativeSolver<V,I>& operator =

(const MatrixIterativeSolver<V,I>& i2);

// Temporary work space
Vector<V, I> OldVec; // The solution at level k
Vector<V,I> NewVec; // The solution at level k+1

// Nitty-gritty functions
void calcJacobi();
void calcGaussSeidel();

public:
// Constructors and destructor
MatrixIterativeSolver(NumericMatrix<V,I>& MyA,

Vector<V,I>& myRHS);
virtual ~MatrixIterativeSolver();
void setTolerance(const V& tolerance);
void setIterationType(MatrixIterativeType type);
// Result; note that this vector INCLUDES BOTH end conditions
Vector<V,I> solve();

};

The essential code for Jacobi and Gauss–Seidel is:

template <class V, class I>
void MatrixIterativeSolver<V,I>::calcJacobi()
{

V tmp;
for (I j = (*A).MinRowIndex(); j <= (*A).MaxRowIndex(); j++)
{
tmp = V(0.0);
for (I i = (*A).MinColumnIndex();
i <= (*A).MaxColumnIndex(); i++)

{
if (i != j)
{

tmp += (*A)(j,i) * OldVec[i];
}

}
NewVec[j] = (-tmp + (*b)[j]) / (*A)(j, j);

}

170 Financial Instrument Pricing Using C++

}
template <class V, class I>
void MatrixIterativeSolver<V,I>::calcGaussSeidel()
{
V tmp1, tmp2;

for (I j = (*A).MinRowIndex(); j <= (*A).MaxRowIndex(); j++)
{

tmp1 = tmp2 = V(0.0);
for (I i = (*A).MinColumnIndex(); i <= j-1; i++)
{
tmp1 += (*A)(j,i) * NewVec[i];

}

for (i = j+1; i <= (*A).MaxColumnIndex(); i++)
{
tmp2 += (*A)(j,i) * OldVec[i];

}

NewVec[j] = (-tmp1 -tmp2 + (*b)[j]) / (*A)(j, j);
}

}

The reader can check the above code with the algorithms in (14.7) and (14.9). We have
done our best to make the relationship as clear as possible.

Sample code is to be found on the CD. Here is a snippet:

// A matrix corresponding to boundary value problem u" + u = 0, u(0) = 0,
u(1) = 1
J = 10;
double h = 1.0 / double(J);
Vector<double, int> A(J-1, 2, 1.0); // J-1 els, start == 2
Vector<double, int> B(J, 1, -2.0 + (h*h));
Vector<double, int> C(J-1, 1, 1.0);

Vector<double, int> R(J, 1, 0.0); // Right-hand side
R[R.MaxIndex()] = -1.0;

NumericMatrix<double, int> A3 = createMatrix(A,B,C);
print(A3);

MatrixIterativeSolver<double, int> secondSolver(A3, R);
secondSolver.setTolerance(0.0001);
secondSolver.setIterationType(Jacobi);

Vector<double, int> Result4 = secondSolver.solve();
cout << "\nSolution" << endl; print(Result4);

Vector<double, int> exact(Result4);
double d = ::sin(1.0);
double x = h;
for (int i = exact.MinIndex(); i <= exact.MaxIndex(); i++)
{

exact[i] = ::sin(x) / d;
x += h;

}
print(exact);

Matrix Iterative Methods 171

The output from this program is:

MAT:[
Row 1 (-1.99, 1, 0, 0, 0, 0, 0, 0, 0, 0,)
Row 2 (1, -1.99, 1, 0, 0, 0, 0, 0, 0, 0,)
Row 3 (0, 1, -1.99, 1, 0, 0, 0, 0, 0, 0,)
Row 4 (0, 0, 1, -1.99, 1, 0, 0, 0, 0, 0,)
Row 5 (0, 0, 0, 1, -1.99, 1, 0, 0, 0, 0,)
Row 6 (0, 0, 0, 0, 1, -1.99, 1, 0, 0, 0,)
Row 7 (0, 0, 0, 0, 0, 1, -1.99, 1, 0, 0,)
Row 8 (0, 0, 0, 0, 0, 0, 1, -1.99, 1, 0,)
Row 9 (0, 0, 0, 0, 0, 0, 0, 1, -1.99, 1,)
Row 10 (0, 0, 0, 0, 0, 0, 0, 0, 1, -1.99,)]

Solution
[Vector: size 10, Min/Max indices: 1, 10
0.111809,0.222533,0.331031,0.436305,0.537217,0.63287,0.722194,0.8044,
0.878562, 0.944001,]

[Vector: size 10, Min/Max indices: 1, 10
0.118642,0.236098]

14.9 CONCLUSIONS AND SUMMARY

We have given an introduction to iterative methods for solving linear systems of equations.
We looked at the Jacobi, Gauss–Seidel and Successive Overrelaxation (SOR) methods.
All of these methods start with an initial guess to the solution of the matrix problem and a
sequence of improved estimates is calculated that hopefully converge to the exact solution.
An important point is the speed or rate of convergence and to this end it is possible to
choose an optimal overrelaxation parameter that improves the convergence rate.

Having built up the theory of iterative methods we then introduce the Linear Com-
plementarity Problem (LCP). This has to do with matrix inequalities and we discuss the
Projected SOR method to solve this problem. LCP solvers are needed when we discretise
the Black–Scholes equation by finite differences and they are needed primarily because
of the early exercise feature of American options.

Part IV
Programming the Black–Scholes

Environment

15

An Overview of Computational Finance

15.1 INTRODUCTION AND OBJECTIVES

In Part IV we build on chapters from Part III by extending the finite difference method for
ordinary differential equations to partial differential equations. We pay particular attention
to the one-factor and two-factor Black–Scholes equations.

In this chapter we give an overview of the models and techniques that are needed in
order to produce C++ code for instrument pricing. We take a holistic view and sketch the
instrument life cycle from the moment that a financial engineer conceives a new derivative
product to when a software product is up and running on his or her workstation. Thus,
the core process is to create the appropriate C++ code for the problem at hand. We realise
this by a number of major activities that we will describe in more detail in section 15.2.

This chapter gives an overview of the major concepts pertaining to the numerical
approximation of partial differential equations (PDEs) (in particular, the one-factor and
two-factor Black–Scholes equation). In this book we use the finite difference method
(FDM) to approximate the solution of partial differential equations. In general, exact
solutions of PDEs cannot be found or are too unwieldy to be of use in practice. The
topics in this chapter are for the benefit of those readers who do not necessarily have
an applied mathematics or numerical analysis or physics background. We are thinking
of economists, statisticians and other financial engineers for whom the theory of partial
differential equations and numerical analysis is new. We are thinking of quantitative
engineers who have a background in statistic, econometrics and those who use Monte
Carlo methods for option pricing. For the benefit of this latter group of readers we
have included a number of references on the theory of partial differential equations and
numerical analysis in order to provide some guidelines.

15.2 THE DEVELOPMENT LIFE CYCLE

The core process in this book is to produce C++ classes and code that model the behaviour
of financial instruments in general and options in particular. Thus, the input is a specifi-
cation of a financial model while the output is C++ code that implements the model and
satisfies customer requirements. To this end, we identify three major activities:

A1: Create a PDE based on the financial model
A2: Approximate the PDE by FDM
A3: Map the FDM to C++ code.

Each activity has clearly defined input and output and this improves maintainability. In
software terms we say that each activity is a black box that delivers value to the next
activity in the supply chain, but other activities do not know about its internal struc-
ture or how it actually performed its duties. This is another example of the Information
Hiding principle. Its application will have major maintainability advantages during the
C++ development phase. The UML activity diagram for the current process is shown in

176 Financial Instrument Pricing Using C++

Input
Displayed results

Create PDE Create FDM Present

PDE model FDM model

Figure 15.1 Development life cycle

Figure 15.1. Each oval represents an activity while each rectangular box is a data struc-
ture. Each data structure is unambiguously defined and its composition can be described
using an UML class diagram.

We mention that Figure 15.1 can be modified to work with other kinds of numerical
schemes, for example the finite element method (FEM). In this case the second activity
in Figure 15.1 should be replaced by a finite element solver.

15.3 PARTIAL DIFFERENTIAL EQUATIONS

PDEs have been around for about 200 years now and a vast literature has been written
on the subject. They have been applied in the past (and at present) to model many natural
phenomena such as fluid and heat flow, magnetohydrodynamics, stresses in buildings,
semiconductor devices and many more (see Morton, 1996). Many pure and applied math-
ematicians have studied these equations in great detail and much is known about how
to formulate them and prove existence and uniqueness theorems for them. Furthermore,
engineers, scientists and numerical analysts have developed numerical schemes that solve
the equations of PDEs numerically on digital computers.

All kinds of PDEs are available, but our interest in this book is in a particular class of
PDE that models options. Before we discuss this class it is useful to determine the different
ways of viewing PDEs; in other words, we wish to determine the essential dimensions of
all PDEs:

• Time-dependent or time-independent
• The number of space dimensions in the PDE (one, two, three, . . .)
• Scalar equation or systems of equations
• PDE type (parabolic, elliptic, hyperbolic)
• Boundary value problem or initial value problem
• Type of boundary (Dirichlet, Neumann, Robins, radiation type)
• Linear or non-linear equations.

An Overview of Computational Finance 177

It is not possible to discuss all of these dimensions in this book but we shall certainly
discuss them in the chapters in Part IV when they have relevance to PDEs for financial
engineering.

The classification of PDEs into elliptic, parabolic and hyperbolic types is standard.
Each of these classes has special subclasses and specific examples. It is also useful to
study special cases in great detail in order to gain insights in solving more complicated
equations in the same class. Our main interest is in parabolic equations and we devise
several finite difference schemes to approximate their solution. Finite difference schemes
for hyperbolic, elliptic or mixed problems is outside the scope of this book, although we
shall give some mention of schemes for first-order hyperbolic equations because these
can be seen as the limiting case of the Black–Scholes equation when the volatility term
in that equation approaches zero.

Some classes of options and derivatives can be modelled by partial integral differential
equations (PIDEs). These are equations in which an integral term containing the unknown
solution is appended to a parabolic differential equation (see Tavella and Randall, 2000,
for an example of a PIDE).

15.4 NUMERICAL APPROXIMATION OF PDEs

In general it is not possible or even desirable to attempt to find the exact solution of
parabolic initial boundary value problems (IBVP). We then resort to some numerical
techniques. In general, the continuous space of (x, t) values must be replaced by a dis-
crete space represented by a finite set of points in (x, t) space. Furthermore, derivatives,
function values, boundary and initial conditions also need to be approximated in some
way. In general, we need to address the following issues:

• Choosing a suitable discretisation of (x, t) space
• Approximating derivatives and coefficients appearing in the IBVP
• Approximating the boundary conditions
• Approximating the initial condition.

Once these activities have been executed we shall be able to construct the approximate
solution at the discrete mesh points. These values are rolled into a linear system of
equations and we then solve this system using some kind of direct or iterative matrix
solver (recall that we discussed these issues in Chapters 8 and 14).

There are very many ways to approximate IBVPs. We shall give a list of the major
contenders and a brief description of each one.

Finite element method

This is a well-established theory in engineering. FEM is ideally suited to calculating
stresses in buildings and other static problems. It has been applied to PDE (in particular,
parabolic equations) and is a powerful tool for problems with irregular boundaries and/or
discontinuous coefficients.

In general, the FEM process takes place in two steps. First, the space direction is
discretised by using polynomials with compact support. This results in a first-order system
of ordinary differential equations that are then solved by one of the integration techniques
that we introduced in Chapter 11.

178 Financial Instrument Pricing Using C++

Be warned: Finite element theory demands a certain amount of mathematical sophis-
tications and, furthermore, the author is not convinced that this method is suitable for
financial engineering. It may be overkill.

Spectral and pseudo-spectral methods

These are similar to FEM except that we seek an approximate solution as a sum of
trigonometric polynomials. These methods are only suitable for well-behaved problems
with no discontinuous coefficients. I doubt if the methods are general and robust enough
for real-life and nasty initial boundary value problems.

Finite difference method

In this case we replace derivatives in x and t by divided differences at discrete mesh
points. We then obtain a linear system of equations that we solve with a matrix solver.
The chapters in Part IV expand on that work to show how to apply finite differences to
time-dependent problems.

Finite volume method

This method has its roots in fluid dynamics and conversation laws. In contrast to FDM
where we work with values of discrete functions at mesh points, we use the finite volume
method to integrate over some so-called volume to compute a discrete value. The finite
volume method is similar to FDM and gives the same discrete set of equations in the one-
dimensional case. However, some schemes lead to non-linear systems of equations and
this complicates computations because we need to solve the system of equations by New-
ton’s method, for example. On the other hand, the finite volume method in two dimensions
(using triangles and quadrilaterals as volumes) is easier to apply than conventional FDM.
For an introduction to the finite volume method, see Morton (1996).

Binomial and trinomial trees

These methods have their place in the financial engineering Hall of Fame. They are well
understood in the financial community. However, they do have their limitations:

• They do not always converge and oscillation solutions appear.
• They have difficulty with certain kinds of exotic options (barriers).
• There are many different implements of the methods, thus making standardisation

more difficult.
• They may be difficult for IT people to understand because they are very close to the

financial problem domain.

The author has programmed the binomial and trinomial methods for certain kinds of plain
options. We prefer using FDM because it is more general, performs better and is more
maintainable than binomial or trinomial methods.

Meshless method

The meshless method (Babushka et al., 2002) is a competitor to FDM and FEM because
it finds approximate solutions to a PDE, not by using structured meshes (as with FDM)

An Overview of Computational Finance 179

and unstructured meshes (in FEM) but instead it is based on satisfying the PDE at certain
points. The meshless method is not so well known but it may prove popular in the future,
especially for problems in two and three dimensions and for complicated geometries.

15.5 THE CLASS OF FINITE DIFFERENCE SCHEMES

We now discuss some of the schemes that we use in this book. Let us consider the case
of one space variable x and one time variable t for convenience. When working with
FDM, we can discretise IBVPs in two different ways:

• As a first iteration, discretise in the x direction only
• Discretise in x and t simultaneously.

The first approach is called the method of lines (MOL) and it produces a system of ODEs
that can then be solved by the methods in Chapter 11. The second approach is to discretise
in both x and t to get a system of equations at time level n + 1 as a function of known
quantities at time level n. In both cases we distinguish between explicit and implicit time
differencing. With an explicit method the value at level n + 1 is calculated in terms of
the value at level n without any extra matrix inversion, while with an implicit method the
solution at level n + 1 is calculated from the known values at level n by solving a linear
system of equations.

15.6 SPECIAL SCHEMES FOR SPECIAL PROBLEMS

They say that the devil is in the details. When applying FDM to financial engineering
problems things never go as in the numerical cookbooks. Numerical analysis is as much
an art as a science and each problem must be examined on its own merits. There is no
golden rule or silver bullet.

We shall discuss the following kinds of partial differential equations in this book:

• The one-dimensional and two-dimensional heat equation
• The one-factor Black–Scholes equation
• The two-factor Black–Scholes equation.

Of course, we shall introduce a scale of finite difference schemes that are in fact gener-
alisations of the schemes in Chapter 11:

• Centred-differencing in the space direction
• Explicit and implicit Euler schemes
• Crank–Nicolson
• Exponentially fitted schemes (Il’in, 1969; Duffy, 1980).

These schemes work well in ‘normal’ circumstances. However, the parameters of the
PDE may be defined in such a way that the traditional methods break down and hence
the well-known finite difference recipes leave us high and dry. Some of the problems that
we encounter in practice are:

• Discontinuous initial conditions (e.g. with binary options)
• Discontinuous boundary conditions (e.g. with barrier options)

180 Financial Instrument Pricing Using C++

• Problems with small volatility, large drift (or both)
• Possible schemes for approximating the Greeks (delta, gamma).

In particular, we discuss at a fundamental level in Chapter 18 why recipe-type schemes
do not work. There is a lot of confusion in the literature and some articles tend to ‘fudge’
in order to improve the accuracy. There is hope: robust algorithms do exist and have been
known to engineers and numerical analysts for about 40 years. To this end, we discuss
some special and robust schemes:

• Extrapolated Euler (implicit Euler on two consecutive meshes)
• The exponentially fitted scheme for the convection-diffusion equation (Duffy, 1980)
• The Keller Box scheme (Keller, 1971).

15.7 IMPLEMENTATION ISSUES AND THE CHOICE
OF PROGRAMMING LANGUAGE

This book is about C++. We could have chosen another language but we did not. In
general, one should choose the language that is most appropriate to the problem at hand.
If you prefer Java or C#, then that’s fine. However, C++ is an ISO standard and we expect
it to be around in 20 years’ time, just as its ancestor C is still alive and kicking at the
moment or writing!

15.8 ORIGINS AND APPLICATION AREAS
The world’s most famous mathematicians, engineers and scientists have been working
with partial differential equations for at least 200 years. In fact, we could probably state
without contradiction that Isaac Newton laid the foundation for all the results with the
introduction of his laws of motion, and the world owes a debt of gratitude to him as well
as to others such as Gauss, Fourier, Laplace and somewhat more recently Courant and
John von Neumann, to mention just a few.

Many physical and natural phenomena can be modelled by parabolic partial differential
equations that are then approximated numerically. We give a short summary of some
major application areas where such equations (and in particular, the convection–diffusion
equation) are everyday occurrences (see Morton, 1996, for further information on these
equations and how to approximate them using finite element methods):

• Pollutant dispersion in a river estuary
• Velocity transport in the incompressible Navier–Stokes equation
• Atmospheric pollution
• Fokker–Plank equation
• Semiconductor equations
• Groundwater transport
• Stefan problem
• Turbulence transport
• Viscous incompressible flow past an aerofoil.

In general, partial differential equations for financial engineering applications tend to be
simpler to solve than some of the above problems. A classic on the finite difference
method is Richtmyer and Morton (1967). It is somewhat dated but well worth reading.

An Overview of Computational Finance 181

15.9 CONCLUSIONS AND SUMMARY

This chapter was an overview of Part IV of this book in which the chapters are concerned
with modelling partial differential equations (aka Black–Scholes) that originate in finan-
cial engineering by the finite difference method. We give an introduction to parabolic
initial boundary value problems and how to approximate them. Furthermore, we comple-
ment traditional finite difference methods by special schemes that are suited to difficult
problems in option modelling.

16
Finite Difference Schemes

for Black–Scholes

16.1 INTRODUCTION AND OBJECTIVES
In this chapter we introduce a class of finite difference equations for a number of model
parabolic partial differential equations. We extend the finite difference schemes that we
developed for the time-independent two-point boundary value problems in Part III (in
particular Chapter 13). We shall use centred divided differences to approximate the first
and second derivatives in the space direction. Furthermore, we shall discretise the time
dimension in the heat and Black–Scholes equations using the finite difference meth-
ods that we introduced in Chapter 11; for example, explicit and implicit Euler and
Crank–Nicolson. In short, the problem reduces to one of putting the pieces together:
the big challenge is to formulate the fully discrete problem (that is, both space and time
are discretised) and devise suitable algorithms for this problem that we subsequently
implement in C++.

We build up the knowledge in this chapter as follows. First, we give our first example
of explicit finite difference schemes by looking at the one-dimensional heat equation with
Dirichlet boundary conditions. We discuss how to calculate the solution at time level n + 1
in terms of the solution at time level n. We then progress to the Black–Scholes equation
(which is essentially a heat equation with an appended convection term) and we devise
explicit finite difference schemes for it. Of course, we know that the Black–Scholes
equation can be transformed to the heat equation by a change of variables (see, for
example, Wilmott, 1998).

For those readers who are familiar with the binomial and trinomial methods for pric-
ing options we include a section to show how the trinomial method can be viewed as
a special case of an explicit finite difference scheme. Hopefully, this section will show
that finite difference schemes are not much more difficult to understand than the lat-
tice methods with which the reader is already accustomed. They are also more stable
and reliable than lattice methods. We take a close look at initial conditions for the heat
and Black–Scholes equations. In particular, we examine the problems that arise when
the initial condition is smooth but has a discontinuity in the first derivative or even
where the initial condition itself is discontinuous at a finite number of points. The rela-
tionship with payoff functions in option pricing theory is explored because it is here
that some traditional finite difference schemes show signs of spurious oscillations. We
give some examples of the different kinds of payoff functions for a number of exotic
option types.

16.2 MODEL PROBLEM: THE ONE-DIMENSIONAL HEAT
EQUATION

The heat equation has its roots in physics and is probably the best-known partial differ-
ential equation in the whole of mathematics. Many famous people have studied it from
a number of perspectives. It is the prototypical example of a diffusion equation. Our

Finite Difference Schemes for Black–Scholes 183

interest in the heat equation is that we use it as a springboard for more complicated
convection–diffusion equations, among others the Black–Scholes equation.

In order to motivate the heat equation, think of a one-dimensional metal rod of length
L that is being heated in some way. For example, a gas jet may be placed at the middle of
the rod at time t = 0. We must take account of the ends of the rod. For example, the rod
may be insulated or heat may be entering or leaving the rod by means of conduction or
radiation. The basic differential equation with Dirichlet boundary conditions is given by

∂U

∂T
= K

∂2U

∂X2
, K = constant

U(X = 0) = U(X = L) = 0 (insulated)

U(T = 0) = U0 (initial condition)

(16.1)

In this case we assume that the rod is insulated (this is why the temperature U is zero at
the ends). By using the change of variables

t = KT/L2, x = X/L, u = U/U0 (16.2)

we can then transform equation (16.1) to the non-dimensional form

∂u

∂t
= ∂2u

∂x2

u(x = 0) = u(x = 1) = 0 (16.3)

u(t = 0) = 1

Problem (16.3) is called an initial boundary value problem on the continuous region
(0, 1) × (0, T). In order to approximate the solution of (16.3) by finite differences we
must break the space up into discrete meshes, as shown in Figure 16.1. We define so-
called mesh points where the solution of the finite difference scheme is defined. Note that
the approximate solution is not a priori defined in the area between the mesh points, and
some kind of interpolation is used if a value is needed between two mesh points (this is
in contrast to other methods, such as the finite element method, where the approximate
solution is in principle defined throughout the whole region of interest).

In general, we use one-step methods in the time direction for the heat equation. This
can be seen from Figure 16.1, where the dotted mesh points represent known values at
time level n (there are three of them) and the crossed mesh points (in this case there
is just one of them) represent points where the solution is unknown and hence must be
calculated there. To this end, we extend the results from Chapters 11 and 13 to propose
the following explicit difference scheme for the heat equation:

un+1
j − un

j

k
= un

j+1 − 2un
j + un

j−1

h2

un+1
j = un

j + r(un
j+1 − 2un

j + un
j−1)

= run
j−1 + (1 − 2r)un

j + run
j+1 (r ≡ k/h2)

(16.4)

where h is the step size in the x direction and k is the step size in the t direction.

184 Financial Instrument Pricing Using C++

X
n + 1

u = 0

u = f (x)

u = 0

j − 1 j

t

j +1

n

Figure 16.1 Explicit method (1/2)

In this case we see that all values on the right-hand side of (16.4) are known (eval-
uated at time level n) while the unknown value on the left-hand side of (16.4) can be
directly calculated. There is no need to solve a linear system of equations. Sounds great!
Unfortunately, there is no free lunch in the land of finite differences and the bad news is
that scheme (16.4) is stable (and convergent) only under the condition:

Valid scheme if (1 − 2r) ≥ 0 ⇐⇒ r ≤ 1
2 (16.5)

We now introduce the fully implicit finite difference scheme for the heat equation. In this
case there are three unknown values at time level n + 1 and one known value at time
level n, as can be seen in Figure 16.2. The corresponding scheme is a generalisation of
the results in Chapter 11:

un+1
j − un

j

k
= un+1

j+1 − 2un+1
j + un+1

j−1

h2

αun+1
j−1 + βun+1

j + γun+1
j+1 = un

j

α = −r < 0

β = 1 + 2r > 0

γ = −r < 0

Un = t (u1, . . . , uj−1)

(16.6)

Of course, this problem is more difficult to solve than the explicit scheme (16.4) because
we now have to solve a tridiagonal matrix system:

Finite Difference Schemes for Black–Scholes 185

X n + 1

j − 1 j j +1

n

XX

Figure 16.2 Fully implicit method

AUn+1 = Un

A =

β γ

α
. . .

. . . 0

0
. . .

. . . γ

α β

(16.7)

Of course, we can use the matrix techniques from Chapter 8 (for example, LU decom-
position) to solve this system of equations at each time level.

Another implicit scheme for approximating the heat equation is the famous
Crank–Nicolson method and it can be motivated by averaging the explicit and implicit
schemes in equations (16.4) and (16.6) to give:

u
n,1/2
j ≡ 1

2 (un+1
j + un

j)

un+1
j − un

j

k
= u

n,1/2
j+1 − 2u

n,1/2
j + u

n,1/2
j−1

h2

(16.8)

−run+1
j−1 + (2 + 2r)un+1

j − run+1
j+1 = run

j−1 + (2 − 2r)un
j + run

j+1

AUn+1 = F n Matrix form

This scheme can also be written as a matrix system in much the same way as in
equation (16.7). This scheme corresponds to the mesh, as depicted in Figure 16.3.

It is possible to combine the explicit, implicit and Crank–Nicolson schemes into a
single theta scheme, as it is called. We introduce a new variable in the range 0 to 1; the
resulting scheme is:

un+1
j − un

j

k
= u

n,θ
j+1 − 2u

n,θ
j + u

n,θ
j−1

h2

u
n,θ
j ≡ θun+1

j + (1 − θ)un
j , θ ∈ [0, 1]

θ = 0 Explicit Euler

θ = 1 Fully implicit (backward)

θ = 1
2 (Crank-Nicolson CN)

(16.9)

186 Financial Instrument Pricing Using C++

X XX n + 1

j − 1 j j +1

n

Figure 16.3 Crank–Nicolson scheme (1947)

16.3 THE BLACK–SCHOLES EQUATION

The one-factor Black–Scholes equation is similar to the heat equation but includes an
extra convection term. Recall the famous equation once again:

−∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (16.10)

The explicit scheme is built on similar lines to the explicit scheme for the heat question:

− V n+1
j − V n

j

k
+ 1

2
σ 2 S2

j

(
V n

j+1 − 2V n
j + V n

j−1

h2

)

+ r Sj

(
V n

j+1 − V n
j−1

2h

)
− r V n

j = 0

V n+1
j = αj V n

j−1 + βj V n
j + γj V n

j+1

(16.11)

where the coefficients are given by

α, β, γ : interpret as probabilities

αj = kσ 2S2
j

2h2
− rkSj

2h
= kσ 2(jh)2

2h2
− rk(jh)

2h
= kσ 2j 2

2
− rkj

2

βj = 1 − 2kσ 2(jh)2

2h2
− rk = 1 − σ 2j 2k − rk (16.12)

γj = kσ 2j 2

2
+ rkj

2

It is possible to get incorrect answers (negative values, for example) if the time step k

is chosen inappropriately. To motivate what we mean we note that the scheme (16.12)
is in fact equivalent to the trinomial method, as can be verified by examining how the
meshes compare, as in Figure 16.4. Furthermore, the coefficients in (16.12) correspond
to positive probabilities in the trinomial method:

α: the probability that the stock price decreases
β: the probability that the stock price remains the same
γ : the probability that the stock price increases.

Of course, these values should be positive if we are to retain any physical or financial
meaning in the numerical results. We say that the explicit scheme is conditionally stable.

Finite Difference Schemes for Black–Scholes 187

S

t

t

S

Trinomial method Finite difference method

Figure 16.4 Comparing meshes

This means that there are restrictions on k and h and there is some kind of inequality
between them that must be satisfied at all times if we wish to have a good approximation.
The bad news is that the relationship is of the form: the time step must be of the order of
the square of the space step as shown in inequality (16.5) in the case of the heat equation
(see Thomas, 1998, p. 104).

We shall see in Chapter 18 how to create uniformly stable schemes for the
Black–Scholes equation where this constraint does not need to be satisfied.

16.4 INITIAL CONDITIONS AND EXOTIC OPTIONS PAYOFFS
It can be proved mathematically that finite difference schemes for a problem in which
the initial function and its derivatives are continuous is very close to the solution of the
corresponding partial differential equation. It can be shown (see Richtmyer and Morton,
1967) for a certain class of finite difference scheme that if the initial function and its first
(p − 1) derivatives are continuous and the pth derivative is normal discontinuous, then
the difference between the solution of the partial differential equation and a convergent
solution of the difference equation is of the order

p + 2

p + 4

k

for small k (note that k is the time step). Thus, for example p = 1 for functions whose
first derivative is discontinuous and the expected error is

3/5

k

It can also be proved analytically that if boundary conditions are constant the effect of
discontinuities in initial values and initial derivatives upon the solution of a parabolic
differential equation decreases as the time t increases. This observation has been borne
out by experiment.

Another problem that we can encounter is when there is a compatibility problem
between the initial and boundary conditions for the heat equation. To this end, let us

188 Financial Instrument Pricing Using C++

look at the following model problem:

∂u

∂t
= ∂2u

∂x2
, 0 < x < 1

u(x, 0) = sin πx, 0 < x < 1

u(0, t) = u(1, t) = 0, t > 0

Here see that the initial function and its derivatives are continuous and that the boundary
conditions at (0, 0) and (1, 0) remain equal to the initial values at these points. On the
other hand, consider the problem

u(x, t) = (e−π2t) sin πx

∂u

∂t
= ∂2u

∂x2
, 0 < x < 1, t > 0

u(x, 0) = 1, 0 < x < 1

u(0, t) = u(1, t) = 0, t > 0

whose exact solution is given by

u = 4

π

∞∑
n=0

1

2(n + 1)
e−(2n+1)2π2t sin(2n + 1)πx

In this case we have problems with the solutions at the point (0, 0) because the limiting
value of the initial value is unity as x tends to zero. However, the boundary condition
at x = 0 states that the value of u is zero! We thus have a discontinuity at (0, 0) and its
value could equally well have been chosen as 1 or 0.5 instead of 0. The finite difference
scheme is thus poor near x = 0 for small values of t . It can be shown experimentally
however that the accuracy of the finite difference solution improves as t increases. This is
characteristic of parabolic equations (in contrast to hyperbolic equations where errors are
propagated undiminished). Explicit finite difference schemes are bad in this case while the
fully implicit method does not suffer this problem because it does not get its information
exclusively from the first row and first column of the finite difference mesh.

It is not possible to compute an accurate solution at a point of discontinuity. The situ-
ation can be improved by removing the discontinuity by means of a change of variables.
For example, we can change (x, t) to (X, T) where

X = x√
t

T = √
t

We now discuss initial conditions for exotic options. These are in fact payoff functions.

16.4.1 Payoff functions in options modelling

We give an overview of the role of payoff functions in option theory. These are in fact the
terminal condition of the option price in the Black–Scholes equation. In general, they are
continuous but their first derivative is usually discontinuous. We see a loss in accuracy at the
points in the S dimension where the first derivative of the payoff function is discontinuous. In
fact, this is where we experience the famous spurious oscillation problem. The oscillations

Finite Difference Schemes for Black–Scholes 189

are not so pronounced in the solution itself but they become evident when we calculate
the delta and gamma functions. The Crank–Nicolson method, for example, exhibits these
problems, which makes it unsuitable as a universal robust method. We discuss improved
schemes for approximating the delta and gamma functions in Chapter 18.

The payoff functions for exotic options are more complicated than the payoff for plain
European call options:

C = max(S − K, 0)

Notice that the derivative of this function is zero if S ≤ K and 1 if S > K , thus making
the latter function discontinuous.

A binary (digital) option is one whose payment is determined by whether the underlying
is above the strike price. The amount paid is independent of the difference:

C = 1 if S > K, C = 0 if S ≤ K

An asset-or-nothing option has the following payout: if the stock ends above the strike,
the owner of the option gets this stock. If the stock ends under the strike the options ends
out of the money:

C = S if S > K, C = 0 if S ≤ K

We note that this is a discontinuous function in general.
A super-share option is a combination of a long position in an asset-or-nothing at strike

K1 and a short position in an asset-or-nothing struck at K2. In fact, the holder receives
the stock if the option ends in the open range (K1, K2):

C = S if S is in range (K1, K2)

C = 0 if S is outside the range (K1, K2)

The step structure is a long position in a binary option struck at K1 combined with a
short position in a binary option stuck at K2:

C = (K1 + K2)/2 if S is in range (K1, K2)

C = 0 if S is outside the range (K1, K2)

The contingent premium option is composed of a long position in a call option and a
short position in a binary option with the same strike price.

A shout option allows a client a single opportunity to fix the price of the option at
some time before expiry. Let this time be called H . Then the payoff function is:

C = max (S(T) − K,S(H) − K)

With a shout option the client has to actually call the dealer in order to trigger the option.
The act of triggering is called shouting.

Options with two or more underlyings can also have payoff functions whose derivatives
are discontinuous. A discussion of these cases is, however, outside the scope of this book.

Figure 16.5 is a pictorial representation of some payoff functions.

190 Financial Instrument Pricing Using C++

Binary option

K

1

0

Step structure

K1 K2

Supershare option

K1 K2

Asset or nothing

K

Contingent premium option

K

Figure 16.5 Payoff functions

16.5 IMPLEMENTATION

Explicit finite difference schemes are easy to program but, on the other hand, we shall
not devote much attention to them because of their inherent lack of stability. Thus, our
code on the CD for these schemes has not been designed with reusability or flexibility
in mind. In later chapters we shall see how implicit difference methods are implemented
and why they are better than explicit methods.

16.6 METHOD OF LINES: A WHIRLWIND INTRODUCTION

Many articles on finite difference methods in the financial literature discretise the Black–
Scholes equation in the S and t variables simultaneously. This is fine, but there is another

Finite Difference Schemes for Black–Scholes 191

way, namely discretising in the S direction only and keeping t fixed. This process is
called semi-discretisation and is quite common in the finite element method (see Strang
and Fix, 1973). Let us again take the heat equation in (16.3). Using centred differencing
in the space direction gives the following ODE system

duj

dt
= uj+1 − 2uj + uj−1

h2
, j = 1, . . . , J − 1

uj = uj (t) (discrete in x, continuous in t)

(16.13)

and its equivalent matrix form

dU

dt
= AU(t), U(0) = U0

A = 1

h2

−2 1

1
. . .

. . . 0

0
. . .

. . . 1
1 −2

(16.14)

The advantages of the method of lines (MOL) are:

• It is easier to understand than the fully discrete scheme.
• The ODE system can be solved by standard schemes such as Runge–Kutta,

Crank–Nicolson, Predictor–Corrector and so on.
• Separation of concerns: look at the discretisation of space and then discretisation

in time.
• MOL can be applied to non-linear systems.
• There are many robust ODE solvers in the marketplace.

The MOL does not seem to be popular in the financial engineering literature as most
authors tend to develop finite difference schemes by simultaneous discretisation in space
and time.

16.7 CONCLUSIONS AND SUMMARY
We have introduced some simple finite difference schemes for the one-dimensional heat
equation that serves as a baseline example for the Black–Scholes equation. In fact, the
one-factor Black–Scholes equation can be transformed to a heat equation by a clever
change of variables (see Wilmott, 1993). We focused on explicit schemes in this chapter
because they are easy to understand (especially if you have studied Chapters 11 and 13)
and to program. Explicit schemes do have their shortcomings because the time step k

must be of the order of the square of h (the mesh size in the space direction). However,
you could use an explicit scheme to test some new model by letting it run all night or in
a low-priority background process. In other words, explicit methods might be useful for
Proof-of-Concept (POC) tests and prototypes.

We have taken a critical look at initial and payoff functions for the Black–Scholes
equation and in particular we discussed how and why oscillation problems occur when
the input function is not very smooth (as is nearly always the case with exotic options). We
have given examples of a number of payoff functions for some major exotic option types.

17
Implicit Finite Difference Schemes

for Black–Scholes

17.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a number of finite difference schemes that are used to approx-
imate the solution of the Black–Scholes equation. We concentrate on implicit schemes
where the solution of the finite difference equation at time level n + 1 is calculated from
the solution at time level n by solving a system of linear questions. Since we are using
three-point difference schemes for one-factor models, the matrix appearing in the sys-
tem is tridiagonal. In this case we can apply either the Double Sweep method or LU
decomposition (discussed in Chapter 8) for the solution at each time level:

An+1Un+1 = F n

U 0 given

An =

bn
1 cn

1

an
2

. . .
. . . 0

. . .
. . .

. . .
cn
J−1

0
. . .

. . .

an
J bn

J

(17.1)

This system of equations is generic and we shall discuss two particularly important implicit
schemes that lead to such matrix systems:

• The Euler, fully implicit method
• The centred difference (or Crank–Nicolson) method.

The difference between these methods lies is how they calculate values at time level
n+1 in terms of the solution at level n. Both the fully implicit and Crank–Nicolson
methods use centred divided differences to approximate the first and second derivatives
of the option price with respect to S while they employ one-step differencing in time t .
To this end, the theory and methods that we developed in Chapter 11 (finite difference
schemes for initial value problems) will be of help in this chapter. Whereas Chapter 11
dealt with ordinary differential equations, the situation is a bit more complicated in this
chapter but the same techniques can be applied to the time variable in the Black–Scholes
equation.

Please note that we have cast the Black–Scholes equation as a PDE with initial condi-
tions rather than terminal conditions. Thus, the values of the solution are known at time
level n and we march to time level n + 1 in order to compute a solution. In the financial
literature, we march from a ‘terminal’ value at level n + 1 to the solution at level n.

Implicit Finite Difference Schemes for Black–Scholes 193

17.2 FULLY IMPLICIT METHOD
We start with the fully implicit method for the Black–Scholes partial differential equation:

−∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (17.2)

Of course, this equation must get auxiliary information, such as initial condition (pay-
off) and boundary conditions in order to have a unique solution and, furthermore, we
must decide how we are going to define numerical approximations to these auxiliary
conditions. For the moment, however, we just concentrate on equation (17.2) and its
approximation by finite differences. To this end, we discretise (S, t) space in the usual
way and approximate (17.2) by the fully implicit scheme

− V n+1
j − V n

j

k
+ rj�S

(
V n+1

j+1 − V n+1
j−1

2�S

)

+ 1

2
σ 2j 2�S2

(
V n+1

j+1 − 2V n+1
j + V n+1

j−1

�S2

)
= rV n+1

j

(17.3)

The stencil for this scheme is given in Figure 17.1 and we thus see that the scheme is
implicit:

an+1
j V n+1

j−1 + bn+1
j V n+1

j + cn+1
j V n+1

j+1 = F n+1
j (17.4)

where

an+1
j =

(
1

2
σ 2j 2k − krj

2

)

bn+1
j = −(1 + σ 2j 2k + rk)

cn+1
j =

(
1

2
σ 2j 2k + krj

2

)

F n+1
j = −V n

j

X X Xn + 1

n

j − 1 j j + 1

X unknown known

t

S

Figure 17.1 Stencil for fully implicit scheme

194 Financial Instrument Pricing Using C++

The fully implicit scheme has a number of desirable features. First, it is stable and there
is no restriction on the relative sizes of the time mesh size k and the space mesh size �S.
Furthermore, no spurious oscillations are to be seen in the solution (as is the case with
some other methods). A disadvantage is that it is only first-order accurate in k. On the
other hand, this can be rectified by using extrapolation, which results in a second-order
scheme. A discussion of how this is done is outside the scope of this book.

17.3 AN INTRODUCTION TO THE CRANK–NICOLSON
METHOD

The famous one! In this case we can view Crank–Nicolson (CN) as the averaged scheme
by adding the fully explicit and fully implicit schemes together. The stencil in Figure 17.2
attempts to motivate the relationship.

We define the quantity

V
n+ 1

2
j ≡ 1

2 (V n+1
j + V n

j)

Then the Crank–Nicolson method is defined as follows:

− V n+1
j − V n

j

k
+ rj�S

V

n+ 1
2

j+1 − V
n+ 1

2
j−1

2�S

+ 1

2
σ 2j 2�S2

V

n+ 1
2

j+1 − 2V
n+ 1

2
j + V

n+ 1
2

j−1

�S2

 = rV

n+ 1
2

j

(17.5)

X X X

Fully implicit

Fully explicit

CN

X

j − 1 j j + 1

n + 1

n

X X X

Figure 17.2 Crank–Nicolson stencil

Implicit Finite Difference Schemes for Black–Scholes 195

Again, this is a system that can be posed in the forms (17.4) or (17.1) and hence can be
solved by standard matrix solver techniques at each time level.

The Crank–Nicolson method has gained wide acceptance in the financial literature
and seems to be the de-facto finite difference scheme for one-factor and two-factor
Black–Scholes equations. It has second-order accuracy in the parameter k and is stable.
Unfortunately, it has been known for some considerable time (Il’in, 1969) that centred
differencing schemes in space combined with averaging in time (what essentially CN is in
this context) leads to spurious oscillations in the approximate solution and in the divided
differences for approximating its derivatives. These oscillations have nothing to do with
the physical or financial problem that the scheme is approximating. Thus, the scheme is
wrong! To make a very bad pun: CN is not what it is cranked up to be! We defend this
statement in the next section.

17.4 A CRITIQUE OF CRANK–NICOLSON

The Crank–Nicolson method has become a very popular finite difference scheme for solv-
ing the Black–Scholes equation. This is an example of a convection–diffusion equation
and it has been known for some time that centred-difference schemes are inappropriate
for approximating it (Il’in, 1969; Duffy, 1980). In fact, many independent discoveries
of novel methods have been made in order to solve difficult convection–diffusion prob-
lems in fluid dynamics, atmospheric pollution modelling, semiconductor equations, the
Fokker–Planck equation and groundwater transport (Morton, 1996). The main problem
is that traditional finite difference schemes start to oscillate when the coefficient of the
second derivative (the diffusion term) is very small or when the coefficient of the first
derivative (the convection term) is large (or both). In this case, the mesh size h in the
space direction must be smaller than a certain value if we wish to avoid these oscilla-
tions. This problem has been known since the 1950s (see de Allen and Southwell, 1955).
We now discuss the Crank–Nicolson from a number of viewpoints. For convenience
and generality reasons, we cast the Black–Scholes equation as a generic parabolic initial
boundary value problem in the domain D = (A, B) × (0, T) where A < B:

Lu ≡ −∂u

∂t
+ σ(x, t)

∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u = f (x, t) in D

u(x, 0) = ϕ(x), x ∈ (A, B)

u(A, t) = g0(t), u(B, t) = g1(t), t ∈ (0, T)

(17.6)

In this case the time variable t corresponds to increasing time while the space variable x

corresponds to the underlying asset price S. We specify Dirichlet boundary conditions on
a finite space interval and this is a common situation for several kinds of exotic options,
for example barrier options. Actually, the system (17.6) is more general than the original
Black–Scholes equation.

17.4.1 How are derivatives approximated?

There are two kinds of independent variables associated with the one-factor Black–Scholes,
as can be seen in (17.6). These correspond to the x and t variables. We concentrate on the

196 Financial Instrument Pricing Using C++

x direction for the moment. We discretise in this direction using centred differences at the
point (jh, nk):

∂2u

∂x2
∼ un

j+1 − 2un
j + un

j−1

h2

∂u

∂x
∼ un

j+1 − un
j−1

2h

(17.7)

Using this knowledge we can apply the Crank–Nicolson method to (17.6) by a generali-
sation of (17.5), namely:

− un+1
j − un

j

k
+ σ

n+ 1
2

j

u
n+ 1

2
j+1 − 2u

n+ 1
2

j + u
n+ 1

2
j−1

h2

+ µ
n+ 1

2
j

u
n+ 1

2
j+1 − u

n+ 1
2

j−1

2h
+ b

n+ 1
2

j u
n+ 1

2
j = f

n+ 1
2

j (17.8)

A bit of simple arithmetic allows us to rewrite (17.8) in the form:

an
j un+1

j−1 + bn
j u

n+1
j + cn−1

j + cn
j u

n+1
j+1 = F n

j (17.9)

where F n
j is a known quantity and

an
j =

σ

n+ 1
2

j

h2
− µ

n+ 1
2

j

2h

bn
j =

−k−1 − 2σ

n+ 1
2

j

h2
+ b

n+ 1
2

j

 (17.10)

cn
j =

σ

n+ 1
2

j

h2
+ µ

n+ 1
2

j

2h

Of course, this system of equations can be posed in the form of a matrix system, as
in (17.1). A number of researchers have examined such systems in conjunction with con-
vection–diffusion equations (for example, Farrell et al., 2000; Morton, 1996). A critical
observation is that if the coefficient a appearing in (17.10) is not positive, then the result-
ing solution will show oscillatory behaviour at best or produce non-physical solutions at
worst. The requirement that this coefficient is positive reduces to the inequality:

h ≤
∣∣∣∣2σ

µ

∣∣∣∣ (17.11)

This means that h must be chosen so as to satisfy this inequality. This will give problems
in general for Black–Scholes applications where the volatility is a decaying function of

Implicit Finite Difference Schemes for Black–Scholes 197

time (see van Deventer and Imai, 1997), for example:

σ(t) = σ0 e−α(T −t) (17.12)

where σ0 and α are given constants.
Furthermore, for the standard Black–Scholes equation, the restriction on h is

h ≤ σ 2S

r
(17.13)

The quantity on the right-hand side of (17.13) is sometime called the Reynolds number
and is a fundamental quantity when dealing with finite difference schemes for convec-
tion–diffusion equations.

We speak of a singular perturbation problem associated with problem (17.6) when the
coefficient of the second derivative is small (see Duffy, 1980). In this case traditional
finite difference schemes perform badly at the so-called boundary layer situated at x =
0. In fact, if we formally set the coefficient to zero in equation (17.8) we get a so-called
weakly stable difference scheme (see Peaceman, 1977) that approximate the first-order
hyperbolic equation

−∂u

∂t
+ µ

∂u

∂x
+ bu = f (17.14)

This has the consequence that the initial errors in the scheme are not dissipated and hence
we can expect oscillations, especially in the presence of rounding errors. We need other
one-sided schemes in this degenerate case (Peaceman, 1977; Duffy, 1977) and we shall
discuss them when we deal with exponentially fitted difference schemes in Chapter 18.

17.4.2 Boundary conditions

In general, we distinguish three kinds of boundary condition:

• Dirichlet (as seen in the system (17.6))
• Neumann
• Robin.

The last two boundary conditions involve the first derivative of the unknown u at the
boundaries. We must then decide on how we are going to approximate this derivative.
We can choose between first-order accurate one-sided schemes or, instead, use ghost
points (Thomas, 1998) to produce a second-order approximation to the first derivative. We
must thus be aware of the fact that the low-order accuracy at the boundary will adversely
impact the second-order accuracy in the interior of the region of interest. To complicate
matters, some models have a boundary condition involving the second derivative of u at
the boundary, or even a ‘linearity’ boundary condition (see Tavella and Randall, 2000).

Finally, the boundary conditions may be discontinuous. We may resort to non-uniform
meshes to accommodate the discontinuities. This strategy will also destroy the second-
order accuracy of the Crank–Nicolson method.

The conclusion is that the wrong discrete boundary conditions adversely affect the
accuracy of the finite difference scheme.

198 Financial Instrument Pricing Using C++

17.4.3 Initial conditions

It is well-known that discontinuous initial conditions adversely impact the accuracy of
finite difference schemes (see Smith, 1978). In particular, the solution of the difference
schemes exhibits ‘jumps’ and oscillations just after t = 0 but the solution becomes more
smooth as time goes on. This has consequences for options pricing applications because,
in general, the initial condition (this is in fact a payoff function) is not always smooth.
For example, the derivative for the payoff function for a plain European call option is:

C = max(S − K, 0) (17.15)

where K is the strike price and S is the stock price. Its derivative is given by the jump
function:

∂C

∂S
=

{
0, S ≤ K

1, S > K
(17.16)

This derivative is discontinuous and in general we can expect to get bad accuracy at the
points of discontinuity (in this case, at the strike price where at-the-money issues play
an important role). It is possible to determine mathematically what the accuracy is in
some special cases (Smith, 1978) but numerical experiments show us that other things
are going wrong as well.

Of course, if the option price is badly approximated there is not much hope of getting
good approximations to the delta and gamma. This statement is borne out in practice. One
last remark: another source of annoyance is that the boundary and initial conditions may
not be compatible with each other. By compatibility, we mean that the solution is smooth
at the corners (A, 0) and (B, 0) of the region of interest and we thus demand that the
solution is the same irrespective of the direction from which we approach the corners. If
we assume that u(x, t) is continuous as we approach the boundaries, then the following
should be true:

u(A, 0) ≡ ϕ(A) = g0(0)

U(B, 0) ≡ ϕ(B) = g1(0)
(17.17)

In other words, we must satisfy the compatibility conditions:

ϕ(A) ≡ u(A, 0) ≡ g0(0)

ϕ(B) ≡ u(B, 0) ≡ g1(0)
(17.18)

Failure to take these conditions into account in a finite difference scheme will lead to
inaccuracies at the corner points of the region of interest. On the up side, the discontinuities
are quickly damped out.

17.4.4 Proving stability

Much of the literature uses the von Neumann theory to prove stability of finite difference
schemes (Tavella and Randall, 2000). This theory was developed by John von Neumann,
a Hungarian-American mathematician, the father of the modern computer and probably
one of the greatest brains of the twentieth century.

Strictly speaking, the von Neumann approach is only valid for constant coefficient,
linear initial value problems, and the Black–Scholes equation does not fall under this

Implicit Finite Difference Schemes for Black–Scholes 199

category. Furthermore, much work has been done in the engineering field to prove stability
in other ways, for example using the maximum principle and matrix theory (Morton, 1996;
Duffy, 1980).

A discussion of von Neumann stability for the constant coefficient, linear convec-
tion–diffusion equation can be found in Thomas (1998).

17.5 IS THERE HOPE? THE KELLER SCHEME

In Chapter 18 we shall show how to resolve the spurious oscillation problem associ-
ated with the Crank–Nicolson method when we introduce the so-called exponentially
fitted scheme for the one-dimensional convection–diffusion equation based on the work
in Duffy (1980). We recall that the Black–Scholes equation is a special case of a con-
vection–diffusion equation.

In this section however, we give a short overview of the Box scheme (Keller, 1971)
that resolves many of the problems associated with Crank–Nicolson. In short, we reduce
the second-order Black–Scholes equation to a system of first-order equations containing
at most first-order derivatives. We then approximate the first derivatives in S and t by
averaging in a box.

We motivate the Box scheme by examining the generic parabolic initial boundary value
problem in the space interval (0, 1):

∂u

∂t
= ∂

∂x

(
a
∂u

∂x

)
+ cu + S, 0 < x < 1, t > 0

u(x, 0) = g(x), 0 < x < 1

α0u(0, t) + α1a(0, t)ux(0, t) = g0(t)

β0u(1, t) + β1a(1, t)ux(1, t) = g1(t)

(17.19)

Here u is the (unknown) solution to the problem that satisfies the self-adjoint equation in
(17.19) and it must also satisfy the initial and boundary conditions (note the latter contain
derivatives of the unknown at the boundaries of the interval). In general, the coefficients
in (17.19) are functions of both x and t .

We now transform (17.19) to a first-order system by defining a new variable v. The
new transformed set of equations is given by:

a
∂u

∂x
= v

∂v

∂x
= ∂u

∂t
− cu − S

u(x, 0) = g(x)

α0u(0, t) + α1v(0, t) = g0(t)

β0u(1, t) + β1v(1, t) = g1(t)

(17.20)

We now see that we have to do with a first-order system of equations with no derivatives
on the boundaries! The stencil that we use is shown in Figure 17.3. We now see the
reason for the name of the scheme; all calculations are done on a box.

200 Financial Instrument Pricing Using C++

Box

n − 1

n

j − 1 j

t

x

X X

Figure 17.3 Discrete mesh

We now need to introduce some notation. First, we define average values for x and t

coordinates as follows:
x

j± 1
2

= 1
2 (xj + xj±1)

t
n± 1

2
= 1

2 (tn + tn±1)
(17.21)

and for general net functions (in principle the approximations to u and v) by

φn

j± 1
2

= 1
2 (φn

j + φn
j±1)

φ
n± 1

2
j = 1

2 (φn
j + φn±1

j)

(17.22)

Finally, we define notation for divided differences in the x and t directions as follows:

D−
x φn

j = h−1
j (φn

j − φn
j−1)

D−
t φn

j = k−1
n (φn

j − φn−1
j)

(17.23)

We are now ready for the new scheme. To this end, we use one-sided difference schemes
in both directions while taking averages and we thus solve for both u and v simultaneously
at each time level:

an

j− 1
2

D−
x un

j = vn

j− 1
2

D−
x v

n− 1
2

j = D−
t un

j− 1
2

− c
n− 1

2

j− 1
2

u
n− 1

2

j− 1
2

− S
n− 1

2

j− 1
2

(17.24)

(1 ≤ j ≤ J, 1 ≤ n ≤ N)

The corresponding boundary and initial conditions are:

α0u
n
0 + α1v

n
0 = gn

0

β0u
n
J + β1v

n
J = gn

1

}
1 ≤ n ≤ N

u0
j = g(xj)

v0
j = a0

j

dg(xj)

dx

 0 ≤ j ≤ J

(17.25)

Implicit Finite Difference Schemes for Black–Scholes 201

A full discussion of how to design algorithms to solve the systems (17.24) and (17.25)
is given in Keller (1971).

17.5.1 The advantages of the Box scheme

The Box scheme has a number of very desirable properties:

• It is simple, efficient and easy to program.
• It is unconditionally stable.
• It approximates u and its partial derivative in x with second-order accuracy. For

the Black–Scholes equation this means that we can approximate both option price
and the option delta without trace of spurious oscillation, as is experienced with
Crank–Nicolson.

• Richardson extrapolation is applicable and yields two orders of accuracy improvement
per extrapolation (with non-uniform nets!).

• It supports data, coefficients and solutions that are only piecewise smooth. In a finan-
cial setting it is able to model piecewise smooth payoff functions. For example, with
piecewise continuous initial conditions we define the midpoint of an interval in the
x direction as shown in Figure 17.4. We then define the approximate initial condition
as follows:

v0

j− 1
2

= a0

j− 1
2

dg
(

x
j− 1

2

)
dx

, 1 ≤ j ≤ J (17.26)

For piecewise smooth boundary conditions we use the following tactic:

α0u
n− 1

2
0 + α1v

n− 1
2

0 = g
n− 1

2
0

β0u
n− 1

2
J + β1v

n− 1
2

J = g
n− 1

2
1

1 ≤ n ≤ N

Discontinuities at t = tn!

(17.27)

Of course we are assuming that the mesh points are sitting on the discontinuities!
• It can be used for parabolic systems and non-linear parabolic equations.

A full discussion of these issues in relation to option modelling is given in Duffy (2004b).

xjxj − 1
2

xj − 1

Net function v0
j − 1

2

Figure 17.4 Midpoint of an interval

202 Financial Instrument Pricing Using C++

17.6 CONCLUSIONS AND SUMMARY

We have given an overview of three implicit finite difference schemes that approximate the
one-factor Black–Scholes equation in conjunction with associated terminal and boundary
conditions. The schemes are called

• Fully implicit scheme
• Crank–Nicolson scheme
• The Keller Box scheme.

The fully implicit scheme is unconditionally stable and first-order accurate in time. The
Crank–Nicolson scheme is second-order accurate in time on uniform meshes but produces
spurious oscillations for large convective terms or in the regions of low regularity in the
payoff function (for example, near the strike price K for a European option). We have
also critically examined the Crank–Nicolson in section 17.4 in order to determine what
its weak points are. Finally, the Box scheme produces second-order accuracy to both the
option price and its delta on non-uniform meshes.

In the next chapter we shall develop another scheme that produces good approximations
to the option price and its delta.

18
Special Schemes for Plain

and Exotic Options

18.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a special kind of finite difference scheme that is particularly
suited to convection–diffusion equations (among others, the Black–Scholes equation)
where the coefficient of the second derivative is small compared with the coefficient of
the first derivative. These are called convection-dominated problems and such problems
have been the focus of much interest in the engineering and scientific community dur-
ing the last 30 years or so (see Morton, 1996, for an overview of the applications and
numerical schemes). In Chapter 17 we introduced the Crank–Nicolson method and we
discussed some of its shortcomings when applied to the convection–diffusion equation
in general and the Black–Scholes equation in particular. In particular, the solution gave
small spurious oscillations that become more pronounced in the delta, thus making the
scheme unsuitable for delta hedging applications. A number of numerical analyses and
experiments have been carried out in order to determine what the precise problems with
Crank–Nicolson were and how the exponentially fitted schemes of the current author
managed to resolve these problems (for a thesis on this subject, see Cooney, 1999).

18.2 MOTIVATING EXPONENTIALLY FITTED SCHEMES

18.2.1 A new class of robust difference schemes

We now introduce the class of exponentially fitted schemes for general two-point boundary
value problems. Exponentially fitted schemes are stable, have good convergence properties
and do not produce spurious oscillations. In order to motivate what an exponentially fitted
difference scheme is, let us look at the problem:

σ
d2u

dx2
+ µ

du

dx
= 0 in (A, B) (18.1)

u(A) = β0, u(B) = β1

Here we assume that σ and µ are positive constants for the moment. We now approxi-
mate (18.1) by the difference scheme defined as follows:

σρD+D−Uj + µD0Uj = 0, j = 1, . . . , J − 1 (18.2)

U0 = β0, UJ = β1.

where ρ is a so-called fitting factor (this factor is identically equal to 1 in the case of the
centred difference scheme. We now choose ρ so that the solutions of (18.1) and (18.2)
are identical at the mesh points. Some easy arithmetic shows that

ρ = µh

2σ
coth

µh

2σ

204 Financial Instrument Pricing Using C++

where coth x is the hyperbolic cotangent function defined by

coth x = ex + e−x

ex − e−x
= e2x + 1

e2x − 1
.

The fitting factor will be used when developing fitted difference schemes for more general
problems. In particular, we discuss the following problem:

σ(x)
d2u

dx2
+ µ(x)

du

dx
+ b(x)u = f (x) (18.3)

u(A) = β0, u(B) = β1

where σ , µ and b are given continuous functions, and

σ(x) ≥ 0, µ(x) ≥ α > 0, b(x) ≤ 0 for x ∈ (A, B).

The fitted difference scheme that approximates (18.3) is defined by:

ρh
j D+D−Uj + µjD0Uj + bjUj = fj , j = 1, . . . , J − 1 (18.4)

U0 = β0, UJ = β1

where

ρh
j = µjh

2
coth

µjh

2σj

(18.5)

σj = σ(xj), µj = µ(xj), bj = b(xj), fj = f (xj)

We now state the following fundamental results (see Il’in, 1969; Doolan et al., 1980;
Duffy, 1980):

The solution of scheme (18.4) is uniformly stable, that is

|Uj | ≤ |β0| + |β1| + 1

α
maxk=1,...,J |fk|, j = 1, . . . , J − 1

Furthermore, scheme (18.4) is monotone in the sense that the matrix representation
of (18.4)

AU = F

where U = t (U1, . . . , UJ−1), F = t (f1, . . . , fJ−1) and

A =

. . .
. . . 0

. . . aj,j+1

. . . aj,j

. . .

aj,j−1
. . .

0
. . .

. . .

(18.6)

Special Schemes for Plain and Exotic Options 205

aj,j−1 = ρh
j

h2
− µj

2h
> 0 always

aj,j = −2ρh
j

h2
+ bj < 0 always

aj,j+1 = ρjh

h2
+ µj

2h
> 0 always

produces positive solutions from positive input. Sufficient conditions for a difference
scheme to be monotone have been investigated by many authors in the last 30 years;
we mention the work of Samarski (1976) and Stoyan (1979). The latter author has used
several various fitting factors:

ρ0 = σ−1{1 + q2/(1 + |q|)}
ρ1 = (1 + q2)

1
2 (18.7)

ρ2 = σ−1(γ)

where ρ is the Il’in fitting factor.
Stoyan also produced stable and convergent difference schemes for the convection–

diffusion equation producing results and conclusions that are similar to the author’s work
(see Duffy, 1980):

Let u and U be the solutions of (18.3) and (18.4), respectively. Then

|u(xj) − Uj | ≤ Mh

where M is a positive constant that is independent of h and σ (Il’in, 1969). The conclusion
is that the fitted scheme (18.4) is stable, convergent and produces no oscillations for all
parameter regimes. In particular, the scheme ‘degrades gracefully’ to a well-known stable
scheme when σ tends to zero.

18.3 EXPONENTIALLY FITTED SCHEMES
FOR PARABOLIC PROBLEMS

We now discuss how to apply exponentially fitted schemes to the parabolic initial value
problem:

Lu ≡ −∂u

∂t
+ σ(x, t)

∂2u

∂x2
+ µ(x, t)

∂u

∂x

+ b(x, t)u = f (x, t) in D

u(x, 0) = ϕ(x), x ∈ �

u(A, t) = g0(t), u(B, t) = g1(t), t ∈ (0, T)

(18.8)

18.3.1 The fitted scheme in more detail: Main results

We now discuss how to approximate (18.8) by experientially fitted schemes. In particu-
lar, we propose an exponentially fitted scheme in the space direction and fully implicit
discretisation in the time direction. The results are based on Duffy (1980) where the main

206 Financial Instrument Pricing Using C++

theorems are proposed and proven, and these results are valid for coefficients that depend
on both x and t .

We discretise the rectangle [A,B] × [0, T] as follows:

A = x0 < x1 < · · · < xJ = B (h = xj − xj−1), h constant

0 = t0 < t1 < · · · < tN = T (k = T /N), k constant

Consider again the operator L in equation (18.8) defined by

Lu ≡ −∂u

∂t
+ σ(x, t)

∂2u

∂x2
+ µ(x, t)

∂u

∂x
+ b(x, t)u.

We replace the derivatives in this operator by their corresponding divided differences and
we define the fitted operator Lh

k by

Lh
kU

n
j ≡ −Un+1

j − Un
j

k
+ γ n+1

j D+D−Un+1
j + µn+1

j D0U
n+1
j + bn+1

j Un+1
j (18.9)

Here we use the notation

ϕn+1
j = ϕ(xj , tn+1) in general

and

γ n+1
j ≡ µn+1

j h

2
coth

µn+1
j h

2σn+1
j

Having defined the operator Lk
h we now formulate the fully discrete scheme that approx-

imates system (18.8):
Find a discrete function {Un

j } such that

Lh
kU

n
j = f n+1

j , j = 1, . . . , J − 1, n = 0, . . . , N − 1

Un
0 = g0(tn), Un

J = g1(tn), n = 0, . . . , N

U 0
j = ϕ(xj), j = 1, . . . , J − 1

(18.10)

This is a two-level implicit scheme. We wish to prove that scheme (18.10) is stable and
is consistent with the initial boundary value problem. We prove stability of (18.10) by
the so-called discrete maximum principle instead of the von Neumann stability analysis.
The von Neumann approach is well known but the discrete maximum principle is more
general and easier to understand and to apply in practice. It is also the de-facto standard
technique for proving stability of finite difference and finite element schemes (see Morton,
1996; Farrell et al., 2000).

Lemma 1 Let the discrete function wn
j satisfy Lh

kw
n
j ≤ 0 in the interior of the mesh with

wn
j ≥ 0 on the boundary 	. Then

wn
j ≥ 0, ∀j = 0, . . . , J, n = 0, . . . , N.

Special Schemes for Plain and Exotic Options 207

Proof: We transform the inequality Lh
kw

n
j ≤ 0 into an equivalent vector inequality.

To this end, define the vector Wn = t (wn
1 , . . . , w

n
J−1). Then the inequality Lh

kw
n
j ≤ 0 is

equivalent to the vector inequality

AnWn+1 ≥ Wn (18.11)

where

An =

. . .
. . . 0

. . . tnj
. . . sn

j

. . .

rn
j

. . .

0
. . .

. . .

rn
j =

(
−γ n

j

h2
+ µn

j

2h

)
k

sn
j =

(
2γ n

j

h2
− bn

j + k−1

)
k

tnj =
(

−
(

γ n
j

h2
+ µn

j

2h

))
k

It is easy to show that the matrix An has non-positive off-diagonal elements, has strictly
positive diagonal elements and is irreducibly diagonally dominant. Hence (see Varga,
1962, pp. 84–85) An is non-singular and its inverse is positive:

(An)−1 ≥ 0

Using this result in (18.11) gives the desired result. �

Lemma 2 Let {Un
j } be the solution of scheme (18.10) and suppose that

max |Un
j | ≤ m for all j and n

max |f n
j | ≤ N for all j and n

Then

maxj |Un
j | ≤ −N

β
+ m in Q where b(x, t) ≤ β < 0

Proof: Define the discrete barrier function

wn
j = −N

β
+ m ± Un

j

208 Financial Instrument Pricing Using C++

Then wn
j ≥ 0 on 	. Furthermore,

Lh
kw

n
j ≤ 0

Hence wn
j ≥ 0 in Q which proves the result. �

Let u(x, t) and {Un
j } be the solutions of (18.8) and (18.10), respectively. Then

|u(xj , tn) − Un
j | ≤ M(h + k) (18.12)

where M is a constant that is independent of h, k and σ .

Remark: This result shows that convergence is assured regardless of the size of σ . No
classical scheme (for example, centred differencing in x and Crank–Nicolson in time)
have error bounds of the form (18.12) where M is independent of h, k and σ .

Summarising, the advantages of the fitted scheme are:

• It is uniformly stable for all values of h, k and σ .
• It is oscillation-free. Its solution converges to the exact solution of (18.8). In particular,

it is a powerful scheme for the Black–Scholes equation and its generalisations.
• It is easily programmed, especially if we use object-oriented design and implementa-

tion techniques.

We shall discuss how to program this model using C++ in Chapter 19.

18.4 WHAT HAPPENS WHEN THE VOLATILITY
GOES TO ZERO?

In Chapter 17 we saw that the limiting case for the Crank–Nicolson scheme when the
volatility goes to zero is a so-called weakly stable scheme. This is not a good state of
affairs because rounding errors can affect the solution. In the case of the fitted scheme,
however, the news is a bit brighter.

18.4.1 Graceful degradation

We now examine some ‘extreme’ cases in system (18.10). In particular, we examine
the cases

(pure convection/drift) σ → 0

(pure diffusion/volatility) µ → 0

We shall see that the ‘limiting’ difference schemes are well-known schemes and this is
reassuring. To examine the first extreme case we must know what the limiting properties
of the hyperbolic cotangent function are:

lim
σ→0

γ n
j = lim

σ→0

µn
jh

2
coth

µn
jh

2σn
j

Special Schemes for Plain and Exotic Options 209

We use the formula

lim
σ→0

µh

2
coth

µh

2σ
=

+µh

2
if µ > 0

−µh

2
if µ < 0

Inserting this result into the first equation in (18.10) gives us the first-order scheme

µ > 0, −Un+1
j − Un

j

k
+ µn+1

j

(Un+1
j+1 − Un+1

j)

h
+ bn+1

j Un+1
j = f n+1

j

µ < 0, −Un+1
j − Un

j

k
+ µn+1

j

(Un+1
j − Un+1

j−1)

h
+ bn+1

j Un+1
j = f n+1

j

These are so-called implicit upwind schemes and are stable and convergent (Duffy, 1977;
Dautray and Lions, 1993). We thus conclude that the fitted scheme degrades to an accept-
able scheme in the limit. The case µ → 0 uses the formula

lim
x→0

x coth x = 1

Then the first equation in system (18.10) reduces to the equation

−Un+1
j − Un

j

k
+ σn+1

j D+D−Un+1
j + bn+1

j Un+1
j = f n+1

j

This is a standard approximation to pure diffusion problems and such schemes can be
found in standard numerical analysis textbooks (see, for example, Press et al., 1980).

These limiting cases reassure us that the fitted method behaves well for ‘extreme’
parameters values.

18.5 EXPONENTIAL FITTING WITH EXPLICIT TIME
18.5.1 An explicit time-marching scheme

It is interesting to investigate the use of fitting in combination with explicit time marching.
We do not expect the corresponding scheme to be unconditionally stable. The scheme is:

−Un+1
j − Un

j

k
+ γ n

j D+D−Un
j + µn

jD0U
n
j + bn

j U
n
j = f n

j (18.13)

Rearranging terms in (18.13) gives

Un+1
j = An

jU
n
j+1 + Bn

j Un
j + Cn

j Un
j−1 − kf n

j (18.14)

where

An
j = k

(
γ n

j

h2
+ µn

j

2h

)

Bn
j = 1 − 2kγ n

j

h2
+ kbn

j

Cn
j = k

(
γ n

j

h2
− µn

j

2h

)

210 Financial Instrument Pricing Using C++

If each of the coefficients An
j , Bn

j and Cn
j are non-negative then the right-hand side

of (18.14) will be positive, thus leading us to the conclusion that Un+1
j ≥ 0. Assume U

of b = 0. In this case Bn
j ≥ 0 if

k−1 − 2γ n
j

h2
≥ 0

or
µn

jk

h
≤ tanh

µn
jh

2σn
j

. (18.15)

Inequality (18.15) is a variation of the famous Courant–Friedrichs–Lewy (CFL) condi-
tion. If we let σ → 0 in (18.15) the limiting case of (18.15) becomes

|µn
j |k
h

≤ 1

which is precisely the CFL condition for first-order hyperbolic equations! The correspond-
ing reduced scheme is called the explicit upwind scheme (see Dautray and Lions, 1993,
p. 99):

µ > 0, −Un+1
j − Un

j

k
+ µn

j

(
Un

j+1 − Un
j

h

)
= 0

µ < 0, −Un+1
j − Un

j

k
+ µn

j

(
Un

j − Un
j−1

h

)
= 0

18.6 EXPONENTIAL FITTING AND EXOTIC OPTIONS

We have applied the method to a range of plain and exotic European and American type
options. In particular, we have applied it to various kinds of barrier options (see Topper,
1998; Haug, 1998), for example:

• Double barrier call options
• Single barrier call options
• Equations with time-dependent volatilities (for example, a linear function of time)
• Asymmetric plain vanilla power call options
• Asymmetric capped power call options.

We have compared our results with those in Haug (1998) and Topper (1998) and they
compare favourably (Mirani, 2002). The main difference between these types lies in the
specific payoff functions (initial conditions) and boundary conditions. Since we are work-
ing with a specific kind of parabolic problem these functions must be specified by us.
For example, for a double barrier option we must give the value of the option at these
barriers while for a single barrier option we define the ‘down’ barrier at S = 0. For an
asymmetric plain vanilla call option

max(Sp − K)

Special Schemes for Plain and Exotic Options 211

where S is the stock price, K is the strike price and p is some factor (p = 1 for the plain
European case). The final condition is:

f (T , S) = max(Sp − K, 0)

Furthermore, no boundary conditions are given in this case and we choose S = 0 for
the lower boundary and S = 1000 for the upper boundary:

f (t, 0) = 0

f (t, 1000) = Sp − K exp(−(r − d)t)

In this case d is the dividend and r is the risk-free interest rate. Finally, asymmetric
capped power call options have a payoff of the form

min(max(Sp, 0), C)

and a final condition

f (T , S) = min(max(Sp, 0), C)

where C is the cap value. Summarising, the exponentially fitted finite difference scheme
gives good approximations to the option price and delta of the above exotic option types.
We have compared the results with Monte Carlo, Haug (1998) and Topper (1998).

18.7 SOME FINAL REMARKS
We now give some examples of output from Crank–Nicolson. We took an ‘extreme’ case:

s = 0.001, r = 0.15, T = 1.0, K = 10

Furthermore, the number of sub-divisions in the S direction was 60 (the mesh size h is
then 20/60) while the number of time intervals was 2, and thus k = 0.5. We examined
how the exponentially fitted method, Crank–Nicolson and the exact solution compared
and we examined the option price and two of its sensitivities, namely delta and gamma.
The option price is a monotonically increasing function of S, the delta is between 0 and
1 and the gamma is highly spiked because of the small value of the volatility σ (of
course, we know the exact formulae for these quantities for a European call option). We
now examine the Crank–Nicolson scheme. Based on the problems that we discussed in
Chapter 17 we expect to see these manifest themselves in the numerical results. First, the
payoff function shows ‘kinks’ around the strike price and, second, since the volatility is
very small, we are effectively solving a first-order hyperbolic equation in which we need
one boundary condition. Around the strike price K = 10 we see small kinks in the price
that become progressively more accentuated as we move to the delta and gamma. This
is to be expected because we are taking divided differences. We thus conclude that the
Crank–Nicolson scheme performs badly for this admittedly extreme set of parameters.
For the examples in this section we have taken k = 0.5 because T = 1.0 and we have
two sub-divisions of the interval (0, T). We now take the value k = 0.1 and examine the
fitted scheme. We note the excellent approximations. The same good levels of accuracy
are also achieved with barrier option approximation. In particular, Richardson’s Deferred
Approach to the Limit can be used to improve the accuracy from first-order to second-order
accuracy.

19

My First Finite Difference Solver

19.1 INTRODUCTION AND OBJECTIVES

In this chapter we develop a fully fledged application in C++ to calculate the price and
sensitivities of plain and barrier options. Much of the code is object-oriented in the sense
that we model many processing entities as classes. We focus on the exponentially fitted
scheme that we introduced in Chapter 18. There are three key classes that are essential
to the application:

• ParabolicPDE: A C++ class that models second-order parabolic initial boundary
value problems, including operator coefficients, boundary conditions and initial condi-
tions. We model all functions by C++ classes as introduced in Chapter 9.

• ParabolicFDM: A specific class that approximates parabolic initial boundary prob-
lems by the use of discrete meshes and exponentially fitted schemes.

• DoubleSweep: The matrix solver that calculates the solution of the finite difference
scheme at each time level (this and other solvers are discussed in Chapters 8 and 14).

A generic UML class diagram depicting the relationships between these classes is
shown in Figure 19.1. We must complement this figure by showing how work gets done
in the application. In other words, we describe the basic information flow by the follow-
ing activities:

A1: Input for the continuous problem
A2: Input for the discrete problem
A3: Describing the algorithm that implements the exponentially fitted scheme.

We document the information flow by means of the generic UML activity diagram as
shown in Figure 19.2. This will be an invaluable aid later when we wish to understand
the resulting C++ code (which can be difficult to wade through without a corresponding
roadmap as it were). We paraphrase the flow in Figure 19.2 as follows:

We define the functions (as ‘flat’ C functions) that describe the coefficients, boundary and initial
conditions for the activity A1 which creates a PDE object. We discretise this object by defining a
mesh (the Discrete Parameters) and activity A2 which then instantiates an FDM object. We are
then ready to go because we solve the problem in activity A3 by continuous application of the
DoubleSweep matrix solver for each time level. Output is in the form of an ASCII file containing
option price, delta and gamma for a range of stock prices.

The code in this chapter is flexible on the one hand and hard-wired on the other. First,
you must edit, compile and link all input functions in a separate file while the output
is an ASCII file. Second, core processing is reasonably generic. We shall see in Part V
how to apply design patterns to help you to improve the code in order to make it more
flexible. The objective in this chapter is to introduce a milestone to show how to integrate

My First Finite Difference Solver 213

ParabolicPDE ParabolicFDM

Function

DoubleSweep

approximates

solves

1

*

Figure 19.1 UML class structure

C Functions

CreatePDE CreateFDM

Solve (algorithm)

PDE FDM

Discrete parameters

Results (ASCII file)

A1 A2

A3

Figure 19.2 Information flow in application

the results to date into a complete application. Having got something up and running we
can then extend it to suit even more stringent software requirements. Our motto is:

Get it working
Then get it right
Then get it optimised.

214 Financial Instrument Pricing Using C++

Quoting Jackson (1975, p. 251) we realise that optimising a program costs money and
thus a risk-averse strategy should be adhered to:

Rule 1: Don’t do it
Rule 2: Don’t do it yet.

The first rule tells us that we need a positive quantified justification before we optimise,
and that often the justification simply does not exist. We should remember that there
is usually a customer who is out there waiting on the developer to deliver his or her
masterpiece!

19.2 MODELLING PARTIAL DIFFERENTIAL EQUATIONS
IN C++

We know that a second-order parabolic initial boundary value problem is uniquely iden-
tified by the following functions:

• The coefficients of the parabolic operator appearing in the equation
• The region in which the PDE is defined
• The boundary region and the corresponding boundary conditions
• The initial condition.

This chapter discusses problems in one space dimension and one time dimension so
that things become simpler than modelling a general n-dimensional problem. Thus, we
can model everything by real-valued functions having one and two arguments. To this
end, we create a separate C++ class for each case and we model the following kinds of
real-valued functions:

double func(double x)
{ // Real-valued function of a single variable

// ...
}

double func2(double x, double t)
{ // Real-valued function of two variables

// ...
}

These kinds of function are necessary and sufficient for modelling parabolic equations
in one space dimension. However, we modify the signature of functions having two
variables by combining the two variables into a single STL pair object as the following
example shows:

double func2(const pair<double,double>& args);

This syntax is more verbose than the first prototype for the functions but we shall use
the new syntax in what follows and it will soon become clear why we are using this
particular form. Furthermore, functions of a single variable will have the following form:

double func(const double& s);

In general, we shall work with template versions of the above kinds of function.

My First Finite Difference Solver 215

Function

D, R

DFunction Other type

Atomic DFunction

Two VarFunction

D1, D2, R

D,R

. . .

. . .

D, R D, R

D, R

bind<pair<D1,D2>,R>

Figure 19.3 Function hierarchy

19.2.1 Function classes in C++

We now discuss how to model C functions by C++ classes (see Chapter 9 where this is
discussed in more detail). In short, we create a class by encapsulating a C function as
private members. This approach is similar to the Command design pattern (see Gamma
et al., 1995). We create a hierarchy of C++ template classes to model functions as shown
in Figure 19.3. The root class Function is empty and it represents any mapping from
a domain type D to a range type R. Possible specialisations of this class are:

• DFunction: Deterministic continuous function from D to R

• Other types, for example stochastic functions and functions whose arguments and/or
return types may be discrete, for example.

Our main interest in this chapter lies in the class DFunction because the functions that
we need are specialisations of it. In particular, we use the class AtomicDFunction to
model real-valued functions of a single variable, while we use the class TwoVarFuction
to model real-valued functions of two variables. The structure can be seen in Figure 19.3
and we show the C++ declarations for completeness:

template <class D, class R> class Function
{ // D == Domain, R == Range
private:

public:
// We try to have as little functionality as possible here

};

216 Financial Instrument Pricing Using C++

template <class D,class R> class DFunction
: public Function <D,R>

{ // Abstract base class for all deterministic functions

public:
DFunction() { }

// Empty
};

template <class D, class R> class AtomicDFunction
: public DFunction<D, R>

{

private:
R (*f)(const D& x);// Hidden classic C-type function

};

template <class D1, class D2, class R> class TwoVarDFunction
: public AtomicDFunction<pair<D1, D2>, R>

{ // A class representing a function of two variables.

private:

public:
};

These classes have constructors that allow us to create instances by providing them with
the appropriate C functions. Once an object has been instantiated we can then calculate
its value by giving values for the formal parameter or parameters. We now give a simple
example to show what we mean:

// C-style function with 1 parameter
double MyExp(const double& d)

{ // Just a test case, don't read deeper than that ☺

return (::exp(d));
}

AtomicDFunction<double, double> myfun;
myfun.function(MyExp); // Set the function

cout << myfun.calculate(1.0) << endl;

Using functions with two input parameters reads as follows:

TwoVarDFunction<double, double, double> myfun;
myfun.function(add);
cout << myfun.calculate(pair<double, double>(1,1)) << endl;

myfun.function(diff); // Choose another C function

cout << myfun.calculate(pair<double, double>(2, 1)) << endl;

The functions ‘add’ and ‘diff’ are defined as follows:

double add(const pair<double, double>& p)
{

return p.first + p.second;
}

double diff(const pair<double, double>& p)

My First Finite Difference Solver 217

{
return p.first - p.second;

}

The reader may be wondering what the added value of this approach is as compared to
using good old function pointers. Well, function classes are first-class entities to which
we can apply design patterns, for example. Furthermore, you can add extra state (such
as a name or synthetic ID, for example, in order to reference an object), something that
cannot be done with function pointers. Furthermore, these are template classes so that
you can specialise them to suit your own specific data types.

19.2.2 Function classes for partial differential equations

We now discuss how to model a second-order parabolic initial boundary value problem
using sets of AtomicDFunction and TwoVarDFunction classes. We group the func-
tions that define the differential operator itself and those functions that model boundary
and initial conditions. To this end, we propose the following class:

class PDE { };

template <class X, class T, class V> class ParabolicPDE
: public PDE

{

private:
Range<X> xaxis; // Space interval
Range<T> taxis; // Time interval
TwoVarDFunction<X, T, V> sig, m, b, f; // Coeffs
AtomicDFunction<X, V> ic; // Initial condition
AtomicDFunction<t, V> bcl, bcr; // Boundary conditions

};

Thus, the private member data describes the structure of the partial differential equation.
The modifier functions that initialise the structure are:

// Coefficients of parabolic second order operator
virtual void diffusion(TwoVarDFunction<X,T,V>& new_function);
virtual void convection(const TwoVarDFunction<X,T,V>& new_function);
virtual void zeroterm(const TwoVarDFunction<X,T,V>& new_function);
virtual void RHS(const TwoVarDFunction<X,T,V>& new_function);

// Boundary and initial conditions
virtual void BCL(const AtomicDFunction<T,V>& new_function);
virtual void BCR(const AtomicDFunction<T,V>& new_function);
virtual void IC(const AtomicDFunction<X,V>& new_function);

// The domain in which the PDE is 'played'
virtual void first (const Range<X>& new_range);
virtual void second(const Range<T>& new_range);

We have chosen the names of the functions to reflect their mathematical significance.
Please note that we also have selector functions that allow us to calculate the value of
any function as the following subset shows:

// Calculation of functions
virtual V diffusion(const X& xvalue, const T& tvalue) const; // Sigma

218 Financial Instrument Pricing Using C++

virtual V convection(const X& xvalue, const T& tvalue) const; // Mu
virtual V zeroterm(const X& xvalue, const T& tvalue) const; // b
virtual V RHS(const X& xvalue, const T& tvalue) const; // f

Summarising, we have encapsulated all information pertaining to parabolic initial bound-
ary value problems in a single class. Thus, all client code accesses the PDE object through
its public interface!

19.3 FINITE DIFFERENCE SCHEMES AS C++ CLASSES,
PART I

We have modelled the Duffy exponentially fitted scheme (as explained in Chapter 18) for
parabolic problems as a class:

template <class X, class T, class V> class ParabolicFDM
{ // Finite difference method for solving parabolic PDE

// X == x-direction value; T == t-direction value;
// V == value space of unknown

private:
// Lots of stuff here

public:
// public stuff

};

The kinds of member data in this class can be classified as follows:

Group 1: Discrete mesh information
Group 2: Reference to the corresponding PDE object
Group 3: Work arrays for the Double Sweep matrix solver.

The current version of the software is not as flexible as we would like it to be; how-
ever, it works! The main challenge in order to make the software more flexible is
to filter and encapsulate the code that sets up the linear system of equations at each
time level. To this end, a possibility would be to use a Strategy pattern (Gamma et al.,
1995). We shall discuss in later chapters how the code can be made more maintainable
and portable.

The member data in Group 1 contains information pertaining to the mesh points where
the approximate finite difference solution is evaluated:

// Input parameters
long J; // Number of x steps
long N; // Number of t steps
V theta; // Time discretisation (Implicit == 1,

// CN == 0.5, Explicit == 0)

// Dynamic attribute
T current; // Current time level

// Calculated values (redundant values)
V h; // Mesh size in x
T k; // Mesh size in t

Vector<X, long> XARR; // The array of x (S) values
Vector<T, long> TARR; // The array of t values

My First Finite Difference Solver 219

The member data in Group 2 is simple. In the finite difference class we embed a copy of
a PDE object:

ParabolicPDE<X, T, V> pde;

We could have modelled the relationship differently, for example by using a reference or
a pointer to the PDE object. However, we do not see any added advantage in doing this
at the moment.

The data in Group 3 is more problematic because we must define a number of so-
called work arrays that hold information needed to solve the linear systems of equations
at each time level. Without going into too much detail, the work arrays have to do with
administrative duties concerning the solution of the linear systems of equations:

An+1Un+1 = F n (U 0 given) (19.1)

In this case the tridiagonal matrix A consists of elements based on the coefficients in the
original partial differential equation. The basic algorithm for solving the system (19.1) is:

Set n = 0;
Next:
Calculate the vector F at level n
Calculate the three diagonals of A at time level n+1
Solve the system AU = F by the Double Sweep method
If n < N then go to Next

The actual code that implements the above algorithm (in the current version) is a bit
messy but straightforward. The full source is provided on the accompanying CD.

19.4 FINITE DIFFERENCE SCHEMES AS C++ CLASSES,
PART II

We can improve the maintainability and portability of the code for the class Parabol-
icFDM by structuring it as an aggregation. In particular, we see opportunities in two

Solver

DoubleSweep Iterative

ParabolicPDE ParabolicFDM

approximates

Mesh

based on

LU

uses

Figure 19.4 Optimised structure

220 Financial Instrument Pricing Using C++

applications of the Information Hiding principle. First, we create a class whose responsi-
bility is to calculate the mesh arrays and mesh sizes that the finite difference scheme uses.
Second, and possibly more important, we create a dedicated class whose responsibility is
to calculate the solution of the finite difference scheme at time level n + 1 in terms of the
solution at level n and other given data at time levels n and n + 1. The modified UML
class diagram (compare Figure 19.1) is shown in Figure 19.4. Please note the presence
of the two new façade classes Mesh and Solver.

These new classes contain the same code, more or less, as before. The difference,
however, is that functionality is more evenly distributed among a network of objects
rather than being placed in one large monolithic class, in this case the current class
ParabolicFDM.

19.5 INITIALISATION ISSUES

Of course, we need some way of defining both the continuous and discrete parameters
that allow us to compute the price, delta and gamma of plain and exotic options. To this
end, we must carry out the following duties:

• Define C functions that model the parabolic initial boundary value problem
• Create function classes based on these C functions
• Define the parameters needed for the Black–Scholes equation
• Create an instance of the class ParabolicPDE
• Define the parameters for the class ParabolicFDM
• Calculate the price, delta and gamma at each time level
• Output the price, delta and gamma to an ASCII file.

We shall discuss each of these issues in turn.

19.5.1 Functions and parameters

First, place all functions, parameters and constants in one file (which we call charac-
teristics.(hpp, cpp)), for example:

const double r = 0.1; // interest rate
const double d = 0.0; // dividend
const double s = 0.3; // volatility
const double f = 0; // forcing term, zero for BS
const double K = 10; // strike price
const double bcl = 0; // value of left boundary condition
const double bcr = 0; // value of right boundary condition

double sigma(const pair<double,double>& state); // volatility
double mu(const pair<double,double>& state); // drift
double forcing(const pair<double,double>& state); // forcing term
double b(const pair<double,double>& state); // free term
double IC(const double& s); // initial condition
double IC_put(const double& s); // initial condition for a put
double BCR(const double& t); // right boundary condition
double BCL(const double& t); // left boundary condition
double BCL_put(const double& d); // right boundary condition
double BCR_Topper_p10(const double & t); // special right boundary condition

My First Finite Difference Solver 221

double BCR_Topper_p11(const double & t); // special right boundary condition
double IC_PO(const double& s); // power options: initial condition
double IC_ASCPO(const double & s); // asymmetric capped power options
double IC_SCPO(const double & s); // symmetric capped power options
double BCR_PO(const double& t); // power options

These prototypes must be coded of course, and this is to be found in characteris-
tics.cpp:

double sigma(const pair<double,double>& state)
{ return 0.5*s*s*state.first*state.first; }

double mu(const pair<double,double>& state)
{ return (r-d)*state.first; }

double forcing(const pair<double,double>& state)
{ return f; }

double b(const pair<double,double>& state)
{ return -r; }

// initial condition for call
double IC(const double& s)
{ return (s>K) ? s-K : 0; }

// initial condition for put
double IC_put(const double& s)
{ return (s<K) ? K-s : 0; }

Continuing with the parameters for the discrete problem, we note the following:

const double Xfrom = 0; // minimum value of stock-price domain
const double Xto = 20; // maximum value of stock-price domain
const double Yfrom = 0; // initial time
const double Yto = .01; // final time
const long XINTERVALS = 20; // number of intervals in S
const long YINTERVALS = 100; // number of time-intervals
const double THETA = 0.5; // Crank Nicolson

19.5.2 The main program

We now define the objects corresponding to the parabolic PDE and FDM:

// Set all ranges
Range<double> X(Xfrom,Xto);
Range<double> T(Yfrom,Yto);

// Declare all TwoVarDFunctions
TwoVarDFunction<double,double,double> Sigma(*sigma);
TwoVarDFunction<double,double,double> Mu(*mu);
TwoVarDFunction<double,double,double> Forcing(*forcing);
TwoVarDFunction<double,double,double> B(*b);

// Declare all AtomicDFunctions
AtomicDFunction<double,double> Ic(*IC);
AtomicDFunction<double,double> Bcr(*BCR_Topper_p11);
AtomicDFunction<double,double> Bcl(*BCL);

222 Financial Instrument Pricing Using C++

// Instantiate the pde
ParabolicPDE<double,double,double>

pde(X,T,Sigma,Mu,B,Forcing,Ic,Bcl,Bcr);

// Declare the finite difference scheme
ParabolicFDM<double,double,double>

FDM(pde,XINTERVALS,YINTERVALS,THETA);

// Compute option prices
FDM.start();

The body of this function is as follows:

template <class X, class T, class V> void ParabolicFDM<X,T,V>::start()
{ // Fill in initial data

// Set initial condition
for (long j = tmp.MinIndex(); j <= tmp.MaxIndex(); j++)
{

tmp[j] = IC(XARR[j]);
}

// Compute the results
while(!finished()) // Checks if t == T

advance(); // Compute next level
}

We are now ready to compute the delta and gamma of the option. To this end, we call
the member function ParabolicFDM::line() to calculate the option price:

// Retrieve and store option prices
long startIndex = 1;
Vector <double,long> C_tmp = FDM.line();
print(C_tmp);
Vector <double,long> C(XINTERVALS+1,startIndex,0.0);
C = C + C_tmp;
C[startIndex] = BCL(T.high());
C[XINTERVALS] = BCR_Topper_p11(T.high());

In this case we are calculating the price of a barrier option based on the work in Top-
per (1998).

Continuing, we calculate the delta and gamma functions by taking divided differences.
First, we calculate the vector of stock prices:

// Create and fill stock price vector
Vector <double,long> S(XINTERVALS+1,startIndex);
S[S.MinIndex()] = X.low();
double h = (X.high()-X.low())/XINTERVALS;
for (long j = S.MinIndex() + 1; j <= S.MaxIndex(); j++)
{

S[j] = h + S[j-1];
}

Next, we calculate the delta function by taking divided differences of the option price
vector C:

// Create and fill delta vector
Vector <double,long> Delta(XINTERVALS+1,startIndex);

My First Finite Difference Solver 223

long min = Delta.MinIndex();
long max = Delta.MaxIndex();
for (j = Delta.MinIndex() + 1; j<Delta.MaxIndex(); j++)
{
Delta[j] = (C[j+1] - C[j-1])/(2*h);

}
Delta[min] = (C[min+1] - C[min])/h;
Delta[max] = (C[max] - C[max-1])/h;

Next, we calculate the gamma function by taking divided differences of the delta vector:

// Create and fill gamma vector
Vector <double,long> Gamma(XINTERVALS+1,startIndex);
for (j = Gamma.MinIndex() + 1; j<Gamma.MaxIndex(); j++)
{
Gamma[j] = (Delta[j+1] - Delta[j-1])/(2*h);

}
Gamma[min] = (Delta[min+1] - Delta[min])/h;
Gamma[max] = (Delta[max] - Delta[max-1])/h;

Finally, we place these three vectors in a nested vector class which is then sent to an
object that is responsible for putting this vector in an ASCII file:

// Create result vector
Vector<Vector<double,long>,long> result(3,startIndex);
result[1] = C;
result[2] = Delta;
result[3] = Gamma;

// Write results to file
FileClass fileclass;
fileclass.SetFileName("output.dat");
fileclass.SetAxis(S,result);
fileclass.WriteToFile();

The contents of the ASCII file "output.dat" are:

0.000000 0.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
2.000000 0.000000 0.000000 0.000000
3.000000 0.000000 0.000000 0.000000
4.000000 0.000000 0.000000 0.000000
5.000000 0.000000 0.000000 0.000000
6.000000 0.000000 0.000001 0.000059
7.000000 0.000001 0.000119 0.005846
8.000000 0.000238 0.011693 0.237640
9.000000 0.023387 0.475400 0.457691
10.000000 0.951037 0.927076 0.220181
11.000000 1.877539 0.915761 -0.016975
12.000000 2.782560 0.893127 -0.023705
13.000000 3.663792 0.868351 -0.025729
14.000000 4.519262 0.841669 -0.027420
15.000000 5.347131 0.813511 -0.022149
16.000000 6.146283 0.797371 0.169031
17.000000 6.941872 1.151572 0.368345
18.000000 8.449427 1.534061 -2.688143
19.000000 10.009995 -4.224714 -5.772028
20.000000 0.000000 -10.009995 -5.785281

224 Financial Instrument Pricing Using C++

This file consists of records (space-separated format) and each record consists of the
following data:

Stock Price + Option Price + Delta + Gamma

Incidentally, the original version of this program used the above output for use with
the package gnuplot under Linux. It is not a big challenge to adopt the program so
that it produces XML output. We shall discuss this topic in more detail in Chapters 26
(introduction) and 27 (XML from the programmer’s perspective).

19.6 INTERFACING WITH EXCEL

We introduce a forward reference in this section. While producing output in the form of an
ASCII file has its uses it is often advantageous to display results in a more user-friendly
manner, in this case Excel. We shall deal with this topic in more detail in Chapters 22, 28
and 29, but, for the present, have a look at the following code:

// Print each chart separately
printOneExcel(S, C, "Price");
printOneExcel(S, Delta, "Delta");
printOneExcel(S, Gamma, "Gamma");

The magic function accepts three parameters; first, the vector S that represents the x-axis
values, the second vector contains the y-axis values and the third argument is a string
that represents the title of the chart. We call the function three times, thus producing three
charts in Excel.

This will be further discussed in later chapters. I promise!

19.7 CONCLUSIONS AND SUMMARY

We have given a walkthrough example of how we have created a C++ application that
calculates the price, delta and gamma of one-factor plain and barrier options. We discussed
how we designed and implemented the foundation classes (such as ParabolicPDE and
ParabolicFDM) and then how they are to construct the final solution. You can use the
text in this chapter to help you to understand the corresponding source code on the CD.
We have produced a working system that you can extend to suit your own needs. This
incremental approach is appealing because you always have a working prototype that can
be demonstrated. If the customer is happy you can always ask for more funds to create a
more sophisticated system with lots of whistles and bells!

You can study the source code (on the CD) for this problem and adapt it to your own
particular application. For example, you can adapt it to suit one-factor models for exotic
options and interest-rate problems (for example, callable bonds).

20
An Introduction to ADI and Splitting

Schemes

20.1 INTRODUCTION AND OBJECTIVES
In this chapter we discuss how to apply finite difference schemes to approximate the
solution of multidimensional diffusion equations. In general, an exact solution to these
problems is not possible to find, and even when an exact solution is known it is compli-
cated to evaluate. Our interest is in applying and extending the schemes from previous
chapters in this book to multi-factor problems. Some typical applications are:

• Asian options (payoff depends on the underlying S and the average price of S over
some prescribed period)

• Multi-asset options (for example, basket options and options with two underlyings)
• Convertible bonds (bond price is a function of the underlying S and the (stochastic)

interest rate r)
• Multidimensional interest rate models.

In general, each of the above models can be subsumed under the general parabolic partial
differential equation (Bhansali, 1998)

∂V

∂t∗
+

n∑
j=1

(r − Dj)Sj

∂V

∂Sj

+ 1

2

n∑
i,j=1

ρijσiσjSiSj

∂2V

∂Si ∂Sj

= rV (20.1)

Here we see that the derivative quantity V is a function of n underlyings. Furthermore,
these underlyings may be correlated. As discussed in Bhansali (1998), the rate of change
of V with respect to time may be written as the sum of three elements

r

V −

n∑
j=1

Sj

∂V

∂Sj

 (20.2)

n∑
j=1

DjSj

∂V

∂Sj

(20.3)

− 1

2

n∑
i,j=1

ρijσiσj

∂2V

∂Si ∂Sj

(20.4)

Of course, we must provide initial (terminal) and boundary conditions in order to pro-
duce a unique solution to (20.1). As there is no explicit formula for the solution in
general, we must resort to approximate methods. In this book we look at finite differ-
ence methods for such problems and concentrate on two-factor equations (that is where
n = 2 in equation (20.1)). In particular, we first of all discuss discretising all variables
in (20.1) simultaneously, and we show the consequences of such an approach. In par-
ticular, we encounter the curse of dimensionality because solving two-factor equations

226 Financial Instrument Pricing Using C++

by a straightforward finite difference scheme leads to large systems of equations that
are difficult (but not impossible) to solve. Another approach is to reduce the multidi-
mensional problem to a series of one-dimensional sub-problems where each sub-problem
corresponds to one specific underlying variable. For this latter case we discuss two major
approaches called Alternating Direction Implicit (ADI) and splitting (or splitting up)
methods, respectively.

In this chapter we shall concentrate on the heat equation in a rectangle in order to
motivate the ADI and splitting methods. Furthermore, we focus on Dirichlet conditions
only. In the next chapter we shall extend the methods to handle convection–diffusion
equations in general (and Black–Scholes in particular).

Understanding how ADI and splitting methods work for the heat equation will help you
to appreciate similar schemes for convection–diffusion and Black–Scholes equations.

20.2 A MODEL PROBLEM

In this chapter we focus primarily on the two-dimensional heat equation

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
(20.5)

that is defined in some region of (x, y, t) space. In this section we extend the finite
difference method that we defined in previous chapters to the case where the continuous
(x, y) space is replaced by a two-dimensional mesh. To this end, we use some notation
for difference operators in the x and y directions:

�2
xuij = h−2

1 (ui+1,j − 2ui,j + ui−1,j)

�2
yuij = h−2

2 (ui,j+1 − 2ui,j + ui,j−1)

�+
x uij = h−1

1 (ui+1,j − ui,j) (20.6)

�−
x uij = h−1

1 (ui,j − ui−1,j)

�0
xuij = (2h1)

−1(ui+1,j − ui−1,j)

These operators are just the two-dimensional extensions of the one-dimensional discrete
operators of previous chapters. Thus, when approximating the heat equation (20.5) we can
choose centred differencing in the x and y directions while we can choose the following
options for the time direction:

• Explicit Euler (EE)
• Implicit Euler (IE)
• Crank–Nicolson (CN).

For EE, the finite difference scheme becomes (neglecting boundary and initial conditions
for the moment)

Un+1
i,j − Un

i,j

k
= �2

xU
n
i,j + �2

yU
n
i,j (20.7)

An Introduction to ADI and Splitting Schemes 227

Of course, this is an explicit scheme and stability is only conditional. By a von Neumann
stability analysis we can prove that (20.7) is stable if

r = k

h2
1

= k

h2
2

≤ 1

2
(20.8)

where we assume now that the step sizes in the x and y directions are the same (see
Peaceman, 1977).

Rewriting equation (20.7) in a different form allows us to write the approximate solution
at time level n + 1 in terms of the solution at time level n

Un+1
i,j = Un

i,j + k(�2
xU

n
i,j + �2

yU
n
i,j) (20.9)

It is then easy to develop some C++ code to implement this algorithm without the need
to solve a linear system of equations. However, you must keep the constraint (20.8) in
mind (you must satisfy it!) otherwise you will get non-realistic results.

The IE scheme for (20.5) is given by

Un+1
i,j − Un

i,j

k
= �2

xU
n+1
i,j + �2

yU
n+1
i,j (20.10)

This is an unconditionally stable scheme (for all values of k and h) but we see
that the solution at time level n + 1 is defined on both sides of equation (20.10). We
must resort to some kind of matrix solver if we wish to find this solution. A good
treatment is given in Peaceman (1977). For the heat equation we get a system of the
form

AU = F (20.11)

If we assume that the x and y regions have been partitioned into N and M intervals,
respectively, then the matrix A has N row and M columns if we use Dirichlet bound-
ary conditions.

Thus A has a block form. In general, the vector U will have N × M elements, where N

is the number of sub-divisions of the x dimension and M is the number of sub-divisions
of the y dimension.

There are methods for solving systems of the form (20.11) (Peaceman, 1977; Tavella
and Randall, 2000) but such a discussion is outside the scope of this book. The methods
are very advanced, in my opinion, and there are more effective ways of solving such
systems as we shall see in this chapter and the next.

20.3 MOTIVATION AND HISTORY

We now give a short introduction to the origins and history of the ADI and splitting
methods. Like much of numerical analysis, many techniques were developed during the
1960s when the digital computer started to be used to model various industrial, scientific
and engineering problems. Some examples are:

• Reservoir engineering (Peaceman, 1977)

228 Financial Instrument Pricing Using C++

• Solving the heat equations in several dimensions (Douglas and Rachford, 1955)
• Problems in hydrodynamics and elasticity (Yanenko, 1971).

The ADI method was pioneered in the United States by Douglas, Rachford, Peaceman,
Gunn and others. The ADI method has a number of advantages over the methods that
are discussed in section 20.2. First, explicit difference methods are rarely used to solve
initial boundary value problems due to their poor stability properties. Implicit methods
have superior stability properties but unfortunately they are difficult to solve in two or
more dimensions. Consequently, ADI methods became an alternative because they can be
programmed by solving a simple tridiagonal system of equations in the x and y directions,
respectively.

During the period that ADI was being developed, a number of Soviet numerical analysts
(most notably Yanenko, Marchuk, Samarskii and D’Yakanov) were developing splitting
methods (also known as fractional step or locally one-dimensional (LOD) methods) for
solving time-dependent partial differential equations in two and three dimensions.

It would seem that the financial engineering community tends to use the ADI method
when solving multi-factor Black–Scholes equations (see Sun, 1999; Wilmott, 1998) al-
though there is evidence to show that it is inferior to splitting methods, especially when
cross-derivatives (correlation terms) must be modelled. Furthermore, great leaps of faith
have been taken by some authors who think that numerical recipes that work well for
the two-dimensional heat equation can be applied with the same success to convec-
tion–diffusion equations in two and three dimensions. Unfortunately, there is evidence to
show that ADI performs badly for convection-dominated systems. We shall discuss this
particular topic in the next chapter.

In this chapter we introduce the ADI and splitting methods for the two-dimensional heat
equation and shall also pay a fleeting visit to approximating three-dimensional equations
using these methods. However, these are the easiest cases and we must also extend our
knowledge to include answers for the following problems:

• Approximating cross-derivatives in the multi-factor Black–Scholes equation
• How to handle boundary conditions and determine how their approximation affects

accuracy of the scheme
• Approximating multidimensional convection–diffusion problems
• Dealing with convection-dominated problems
• Developing algorithms that we map to C++ code.

In particular, we shall address these issues in the next chapter. We concentrate solely on
splitting methods in that chapter for the following reasons: I find them more appealing
than ADI methods, they tend to perform better, and it would seem that ‘pure ADI’ has
gone out of fashion.

20.4 BASIC ADI SCHEME FOR THE HEAT EQUATION

We shall now introduce the basic ADI scheme for the two-dimensional heat equation, and
for the moment shall neglect boundary and initial conditions. The basic idea behind ADI
is to replace a two-dimensional scheme such as (20.10) (which is implicit in the x and y

directions) by two simpler equations, each of which is implicit in one direction only. To

An Introduction to ADI and Splitting Schemes 229

this end, we devise what is in fact a kind of predictor–corrector scheme (as discussed in
Chapter 11) as follows:

Ũij − Un
ij

k/2
= �2

xŨij + �2
yU

n
ij (20.12a)

Un+1
ij − Ũij

k/2
= �2

xŨij + �2
yU

n+1
ij (20.12b)

Here we see the introduction of an intermediate value in equation (20.12a). This equation
is implicit in x and explicit in y and hence can be solved by LU decomposition or the
Double Sweep method that we examined in Chapter 8. Having found the intermediate
value we then calculate the value of the approximate solution at time level n + 1 using
equation (20.12b). This equation is implicit in y and explicit in x and again can be solved
using LU decomposition or the Double Sweep method.

It can be shown that the scheme (20.12) is unconditionally stable. Thus there are
no restrictions on the mesh size k. The scheme (20.12) is sometimes called the Peace-
man–Rachford scheme.

20.4.1 Three-dimensional heat equation

Let us try to extend the Peaceman–Rachford scheme to three dimensions as follows:

U
n+ 1

3 − Un

k/3
= �2

xU
n+ 1

3 + �2
yU

n + �2
zU

n

U
n+ 2

3 − U
n+ 1

3

k/3
= �2

xU
n+ 1

3 + �2
yU

n+ 2
3 + �2

zU
n+ 1

3 (20.13)

Un+1 − U
n+ 2

3

k/3
= �2

xU
n+ 2

3 + �2
yU

n+ 2
3 + �2

zU
n+1

(notice that we have suppressed the space indices in (20.13) for readability reasons). A
lengthy stability analysis (see Peaceman, 1977) should be that scheme (20.13) is stable if

k

h2
1

≤ 1

2
(20.14)

Thus, the three-dimensional version of the Peaceman–Rachford method is not uncondi-
tionally stable.

The first unconditionally stable ADI method for three dimensions was developed by J.
Douglas Jr. and H. Rachford and is given by

U
n+ 1

3 − Un

k
= �2

xU
n+ 1

3 + �2
yU

n + �2
zU

n

U
n+ 2

3 − U
n+ 1

3

k
+ �2

yU
n = �2

yU
n+ 2

3 (20.15)

Un+1 − U
n+ 2

3

k
+ �2

zU
n = �2

zU
n+1

230 Financial Instrument Pricing Using C++

20.5 BASIC SPLITTING SCHEME FOR THE HEAT EQUATION

Splitting schemes are more ruthless than ADI schemes in the sense that they reduce a
partial differential equation to a series of one-dimensional equations. Each of the latter
equations is then approximated by a suitable one-dimensional finite difference scheme. We
can choose between explicit and implicit schemes, whereas ADI uses an implicit scheme
only. For the two-dimensional heat equation, for example, we define the splitting scheme
by solving two legs in one specific direction. In the case of the explicit splitting scheme
we get

Ũij − Un
ij

�t
= �2

xU
n
ij

Un+1
ij − Ũij

�t
= �2

yŨij

(20.16)

We assume that the mesh size in both x and y directions is a constant h. Then (20.16) is
stable under the condition

r ≡ k

h2
≤ 1

2
(20.17)

(for a proof, see Godunov and Riabenki, 1987). A schematic representation of the above
scheme is shown in Figure 20.1 where the explicit nature of the scheme can be clearly
seen. The implicit splitting scheme for the two-dimensional heat equation is given by

Ũij − Un
ij

�t
= �2

xŨij

Un+1
ij − Ũij

�t
= �2

yU
n+1
ij

(20.18)

and its graphical representation is shown in Figure 20.2.

Ui, j
n+1

Ui+1, j
n

Ui−1, j
n

Ui, j
n

Ui, j+1

Ui j
j~

~

Ui, j−1
~

Ui j
~

Figure 20.1 Mesh for explicit scheme

An Introduction to ADI and Splitting Schemes 231

Ui, j −1
n +1

Ui, j +1
n+1

Ui, j
n+1

Ui +1, j

U i−1, j U i, j
n

~
Ui, j
~

Ui, j
~

~

Figure 20.2 Mesh for implicit scheme

20.5.1 Three-dimensional heat equation

Analysis of the stability of ADI methods shows that approximation with an explicit
operator reduces the stability of the scheme. This suggests using an implicit operator at
each leg or fractional step (Yanenko, 1971). In order to improve the accuracy of this
scheme Yanenko proposes using the weighted scheme

U
n+ 1

3 − Un

k
= �2

x[θU
n+ 1

3 + (1 − θ)Un]

U
n+ 2

3 − U
n+ 1

3

k
= �2

y[θU
n+ 2

3 + (1 − θ)U
n+ 1

3]

Un+1 − U
n+ 2

3

k
= �2

z[θUn+1 + (1 − θ)U
n+ 2

3]

θ ∈ [0, 1]

(20.19)

For example, in the case θ = 1
2 , the scheme (20.19) has second-order accuracy in both

space and time.

20.6 APPROXIMATING CROSS-DERIVATIVES

In many financial engineering applications we must model cross-derivative terms, for
example with various kinds of PDEs for bonds and interest-rate models. To this end, we
devise good schemes for handling these terms. The mathematical financial literature is a

232 Financial Instrument Pricing Using C++

bit fuzzy on this topic. Let us take the following example:

∂u

∂t
= Lu

Lu ∼=
2∑

i,j=1

aij

∂2u

∂xi ∂xj

a11a22 − a2
12 > 0, a11 > 0, a22 > 0

aij constant

(20.20)

Again, Yanenko states that the ADI method is not applicable to solving (20.20) because
its application does not lead to a simple three-point scheme (in fact we get a nine-point
scheme). Instead, the following splitting scheme is proposed

Ũij − Un
ij

�t
= a11�

2
xŨij + a12�

0
x�

0
yU

n
ij

(20.21)
Un+1

ij − Ũij

�t
= a12�

0
x�

0
yŨij + a22�

2
yU

n+1
ij

(Stable and Convergent)

We conclude our discussion of splitting methods by introducing a predictor–corrector
method (compare with Chapter 11) for the three-dimensional heat equation. It consists of
four equations, the first three of which are predictors in the x, y and z directions while
the last equation is a corrector based on the ‘full’ discrete operator:

U
n+ 1

6 − Un

k/2
= �2

xU
n+ 1

6

U
n+ 2

6 − U
n+ 1

6

k/2
= �2

yU
n+ 2

6

U
n+ 1

2 − U
n+ 2

6

k/2
= �2

zU
n+ 1

2

Un+1 − Un

k
= (�2

x + �2
y + �2

z)U
n+ 1

2

(20.22)

Thus, the predictor is based on a splitting scheme.

20.7 HANDLING BOUNDARY CONDITIONS
Of course, when solving initial boundary value problems for the heat equation (and for
any parabolic equation for that matter) we must model the bounded or unbounded region
in which the equation is to be valid. In particular, we must describe the conditions on the
solution at the boundary of the region. There are five main issues that we must address:

• The shape or geometry of the region
• The kinds of boundary conditions (Dirichlet, Neumann, Robins, linearity)

An Introduction to ADI and Splitting Schemes 233

• How to approximate the boundary conditions
• How to incorporate the boundary conditions into the ADI or splitting equations
• Ensuring that boundary approximation does not adversely affect the stability and accu-

racy of the difference approximation.

We now give a brief discussion of each of these topics and focus on creating the
algorithm for the two-dimensional heat equation in a rectangular region with Dirichlet
boundary conditions. In general, it would seem that ADI and splitting methods are better
suited to rectangular regions rather than non-rectangular regions because it is more dif-
ficult to approximate function values and their derivatives on curved boundaries than on
horizontal or vertical boundaries.

In this chapter we concentrate on Dirichlet boundary conditions for the two-dimensional
heat equation, how to approximate such conditions and to incorporate them into ADI and
splitting schemes. A good discussion of these and other issues can be found in Thomas
(1998). In particular, Thomas discusses how to define first-order and second-order approx-
imations to the derivative of the exact solution on the boundary of the region of interest.

We now discuss the case of Dirichlet boundary conditions. To this end, we consider
the model problem on a unit square:

(1)
∂u

∂t
= a

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (x, y) ∈ R, t > 0

(2) u(x, y, t) = g(x, y, t), (x, y) ∈ ∂R, t > 0

(3) u(x, y, 0) = f (x, y), (x, y) ∈ R

R = (0, 1) × (0, 1)

We rewrite the ADI equations (20.12a) and (20.12b) for the two-dimensional heat equation
by grouping known terms on the right-hand side of the equations and unknown terms on
the left-hand side:

(
1 − k

2
�2

x

)
Ũij =

(
1 + k

2
�2

y

)
Un

ij (20.23a)

(
1 − k

2
�2

y

)
Un+1

ij =
(

1 + k

2
�2

x

)
Ũij (20.23b)

In general, there is not much difficulty involved if we wish to calculate the boundary
values of the approximate solution at times n and n + 1. The real challenge is to determine
suitable boundary conditions for the intermediate value in equations (20.23). To this end,
we add the left-hand side of equation (20.23a) to the right-hand side of equation (20.23b)
and vice versa. This give us a formula for the intermediate solution in terms of the solution
at time levels n and n + 1:

Ũij = 1

2

(
1 − k

2
�2

y

)
Un+1

ij + 1

2

(
1 + k

2
�2

y

)
Un

ij (20.24)

234 Financial Instrument Pricing Using C++

This formula allows us to find the appropriate boundary values. For example, in the x

direction these will be:

i = 0

Ũ0j = 1

2

(
1 − k

2
�2

y

)
g(0, jh2, (n + 1)k) + 1

2

(
1 + k

2
�2

y

)
g(0, jh2, nk)

i = Mx

ŨMx,ij
= 1

2

(
1 − k

2
�2

y

)
g(1, jh2, (n + 1)k) + 1

2

(
1 + k

2
�2

y

)
g(1, jh2, nk)

(20.25)

Of course, we can find the corresponding boundary conditions in the y direction by
plugging in special index values of j in equation (20.24).

Equation (20.25) is a second-order (in time) accurate approximation to the boundary
condition. An alternative solution is to use the (again) second-order approximation

Ũ0j = g(0, jh2, (n + 1
2)k)

ŨMx,ij
= g(1, jh2, (n + 1

2)k)
(20.26)

Thus, you may choose between (20.25) and (20.26) as each gives second-order accuracy.
See Thomas (1998) for a justification.

20.8 ALGORITHMS AND DESIGN ISSUES

We now discuss how to solve ADI systems. First, we set up the system of equations,
then we describe the solution using some kind of pseudo-code and, finally, we map this
pseudo-code to C++. Since ADI is essentially a method for solving an n-dimensional
problem as a series of (simpler) one-dimensional problems we would hope that many of
our classes and results from previous chapters can also be used in this chapter. This hope
is realistic. In particular, we shall be able to reuse the following artefacts:

• Data structures for vectors and numeric matrices (template classes Vector and Numer-
icMatrix). Furthermore, we will need structures for tridiagonal matrices.

• Code that generates meshes in one and two dimensions.
• Mechanisms that implement divided difference schemes in one and two directions. For

example, we wish to implement divided differences for first and second derivatives in
the x and y directions.

• Algorithms, schemes and code that solve linear systems of equations, in particular
LU decomposition and Double Sweep method (see Chapter 8) in conjunction with
tridiagonal matrices.

Using the above artefacts improves the quality of our code for ADI in a number of ways.
First, this approach improves reliability because we are using code that has already been
written, reviewed and tested, albeit in a possibly simpler context. It is hoped that the
same code can be used as is in the present context. Second, this approach improves the

An Introduction to ADI and Splitting Schemes 235

understandability of the code because we are using the code as façades or black boxes;
you do not need to know about the internals of the code because you just need to use
the appropriate interfaces. Finally, the resulting code is maintainable. This means that
you can change and modify the source code to suit new wants and needs. For example,
the C++ code that implements ADI and splitting schemes can be extended to include
models for convection–diffusion equations in general and multi-factor Black–Scholes
equations in particular. It may even be possible to extend the two-dimensional schemes
and corresponding code to three dimensions.

Let’s get down to business. We develop the algorithms that describe the ADI scheme
(20.12) or its equivalent representation (20.23). We discuss the algorithm that gets us
from the solution U at time level n to the solution U at level n + 1. We first describe
the algorithm in general terms. Once we have done that we then describe the algorithm
in more detail so that the cognitive distance between this level of detail and C++ is not
too great.

The first cut algorithm for solving (20.23) is described by a series of activities:

A1: Calculate the right-hand side (RHS) of equation (20.23a)
A2: Create the stencil (system of equations) for (20.23a)
A3: Solve system of equations (by LU decomposition, for example)

A4: Calculate the right-hand side (RHS) of equation (20.23b)
A5: Create the stencil (system of equations) for (20.23b)
A6: Solve system of equations (by LU decomposition, for example)

This approach is based on the algorithms in Thomas (1998). Each of the above activities
has input I and output O. It is useful to motivate the information flow by an activity
diagram in UML. We develop a somewhat more top-down approach in the first instance
in order to scope the problem. To this end, the major input and output from the top-level
activity corresponding to equations (20.23) is given in Figure 20.3. We decompose the
main activity into two sub-activities, each one corresponding to a ‘leg’(whether it be x

or y) in the ADI scheme (20.23). This is shown in Figure 20.4. We now can subsume
the activities A1 to A6 above under each leg: Leg 1 consists of activities A1, A2 and A3
while Leg 2 consists of activities A4, A5 and A6.

ADI activity

Un

Boundary
condition

Un + 1

Figure 20.3 ADI main activity

236 Financial Instrument Pricing Using C++

Leg 1

Un

Boundary
condition Un + 1

Leg 2

~
U(Un + 1/2)

Figure 20.4 Activity decomposition x and y legs

There is a lot of commonality between the eventual code that implements Legs 1 and
2. In fact they share the following common steps:

• Calculate a RHS vector (A1 and A4)
• Create a tridiagonal matrix (A2 and A5)
• Solve the tridiagonal system (A3 and A6).

The steps for these algorithms are given in detail in Thomas (1998) in the form of pseudo-
code. In our code we can give C++ as an alternative to this pseudo-code.

20.9 CONCLUSIONS AND SUMMARY

We have given an introduction to Alternating Direction Implicit (ADI) and splitting meth-
ods that are used in engineering and science to solve multidimensional partial differential
equations. These methods are based on the assumption that a multidimensional prob-
lem can be broken down into a series of one-dimensional problems. We then solve each
sub-problem using the techniques for one-factor equations, already discussed in earlier
chapters of this book.

We have included this chapter for a number of reasons. First, there is growing interest
in ADI as can be seen in the financial literature, and it is probably a good idea to
present the essence of the method for a simple but important model problem, namely the
two-dimensional heat equation. Second, ADI is a bit overhyped and in some cases it is
better to use splitting methods. There is some evidence to show that splitting methods
give better results than ADI for two-factor Black–Scholes equations. Third, ADI and
splitting methods are easy to understand and to implement and they are preferable to
direct methods (as discussed in Tavella and Randall, 2000) in this respect. Thus, these
methods are easier to understand for a reader with a non-numerical analysis background.
Finally, once you have understood how ADI and splitting methods work for diffusion
problems it is relatively easy to move to more complex problem such as multidimensional
convection–diffusion PDE and multi-factor Black–Scholes equations. This is the content
of the next chapter.

21
Numerical Approximation of Two-Factor

Derivative Models

21.1 INTRODUCTION AND OBJECTIVES

In this chapter we discuss how to approximate two-factor derivative models using finite dif-
ference schemes. We focus on ADI and splitting methods because they are easy to implement
and build on the methods that we developed in Chapter 20. Furthermore, they are easier to
understand than directly discretising space and time variables simultaneously (for an intro-
duction to this approach, see Peaceman, 1977, and Tavella and Randall, 2000, for example).

The general two-dimensional Black–Scholes equation is given by

− ∂u

∂t
+ L1u + L2u + L3u = f

Lju ≡ σj

∂2u

∂x2
j

+ µj

∂u

∂xj

+ bju, j = 1, 2

L3u = ρ12
∂2u

∂x1∂x2
(Cross-term)

(21.1)

Here we see that there are three main operators, namely two convection–diffusion opera-
tors and a cross-term. These correspond to single-factor models and coupling, respectively.
There are many special cases of (21.1) in the numerical analysis and financial literature
and we give an introduction to some of these cases and how they are approximated using
finite difference schemes. There is a vast literature on this subject (dating from the 1950s)
and, in particular, the ADI method is also making inroads in the financial literature. The
main issue is how to split a two-dimensional problem into simpler problems, proving that
the scheme is stable (or not), avoiding spurious oscillation and proving that the schemes
are (reasonably) accurate. We do not pretend to have all the answers but we do give some
guidelines and results based on a number of successful models for two-factor problems.

21.2 TWO-FACTOR MODELS IN FINANCIAL ENGINEERING
We now give some interesting examples of problems in financial engineering that can be
approximated by parabolic partial differential equations in two ‘space’ variables. These
variables will have a specific meaning depending on the context. For example, options
based on the maximum or minimum of two stocks have the space variables based on the
variation of the two stocks.

21.2.1 Asian options

An Asian option is a contract that gives the holder the right to buy the underlying asset
for an average price over some prescribed interval. This kind of option is popular in the
currency and commodity markets and there are two ways of averaging the value:

• Arithmetic averaging
• Geometric averaging

238 Financial Instrument Pricing Using C++

If the underlying asset is assumed to be lognormally distributed then the geometric average
of the asset will also be lognormally distributed. Arithmetic averaging takes the arithmetic
average of the underlying asset.

We must also determine when this sampling takes place:

• Discretely averaged samples
• Continuously averaged samples.

The formulae for the averaging scenarios are shown in equations (21.2) and (21.3) and
are well documented in the literature (Haug, 1998; Wilmott et al., 1993).

Arithmetic averaging

Continuous: I = 1

t

∫ t

0
S(τ)dτ

Discrete: I = 1

n

n∑
j=1

Sj

(21.2)

Geometric averaging

Continuous: exp

(
1

t

∫ t

0
log S(τ)dτ

)

Discrete:

 n∏

j=1

Sj

1
n

(21.3)

The corresponding PDEs are given in equations (21.4) and (21.5):

∂V

∂t
+ S

∂V

∂I
+ 1

2
σ 2S2 ∂2V

∂S2
+ (rS)

∂V

∂S
− rV = 0

I ≡
∫ t

0
S(τ)dτ (21.4)

Asian option (Arithmetic averaging)

∂V

∂t
+ log S

∂V

∂I
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

I =
∫ t

0
log S(τ)dτ (21.5)

We note that these equations are convection–diffusion in the S variable (thus, of parabolic
type) while in the I direction it is essentially a first-order hyperbolic equation:

∂V

∂t
+ S

∂V

∂I
= 0

∂V

∂t
+ log S

∂V

∂I
= 0

(21.6)

and since we only have a derivative of, at most, order one in the I direction we can
only accommodate one boundary condition. Furthermore, centred difference schemes

Numerical Approximation of Two-Factor Derivative Models 239

are not suitable (they are weakly stable) and we must resort to one-sided (upwinded)
schemes (Peaceman, 1977; Duffy, 1977) that take the so-called characteristic direction
of the first-order equations into account.

21.2.2 Convertible bonds with random interest rates

A convertible bond is like a normal bond except that it may be exchanged for an asset.
The exchange is called conversion. The corresponding PDE is:

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ ρσSw

∂2V

∂S ∂r
+ 1

2
w2 ∂2V

∂r2

+ rS
∂V

∂S
+ (u − wλ)

∂V

∂r
− rV = 0

λ(r, S, t): Market price of risk (21.7)

− 1 ≤ ρ(r, S, t) ≤ 1: Correlation

This equation is based on the stochastic differential equations (SDEs) that describe the
evolution of the asset and random interest rate:

ds = µ(S, t)S dt + σ(S, t)S dX1

dr = u(r, t) dt + w(r, t) dX2

(21.8)

Here, dX1 is a normally distributed random variable with mean 0 and variance dt . The drift
µ and volatility σ depend on both the asset price S and time t . For the SDE describing the
interest rate, dX2 is a normally distributed random variable with mean 0 and variance dt .

We note that the convertible bond has an underlying asset of either European or Amer-
ican type. In the latter case we note the existence of a free boundary that depends on both
the interest rate r and time t (see Sun, 1999).

Note the presence of the cross-derivative term in equation (21.7) in which the correla-
tion of the random variables in S and r is given by:

E[dX1, dX2] = ρ(S, r, t) dt (21.9)

In Chapter 20 we discussed a number of finite difference discretisations for approximating
this cross-term.

21.2.3 Options with two underlying assets

A general PDE that describes a derivative quantity that depends on two underlying assets
is given by:

∂V

∂t
+ 1

2
σ 2

1 S2
1
∂2V

∂S2
1

+ (r − D1)S1
∂V

∂S1
+ 1

2
σ 2

2 S2
2
∂2V

∂S2
2

+ (r − D2)S2
∂V

∂S2
+ ρσ1σ2S1S2

∂2V

∂S1 ∂S2
− rV = 0 (21.10)

(Topper, 1998). The PDE is played out in a general two-dimensional region D having
boundary R. On one part of the boundary we can specify Dirichlet boundary conditions

240 Financial Instrument Pricing Using C++

while on its complement we specify Neumann boundary conditions. We must also specify
terminal conditions:

V (S1, S2, T) = g1(S1, S2) in D

V (S1, S2, t) = g2(S1, S2, t) on R1 (21.11)

∂V

∂η
(S1, S2, t) = G3(S1, S2, t) on R2

When the region D is rectangular we can apply finite differences to approximate the
space variable, but if it has a more general form we may need to resort to finite element
methods (Strang and Fix, 1973; Topper, 1998). In particular, approximating the derivatives
of the option variable on curved boundaries is a challenge if we use finite differences.

21.2.4 Basket options

It is known that there is no known analytical solution to options on baskets and we must
thus resort to numerical approximations. A common simplifying technique is to combine
the volatilities of the underlying assets and their correlations into a single volatility of
the basket. The basket is then treated as a single underlying. In this section we pose the
problems as a PDE:

∂V

∂t
+ 1

2
σ 2

1 S2
1
∂2V

∂S2
1

+ (r − D1)S1
∂V

∂S1
+ 1

2
σ 2

2 S2
2
∂2V

∂S2
2

+ (r − D2)S2
∂V

∂S2
+ ρσ1σ2S1S2

∂2V

∂S1 ∂S2
− rV = 0 (21.12)

in a bounded domain D, as shown in Figure 21.1.

R1 R2

R = R1 ∪ R2

∂n
∂V

Figure 21.1 Region of integration

The corresponding terminal and boundary conditions are given by:

V (S1, S2, T) = max(0, X − (w1S1 + w2S2)) in D

V (S1, 0, t) = g

(
S1,

X

w2
, t

)

Numerical Approximation of Two-Factor Derivative Models 241

V (L, S2, t) = g

(
S2,

X

w1
, t

)
(21.13)

V (L, S, t) = 0

V (S1, M, t) = 0

(Topper, 1998) where w is a weight corresponding to each of the underlyings.

21.2.5 Fixed-income applications

This section is a short introduction to a two-factor model that links instrument-specific
cash flows and random prices to the observed term structure of interest rates. As with
convertible bonds we assume the following SDEs:

dr ≡ µ1(v, θ, t) dt + σ dt

dθ ≡ µ2(v, θ, t) dt + σθ dZθ

(21.14)

where v is a special variable. If we apply Ito’s lemma we get the following PDE:

∂P

∂t
= −(r + λ)P − µ1

∂P

∂r
− σ 2

2

∂2P

∂r2
− µ2

∂P

∂v
− σ 2

θ

2

∂2P

∂v2
− c − λ (21.15)

where P is the price that we wish to calculate. In general, r , λ and the µ’s depend on
both r and v (Levin, 2000).

21.3 FINITE DIFFERENCE APPROXIMATIONS

The two main competing finite difference schemes are ADI and splitting. ADI seems to
be more popular than splitting methods in the financial literature, and there are historical
reasons for this state of affairs, the main one being that splitting methods originated in the
former Soviet Union and many of the original articles may have been difficult to access
by western researchers in the past. However, there is anecdotal evidence to show that
splitting methods give better results than ADI for two-dimensional convection–diffusion
problems (Levin, 2000).

We have various choices when approximating a two-factor model:

1: ADI with standard centred differencing
2: Splitting with standard centred differencing
3: ADI with exponential fitting
4: Splitting with exponential fitting.

We stress that we are still developing the above kinds of schemes and these will be dealt
with in more detail in Duffy (2004b).

242 Financial Instrument Pricing Using C++

21.4 ADI SCHEMES FOR ASIAN OPTIONS

We rewrite the PDE for an Asian option (21.4) and (21.5) in the slightly more gen-
eral form:

−c
∂V

∂t
+ ε

∂2V

∂S2
+ a

∂V

∂S
+ α

∂V

∂I
− bV = f (21.16)

We apply the ADI by discretising (21.16) in two steps. We first proceed from time level
n to n + 1

2 by using the implicit exponentially fitted scheme (see Chapter 18) in S and
centred differencing in the I direction:

− c
n+ 1

2
ij

V
n+ 1

2
ij − V n

ij

1
2k

+ σ
n+ 1

2
ij

V
n+ 1

2
i+1j − 2V

n+ 1
2

ij + V
n+ 1

2
i−1j

h2

+ a
n+ 1

2
ij

V
n+ 1

2
i+1j − V

n+ 1
2

i−1j

2h
+ α

n+ 1
2

ij

V n
ij+1 − V n

ij−1

2m

− b
n+ 1

2
ij V

n+ 1
2

ij = f
n+ 1

2
ij (21.17)

where k, h and m are the mesh sizes in the time, and S and I are variables. This equation
can also be written in the form

A
n+ 1

2
ij V

n+ 1
2

i−1j + B
n+ 1

2
ij V

n+ 1
2

ij + C
n+ 1

2
ij V

n+ 1
2

i+1,j = r
n+ 1

2
ij (21.18)

which we can solve, for example, by the use of LU decomposition or by the Double
Sweep method (see Chapter 8).

The next step is to obtain the solution at level n + 1 in terms of the solution at level
n + 1

2 by using explicit fitting (see Chapter 18) and the implicit method in the I direction:

− cn+1
ij

V n+1
ij − V

n+ 1
2

ij

1
2k

+ σn+1
ij

V
n+ 1

2
i+1j − 2V

n+ 1
2

ij + V
n+ 1

2
i−1j

h2

+ an+1
ij

V
n+ 1

2
i+1j − V

n+ 1
2

i−1j

2h
+ αn+1

ij

V n+1
ij+1 − V n+1

ij−1

2m

− bn+1
ij V

n+ 1
2

ij = f n+1
ij (21.19)

Again, we can write (21.19) as a tridiagonal system:

An+1
ij V n+1

ij−1 + Bn+1
ij V n+1

ij + Cn+1
ij V n+1

ij+1 = rn+1
ij (21.20)

21.4.1 Upwinding

In equations (21.17) and (21.19) we have approximated the first-order derivative with
respect to the independent variable I by using centred differences. A better approach

Numerical Approximation of Two-Factor Derivative Models 243

is to use a one-sided scheme depending on the sign of the coefficient α appearing in
equation (21.16). The correct schemes are:

for α > 0, α
∂V

∂I
∼ α

ij+ 1
2

V n
ij+1 − V n

ij

m

for α < 0, α
∂V

∂I
∼ α

ij− 1
2

V n
ij − V n

ij−1

m

(21.21)

Of course, we must augment this problem with Dirichlet boundary conditions.

21.5 SPLITTING SCHEMES

Let us consider the general two-dimensional equation:

∂u

∂t
+ Lu = f in D × (0, T)

u = g in D, t = 0
(21.22)

where L is an operator of the form in equation (21.1) and D is some two-dimensional
bounded region in which the equation is defined. The function f is a non-homogeneous
term defined on D × (0, T). Let us assume that we have finite difference approximations

 to the components of the operator L. Then our first splitting method (with f = 0) is
given by the following sequence of Crank–Nicolson schemes (written in vector form):

u
n+ 1

2 − un

k
+
n

1
u

n+ 1
2 + un

2
= 0

un+1 − u
n+ 1

2

k
+

n+ 1
2

2

un+1 + u
n+ 1

2

2
= 0

(21.23)

This set of equations can be solved by iterated LU decompositions, as discussed in
Chapter 20 and Thomas (1998).

The finite difference schemes defined by the discrete operators
 in system (21.23) can
take various forms depending on the peculiarities of the continuous problem:

• Use exponential fitting for convection-dominated flow
• Upwinding for first-order hyperbolic operators
• Traditional finite difference methods (for example, centred differencing).

This represents work in progress. A full discussion is provided in Duffy (2004b).

21.6 CONCLUSIONS AND SUMMARY

We have given a discussion of how to apply ADI and splitting methods to several
two-factor derivatives models. In general, these approximate methods replace a two-
dimensional problem into a sequence of simpler one-dimensional problems that we solve
using tridiagonal solvers at each time level. Of course, we have to incorporate boundary
conditions into the finite difference schemes.

244 Financial Instrument Pricing Using C++

We summarise the strengths and weaknesses of the finite difference method. First,
the strengths:

• Easy to map a PDE to a FDM scheme (use divided difference)
• Stability and convergence properties known
• Can be applied to a wide range of one-factor and two-factor problems
• Simpler than FEM or finite volume (less mathematical sophistication required)
• Is far superior to the binomial method.

The difficulties are:

• Difficult with non-rectangular domains
• Does not scale well to more than three factors
• Conventional schemes can show spurious oscillations (in fairness, the same holds

for FEM)
• Lots of tricks to be learned; it is as much an art form as a science.

Part V

Design Patterns

22
A C++ Application for Displaying

Numeric Data

22.1 INTRODUCTION AND OBJECTIVES

Part V is where we start applying design principles to the software that we are going
to write. It takes a lot of money to create bad software products so it is in everyone’s
interest to ensure that our software products are flexible and maintainable. This comes
at a price of course. We have to invest up-front in thinking about how our designs will
look. To this end, we shall use and apply the established design patterns as documented
in Gamma et al. (1995) and Buschmann et al. (1996).

In this chapter we introduce a fully fledged test application that uses many of the foun-
dation classes from previous chapters. The emphasis is on designing and implementing
an application that is easy to understand and maintain. In a sense, the application in this
chapter is a non-trivial ‘Hello World’ example for the financial engineering environment
and we paraphrase it as follows:

Draw the line graphs of the Normal (Gaussian) probability distribution and cumulative distri-
bution functions between the lower limit A and the upper limit B. The line graphs should be
displayed in the Microsoft Excel spreadsheet program. Then generalise the program to other
useful applications in financial engineering.

We develop a solution to this problem by decomposing it into three activities:

A1: Registration
A2: Conversion
A3: Presentation

The core process is to display the two Gaussian functions in Excel and the above three
activities A1, A2 and A3 describe how to achieve this end. The Registration activity
elicits input from the user (using the iostream library). What we are interested in here
is the range [A,B] where the functions will be displayed and the number of intervals N

that we use to sub-divide the interval. The Conversion activity accepts the output from
Registration as well as the definitions of the Gaussian functions as input and produces
two instances of the class Vector as output. These vectors are then dispatched to the
Presentation activity whose responsibility is to display them in Excel. A full discussion
of how Excel works with our C++ classes and code is given in Chapters 28 (presentation
and output issues) and 29 (input issues). Thus, there is a little bit of forward referencing
in this chapter, but we describe the Excel C++ driver as a black box in this chapter while
the internals will be explained in Chapter 28.

The UML activity diagram for the process in this chapter is shown in Figure 22.1.
Here we see how work gets done in the sense that we model the workflow or information
flow in the system. This diagram is important for at least three reasons. First, it is an aid
to understanding the C++ code that we shall discuss in subsequent sections. For example,
the code for each activity is localised in a file. Second, the code for this test application

248 Financial Instrument Pricing Using C++

Keyboard input

Registration Conversion Presentation

A, B, N (Basic
data) Vectors

Displayed data

Figure 22.1 Information flow in application

has extension potential because we have separated the input, processing and output by
designing them as loosely coupled systems. We shall see in later chapters, for example, that
the same basic model as in Figure 22.1 can be used to model the Black–Scholes equation
using finite differences. In this case the Conversion activity will be more complicated than
what is presented here but the interfacing with Registration and Presentation are more
or less the same. Finally, the model in Figure 22.1 can be generalised to large system
development and to this end the author has documented standard reference models for a
range of application areas (see Duffy, 2004a). This model subsumes many applications as
special cases. We can then apply and instantiate these reference models to real financial
applications, thus improving developer productivity. This application represents the first
step on the road to creating large applications in financial engineering. We adopt an
incremental approach and we advance in small ‘hops’. We also discuss a number of
extensions to the code in order to make it more flexible and reusable. The solutions will
be the topics of Chapters 23, 24 and 25 where we introduce Design Patterns.

Now is the time to describe each of the activities in Figure 22.1 and how we implement
them in C++.

22.2 INPUT MECHANISMS

We are interested in plotting line graphs in Excel. To this end, we need to give some input:

• The range [A,B] on the real line where the graph will be displayed
• The number of sub-intervals N in order to partition [A,B].

Based on the Registration activity we create code that produces the necessary information,
as follows:

#include <iostream>
using namespace std;
void Registration(double& A, double& B, int& N)
{ // Initialise A, B and N with values from user *keyboard*

cout << "Give lower value of interval: ";

A C++ Application for Displaying Numeric Data 249

cin >> A;
cout << "Give upper value of interval: ";
cin >> B;
cout << "Give number of subdivisions: ";
cin >> N;

}

This kind of coding style is easy to realise and is useful when we develop new algorithms
or when we wish to test and debug our code.

Some applications may wish to produce the above input based on a dialog box, data file
or Excel. We then replace the above code by another function having the same signature
(input arguments, function name and return type).

22.3 CONVERSION AND PROCESSING MECHANISMS

In this test case we display the Gaussian pdf and cdf functions in Excel. First of all, we
must define these functions as ordinary C functions (we have taken the formulae from
Haug, 1998):

//////////// Gaussian functions /////////////////////////////////
double NormalPdf(double x)
{ // Probability density function (pdf)

double A = 1.0/sqrt(2.0 * 3.1415);
return A * exp(-x*x*0.5);

}

double NormalCdf(double x)
{ // The approximation to the cumulative normal distribution (cdf)

double a1 = 0.4361836;
double a2 = -0.1201676;
double a3 = 0.9372980;

double k = 1.0/(1.0 + (0.33267 * x));

if (x >= 0.0)
{
return 1.0 - NormalPdf(x) * (a1*k + (a2*k*k) + (a3*k*k*k));

}
else
{
return 1.0 - NormalCdf(-x);

}
}

Now, we transform these functions by creating vectors that contain the values of the func-
tions at equi-distributed points in the interval [A,B]. Notice how we use the functionality
of the class Vector in the resulting code:

void Conversion(double& A, double& B, int& N, Vector<double, int> & x,
Vector<double, int> & n_result, Vector<double, int> & N_result)
{

// Step size.
double h = (B-A)/N;
// Calculate input values and call functions.
double current = A;

250 Financial Instrument Pricing Using C++

for (int i = x.MinIndex(); i <= x.MaxIndex(); i++)
{

// Call functions and set values in vectors.
x[i] = current;
n_result[i] = NormalPdf(current);
N_result[i] = NormalCdf(current);
// Calculate next value.
current += h;

}
}

Having created both arrays of x and y values we can then export them to Excel for
presentation.

22.4 OUTPUT AND DISPLAY MECHANISMS

We are now ready to display the graphs in Excel. To this end, we shall use a class called
ExcelDriver that encapsulates a lot of functionality to help us interface with our C++
applications. We shall discuss it in more detail in Chapters 28 and 29. For the moment
we ask the reader to accept things on face value and use ExcelDriver as a black box.
To this end, we offer two member functions that create charts:

Option 1: display one vector
Option 2: display a list of vectors

The first option is useful when we wish to display the result of one calculation while the
second option is useful when we wish to compare the results of several calculations, for
example when we wish to benchmark competing finite difference schemes for ordinary
and partial differential equations.

Let us examine Option 2 first. We have created a C function that implements the
corresponding activity A3 (Presentation) in Figure 22.1. It expects three arrays:

• The array of abscissa points (x axis)
• The arrays corresponding the Gaussian pdf and cdf functions

The code is structured as follows:

1. Start Excel as object and make it visible
2. Create two lists, one containing strings and the other containing the array data
3. Call the CreateChart member function

The resulting code is as follows:

// Create Excel spreadsheet and show values.
void Presentation(const Vector<double, int> & x,
const Vector<double, int> & n_result,
const Vector<double, int> & N_result)

{
try
{

// Excel is invisible initially.
cout << "Creating Excel output, please wait a moment...";

A C++ Application for Displaying Numeric Data 251

// Create and initialise Excel.
ExcelDriver & excel = ExcelDriver::Instance();
excel.MakeVisible(true); // Default is INVISIBLE!

cout << " instance \n";
// Create list with function + derivatives + labels.
list<Vector<double, int> > functions;
list<string> labels;
functions.push_back(n_result);
functions.push_back(N_result);

labels.push_back("pdf");
labels.push_back("cdf");

cout << "chart I\n";
// Display list of function + derivatives in single chart.
excel.CreateChart(x, labels, functions, "Combined Functions");
// Create other charts on another sheet
excel.CreateChart(x, n_result, "n", "X", "Y");
excel.CreateChart(x, N_result, "N (integrated)");

}
catch(string error)
{
cout << error << endl;

}
}

It is also possible to display individual functions without having to put them into a list (as
in the above code). Instead, we can create charts by calling another overloaded member
function, as the following specific code shows:

excel.CreateChart(x, n_result, "n", "X", "Y");
excel.CreateChart(x, N_result, "N (integrated)");

This function has the following signature:

void CreateChart(
const Vector<double, int> & x, const Vector<double, int> & y,
const std::string& chartTitle,
const std::string& xTitle = "X", const std::string& yTitle = "Y")

Notice the presence of the default values for the text that annotates the x and y axes of
the corresponding charts.

22.4.1 Ensuring that Excel is started only once

The reader may have noticed the following code in the previous section:

ExcelDriver & excel = ExcelDriver::Instance();

In this case we have implemented a so-called Singleton pattern in order to ensure that
Excel gets started only once during the application. We have implemented this pattern by
defining a static object as follows:

static ExcelDriver& Instance()
{

252 Financial Instrument Pricing Using C++

static ExcelDriver singleton;
return singleton;

}

There are no public constructors in the class ExcelDriver, thus the only way to instan-
tiate Excel is by calling this static member function. This approach improves reliability
and efficiency.

We introduce the Singleton pattern in Chapter 23.

22.5 PUTTING IT ALL TOGETHER
Having discussed how the individual activities are implemented we now bring all the
pieces together in a main program. The code is easy to follow because we have partitioned
the problem into smaller, understandable pieces.

int main()
{
double A, B;
int N;

// Run Registration activity A1
Registration(A, B, N);

cout << "A etc " << A << ", " << B << ", " << N << endl;

// Create vectors.
Vector<double, int> x(N+1);
Vector<double, int> n_result(N+1);
Vector<double, int> N_result(N+1);

// Run Conversion activity A2
Conversion(A, B, N, x, n_result, N_result);

cout << "display " << endl;
// Run Presentation activity A3
Presentation(x, n_result, N_result);

// Wait for input.
cout << "Press ANY key to continue: ";

string abc;
cin >> abc;

return 0;
}

22.6 OUTPUT
We now show some examples of output that Excel produces. We first show the chart that
is produced by sending a list of Vector object to the Excel driver (Figure 22.2).

Of course, it is possible to display each function as a separate Excel chart as the
examples in Figures 22.3 and 22.4 show.

This concludes the main steps in the execution of the activities A1, A2 and A3 in
Figure 22.1. We can modify the code to suit to our needs.

22.7 OTHER FUNCTIONALITY
There are many applications that can benefit from the Excel driver class. We discuss two
particular examples, namely using Excel to read and write matrices and using Excel in

A C++ Application for Displaying Numeric Data 253

X pdf cdf X n X N (integrated)
−4 0.000134 3.2E-05 −4 0.000134 −4 3.2E-05

−3.6 0.000612 0.00016 −3.6 0.000612 −3.6 0.00016
−3.2 0.002384 0.00069 −3.2 0.002384 −3.2 0.00069
−2.8 0.007916 0.002562 −2.8 0.007916 −2.8 0.002562
−2.4 0.022395 0.008208 −2.4 0.022395 −2.4 0.008208

−2 0.053992 0.022759 −2 0.053992 −2 0.022759
−1.6 0.110922 0.054798 −1.6 0.110922 −1.6 0.054798
−1.2 0.194189 0.115061 −1.2 0.194189 −1.2 0.115061
−0.8 0.289696 0.211861 −0.8 0.289696 −0.8 0.211861
−0.4 0.368276 0.344592 −0.4 0.368276 −0.4 0.344592

−5.55E-16 0.398948 0.500007 −5.55E-16 0.398948 −5.55E-16 0.500007
0.4 0.368276 0.655408 0.4 0.368276 0.4 0.655408
0.8 0.289696 0.788139 0.8 0.289696 0.8 0.788139
1.2 0.194189 0.884939 1.2 0.194189 1.2 0.884939
1.6 0.110922 0.945202 1.6 0.110922 1.6 0.945202

2 0.053992 0.977241 2 0.053992 2 0.977241
2.4 0.022395 0.991792 2.4 0.022395 2.4 0.991792
2.8 0.007916 0.997438 2.8 0.007916 2.8 0.997438
3.2 0.002384 0.99931 3.2 0.002384 3.2 0.99931
3.6 0.000612 0.99984 3.6 0.000612 3.6 0.99984

4 0.000134 0.999968 4 0.000134 4 0.999968

Figure 22.2 Combined output display

Combined Functions

−5 −4 −3 −2 −1 0 1 2 3 4 5
X

Y pdf

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 22.3 Chart display of results for finite difference scheme

254 Financial Instrument Pricing Using C++

Combined Functions

0

0.2

0.4

0.6

0.8

1

1.2

−5 −4 −3 −2 −1 0 1 2 3 4 5

X

Y cdf

Figure 22.4 Cell data of results for finite difference scheme

order to print the results from finite difference schemes for ordinary and partial differen-
tial equations.

22.7.1 Accessing cell data

We now discuss another kind of output in Excel. We can use the Excel driver class to
write a matrix to Excel. To this end, consider the following matrix:

// 2 rows, 4 columns, start indices = 1
NumericMatrix<double> matrix(2, 4, 1, 1);
matrix(1, 1) = 1; matrix(1, 2) = 2; matrix(1, 3) = 3;
matrix(1, 4) = 4; matrix(2, 1) = 5; matrix(2, 2) = 6;
matrix(2, 3) = 7; matrix(2, 4) = 8;

We now prepare the matrix for presentation in Excel by defining the labels for the rows
and columns of the Excel-based matrix:

// Create matrix labels.
list<string> rowLabels;
rowLabels.push_back("R1");
rowLabels.push_back("R2");

list<string> columnLabels;
columnLabels.push_back("C1");
columnLabels.push_back("C2");
columnLabels.push_back("C3");
columnLabels.push_back("C4");

We now create the cell data structure by calling the appropriate function in the Excel
driver class:

A C++ Application for Displaying Numeric Data 255

// Display matrix in Excel.
excel.AddMatrix("MyMatrix", matrix, rowLabels, columnLabels);

The output from this effort is:

C1 C2 C3 C4
R1 1 2 3 4
R2 5 6 7 8

22.7.2 Cell data for functions

Instead of plotting functions as charts (as in section 22.6, for example) it is possible to
display the data in matrix form, as the following example shows:

X pdf cdf X n X N (integrated)

−5 1.49E-06 2.92E-07 −5 1.49E-06 −5 2.92E-07

−4.75 5.03E-06 1.03E-06 −4.75 5.03E-06 −4.75 1.03E-06

−4.5 1.6E-05 3.45E-06 −4.5 1.6E-05 −4.5 3.45E-06

−4.25 4.77E-05 1.08E-05 −4.25 4.77E-05 −4.25 1.08E-05

−4 0.000134 3.2E-05 −4 0.000134 −4 3.2E-05

−3.75 0.000353 8.92E-05 −3.75 0.000353 −3.75 8.92E-05

−3.5 0.000873 0.000234 −3.5 0.000873 −3.5 0.000234

−3.25 0.002029 0.00058 −3.25 0.002029 −3.25 0.00058

−3 0.004432 0.001355 −3 0.004432 −3 0.001355

−2.75 0.009094 0.002987 −2.75 0.009094 −2.75 0.002987

−2.5 0.017529 0.00622 −2.5 0.017529 −2.5 0.00622

−2.25 0.03174 0.012236 −2.25 0.03174 −2.25 0.012236

−2 0.053992 0.022759 −2 0.053992 −2 0.022759

−1.75 0.086279 0.040062 −1.75 0.086279 −1.75 0.040062

−1.5 0.12952 0.066803 −1.5 0.12952 −1.5 0.066803

−1.25 0.182652 0.105641 −1.25 0.182652 −1.25 0.105641

−1 0.241974 0.158651 −1 0.241974 −1 0.158651

−0.75 0.301142 0.226636 −0.75 0.301142 −0.75 0.226636

−0.5 0.352071 0.308553 −0.5 0.352071 −0.5 0.308553

−0.25 0.386674 0.401297 −0.25 0.386674 −0.25 0.401297

0 0.398948 0.499993 0 0.398948 0 0.499993

In this way we can (mis)use Excel as a persistent datastore for matrices and vectors.

22.7.3 Using Excel with finite difference schemes

In Chapter 11 we introduced quite a few finite difference schemes for scalar, linear initial
value problems (IVP). The results were in the form of Vector objects and we used the

256 Financial Instrument Pricing Using C++

iostream library to print the results. The disadvantage in this case is that it is difficult
to visualise if the answers are good or not or how to compare the different schemes. What
we would like to do is to display the results of different schemes in one Excel chart! To
this end, we use the following function in the Excel driver to display a list of vectors:

void CreateChart(
const Vector<double, int>& x, const list<string>& labels,
const list<Vector<double, int> > & vectorList,
const std::string& chartTitle, const std::string& xTitle = "X",
const std::string& yTitle = "Y")

Applying this function in practice is easy, as the following code shows. First, we define
a function that displays a list of vectors in Excel:

void printInExcel(const Vector<double, int>& x, // X array
const list<string>& labels, // Names of vectors
const list<Vector<double, int> >& functionResult)

// The list of Y values
{ // Print a list of Vectors in Excel.

cout << "Starting Excel\n";
ExcelDriver & excel = ExcelDriver::Instance();

excel.MakeVisible(true); // Default is INVISIBLE!

// Don’t make the string names too long!!
excel.CreateChart(x, labels, functionResult,

string("FDM Scalar IVP"),
string("Time Axis"), string ("Value"));

}

We now use this function in the code that approximates the solutions of initial value
problems (IVP) using finite difference schemes (see Chapter 11 for the full details). We
first of all define an initial value problem and then approximate it using several schemes.
The results from each scheme are placed in a list that is then offered to the Excel driver
chart function.

The following function defines the right-hand side of the IVP:

double RHS(const double& d)
{ // Right hand side function in IVP

return ::sin(d);
}

The following function defines the coefficient of the zero-order term in the IVP:

double a(const double& d)
{ // Coefficient of zero derivative term in IVP

return 5.0;
}

// The continuous problem
Range<double> r(0.0, 1.0);
ScalarIVP<double> ivp1(r, 1.0);
ivp1.Rhs(RHS);
ivp1.Coeff(a);

A C++ Application for Displaying Numeric Data 257

Having defined the continuous problem, we use several finite difference schemes. First
of all we must define the data structures for the chart function:

// Stuff for Excel output
Vector<double, int> x = r.mesh(N); // Length N+1, start index 1
list<string> labels; // Names of each vector
list<Vector<double, int> > functionResult;// The list of Y values

We now define the object that represents the IVP solver (notice that N is the number
of divisions of the interval of integration). In this case we commence with the explicit
Euler scheme:

ScalarIVPSolver<double, int> ivpSol(ivp1, EEuler);
ivpSol.steps(N);

We now add the necessary information to the lists:

labels.push_back("EEuler");
Vector<double, int> res = ivpSol.result();
functionResult.push_back(res);

We now set the finite difference scheme type to other values and add the resulting output
to the list:

ivpSol.setType(Fitted);
labels.push_back(string("Fitted"));
res = ivpSol.result();
functionResult.push_back(res);

ivpSol.setType(IEuler);
labels.push_back(string("IEuler"));
res = ivpSol.result();
functionResult.push_back(res);

ivpSol.setType(PC);
labels.push_back(string("PredCorr"));
res = ivpSol.result();
functionResult.push_back(res);

Having done all this work, we now call the function to display the list in the Excel driver:

printInExcel(x, labels, functionResult);

Finished! The output from these endeavours is shown in Figure 22.5 and the corresponding
numeric output is:

Time Axis EEuler Fitted IEuler PredCorr

0 1 1 1 1

0.1 0.509983 0.622165 0.679911 0.637429

0.2 0.274859 0.400618 0.472976 0.418136

0.3 0.166981 0.273632 0.341278 0.288194

0.4 0.122432 0.203694 0.259481 0.213828

0.5 0.109159 0.16798 0.21063 0.17386

258 Financial Instrument Pricing Using C++

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Time axis

V
al

u
e

Explicit Euler
Duffy Fitted
Implicit Euler
Predictor Corrector

Figure 22.5 FDM scalar IVP

0.6 0.111044 0.152581 0.183368 0.15499

0.7 0.119944 0.148997 0.170069 0.148842

0.8 0.131707 0.152014 0.165601 0.150126

0.9 0.144186 0.15842 0.166499 0.155486

1 0.15624 0.166219 0.170413 0.162776

22.8 USING EXCEL AND PROPERTY SETS

The code in this chapter can be made a bit more flexible by working with Property
and SimplePropertySet classes instead of hard-coded parameters as seen in the
Registration function in section 22.2 above. In the current strategy we let the imple-
mentation of the activities in Figure 22.1 communicate via properties. We focus on one
specific example, namely, inputting the following parameters:

• The range [A,B] where the graph will be displayed
• The number of sub-intervals N to partition [A,B]

There are two objectives in this section. First, we wish get our input from Excel itself
and, second, the data should be placed in a SimplePropertySet object. To this end,
we create a function to extract appropriate information from Excel:

// Initialise A, B and N with values from user.
void GetInput(SimplePropertySet<string, double> & input)
{

A C++ Application for Displaying Numeric Data 259

try
{
ExcelDriver & excel = ExcelDriver::Instance();

// Add property set.
excel.AddPropertySet(input);
excel.MakeVisible();

// Wait...
cout << "Enter values in Excel spreadsheet." << endl;
cout << "When done, make sure cursor is not blinking and
type a letter followed by Enter.";

string abc;
cin >> abc;

// Get property set.
excel.GetPropertySet(input);

}
catch(string & error)
{
cout << error << endl;

}
}

The cell data structure in this case is given by:

A −4
B 4
N 10

Using this function in client code goes as follows:

// Declare variables.
SimplePropertySet<string, double> input;
input.add(Property<string, double>("A", 0.0));
input.add(Property<string, double>("B", 1.0));
input.add(Property<string, double>("N", 10.0));

// Run Registration activity.
GetInput(input);

We can then use this property set in other functions if, for example, we need to calculate
vectors:

void Calculate(const SimplePropertySet<string, double> & input,
Vector<double, int> & x, // etc.)

Thus, if we can define a standard representation for the data structures in an application
we shall be in a position to incrementally improve the interoperability and flexibility of
our code.

22.9 EXTENSIONS AND THE ROAD TO DESIGN PATTERNS

In the next three chapters we shall show how design patterns are applied to enhance the
flexibility of our software applications – for example, the code in this chapter. In particular,

260 Financial Instrument Pricing Using C++

we shall concentrate on three categories of patterns that model the lifetime of any object
in C++:

• Creating objects based on data from different sources (Creational patterns)
• Structuring objects and networks of objects (Structural patterns)
• How messages are propagated in networks of objects (Behavioural patterns).

The added value of design patterns is that we can customise an application to suit different
customer needs.

22.10 CONCLUSIONS AND SUMMARY

We have developed a mini-application that allows us to display functions and vector
data in Excel. You can reuse and modify the code to suit your own particular needs. In
particular, we have use the class ExcelDriver to map C++ structures to Excel:

• Create a chart for a function or vector
• Create a chart for a list of vectors
• Export and import Property Sets to and from Excel
• Store matrices in Excel.

As an example, we showed how to display the results in Excel from various finite dif-
ference schemes for initial value problems. The results are easier to visualise than with
basic iostream operations.

We shall discuss interfacing between C++ and Excel in more detail in Chapters 28
and 29.

23

Object Creational Patterns

‘To make the building live, its patterns must be generated on the site, so that each one takes its own shape
according to its context.’

CHRISTOPHER ALEXANDER

23.1 INTRODUCTION AND OBJECTIVES
In this and the next two chapters we introduce the reader to Design patterns and what
they mean for the quality of software in general and for financial engineering software
in particular. During the early 1990s the object-oriented paradigm began to make small
inroads into mainstream software circles. Several developers and designers discovered that
the same kinds of problems kept recurring during the software development process and
some time later they managed to document their findings in the form of Design patterns.
In a sense a Design pattern is a method for solving a problem in a given context (Gamma
et al., 1995; Buschmann et al., 1996). It is peculiar that the software Design patterns
movement was influenced by the work of the architect Alexander (see Alexander, 1979).

In this chapter we introduce those patterns that have to do with the first phase of the
object life cycle. We wish to develop software systems where we have some choice in the
kinds of objects that we can create at configuration time or at run-time. In other words,
we try to avoid as much hard-wired constructor calls as possible in our code. Of course,
objects are created by calling their constructors as the following simple example shows.
To start us on our journey, let us consider creating an instance of a Uniform statistical
distribution that we introduced in Chapter 10:

int main()
{

// Uniform distribution on interval [0, 2]
Uniform<double> linseg(0.0, 1.0);

// Gamma distribution
Gamma<double> g(2.0, 3.9);

return 0;
}

This piece of code creates two instances of continuous distribution classes and we have
created it in order to test the classes Uniform and Gamma. There is nothing wrong with
this code as such but it is highly inflexible because any desired modifications will force
us to edit and modify the source code. We must then link the code into our application.
This is unacceptable for many applications where a higher level of flexibility is desired.
In particular, we may wish to adapt the code in some way in order to accommodate the
following requirements:

• Source data: in the above code the data that is used in the constructors is hard-coded in
the main program. We wish to define arbitrary data sources, for example the command
line, as ASCII file, XML or a relational database. The choice of data source should be

262 Financial Instrument Pricing Using C++

transparent to the client code; in other words, client code receives its data from some
object that points to an abstract base class at run-time.

• The address space of the newly created objects: in the above code the instances of
the two distributions are created on the stack. In some cases we wish to create these
instances on the heap (free store), for example. This level of flexibility is not possible
with the current code without modifying it.

Uniform<double>* unif = new Uniform<double>(0.0, 1.0);

In this case the object is placed on the heap and an explicit delete is needed to remove it.
• We would like to create ‘global’ instances of distribution classes: this is equivalent to

saying that we would like to create classes that have only one instance and, furthermore,
this instance should be accessible from all points in our application code. For example,
we would like to create ‘canonical’ distribution instances such as a standard uniform
or normal distribution. We would only have to create these instances once, they would
be unique and you can make copies of them for later use.

• We would like to have a mechanism to create a copy or clone of an object. This is
the prototype mechanism and is based on the assumption that there is an instance of
a class that is a good representative for the class of which it is an instance (a bit like
saying that John Wayne is the prototype of the Cowboy). You can then modify the
cloned object’s member data if the ‘default’ values in the prototype object are not to
your liking.

• In general, we model hierarchies of classes (for example, discrete and continuous prob-
ability distributions) using the C++ inheritance mechanism and would like to have a
set of standard interfaces that specify how to create instances of those classes. It must
then be possible for developers to implement these interface functions.

Having understood what the challenges are when creating objects we then embark on
developing C++ code based on the GOF creational patterns (see Gamma et al., 1995) that
allow us to achieve the desired level of flexibility. In other words, our objective is to
have as little (as possible) hard-coded constructors, data initialisation code or hard-coded
switch statements in client code. Of course, hard-coded stuff does have to be created
somewhere and at some time but this is hidden in façades and black boxes. The client
sees a pointer to a base class only.

The above attention points will be resolved by the four major object creational patterns:

• Singleton: Create a unique instance of a class. In other words, we wish to create a
class that has only one instance. Any deliberate or accidental attempts to create another
instance of the class are intercepted.

• Prototype: Create an object as a deep copy or clone of another ‘representative’ object
of a given class. This is a competitor to the classical C++ technique of creating an
object as an instance of some class. In this sense we see the Prototype as a pattern for
‘classless’ objects. We don’t need classes in order to create objects; instead we clone
new objects from other existing objects.

• Factory Method: Define an interface for creating an instance (object) of a single class.
Derived classes decide how to actually implement the creation function.

• Abstract Factory: Create an interface that specifies how to create families of related or
dependent classes (for example, classes in some inheritance structure). Derived classes
must implement the interface.

Andrey
trading software col

Object Creational Patterns 263

We have used the word ‘interface’ in some of the above definitions. An interface in C++
is essentially an abstract (base) class containing one or more pure virtual functions. You
can implement these functions by defining a derived class and implementing these pure
virtual functions in the derived class.

We now discuss these creational patterns in some detail. The focus is on describing
what these patterns are without worrying about how they are used in conjunction with
other patterns (this is a common situation). In short, we describe each pattern as follows:

• The intent of the pattern: why is it needed?
• A small example in C++ to show how the pattern works
• Documenting the patterns using UML
• A more extensive set of examples in C++.

Furthermore, we devote a section to describing where creational patterns can be used in
financial engineering applications.

23.2 THE SINGLETON PATTERN
The goal of the Singleton pattern is to define a class that has only one instance. In other
words, we wish to define a class having a unique instance and, furthermore, we should
provide a global point of access to it. In simple terms, we wish to create a unique object
that is known to all other objects in our application. The main reason for applying this
pattern is reliability, because clients can always be assured that they are accessing the
unique instance of the given class. There is only one way to create the singleton object and
any deliberate or accidental attempts to instantiate the Singleton class will be thwarted.

The description of the singleton is very simple yet its implementation is somewhat
more complicated. In fact, the implementation of the pattern in Gamma et al. (1995) is
incorrect on at least two counts. First, the singleton object that is created on the heap does
not get deleted (its destructor does not get called) and, second, Gamma uses inheritance
to specialise a base Singleton class. We prefer to use template classes and in fact our
class will be called Singleton<SomeType> to denote that it can later be instantiated
to create singletons having any underling class.

It is not our wish to go into all the nitty-gritty details of this pattern but we note some
of the issues associated with designing and implementing various singleton variants in
C++ (Alexandrescu, 2001):

• The difference between a singleton and a global object
• Better enforcement of the singleton’s uniqueness
• Destroying the singleton
• Advanced lifetime management of the singleton object
• Multi-threading issues.

In this section we concentrate on implementing the Singleton pattern by using C++ tem-
plates and introducing a so-called destroyer object that takes care of Singleton destruction
(incidentally, there is no ‘best’ way of implementing a singleton).

23.2.1 The templated Singleton solution

We now describe the implementation of the Singleton pattern. We require that singletons
be created by specific functions only. For example, it must not be possible to create a

264 Financial Instrument Pricing Using C++

singleton using constructors or assignment operators. Furthermore, once you have created
the singleton for the first time all new attempts to create the object should be intercepted.
In this case the returned object will be the singleton object itself! Finally, our design
is based on the fact that a destroyer object deletes the singleton when the latter is no
longer needed. We propose the following interface for the Singleton class (this is actually
a generic form of the solution in Gamma et al., 1995):

template<class Type>
class Singleton
{ // Templated Singleton class

private:
static Type* ins;
static Destroyer<Type> des;

protected:
Singleton();
Singleton(const Singleton<Type>& source);
virtual ~Singleton();
Singleton<Type>& operator = (const Singleton<Type>& source);

public:
static Type* instance();

};

Here we see that there is only one (static) public member function instance() that
clients may use. All other functions are private. The body of instance() as well as
the initialisation of the static entities is:

// Templated Singleton code
template<class Type> Type* Singleton<Type>::ins=0;
template<class Type> Destroyer<Type> Singleton<Type>::des;

template<class Type>
Type* Singleton<Type>::instance()
{ // Return the singleton instance

if (ins == 0)
{

ins=new Type;
des.doomed(ins);

}

return ins;
}

Here we see how the singleton is instantiated and that it registers itself with the destroyer
as it were. The interface for the Destroyer class is:

template<class Type>
class Destroyer
{ // Class which is responsible for the destruction

friend class Singleton<Type>;

private:
Type* doomed_object;

// Prevent users doing funny things (e.g. double deletion)
Destroyer();

Object Creational Patterns 265

Destroyer(Type* t);
Destroyer(const Destroyer<Type>& source);
Destroyer<Type>& operator = (const Destroyer<Type>& source);

// Modifier
void doomed(Type* t);

public:
virtual ~Destroyer();
Destroyer();

};

When the destroyer goes out of scope it will then delete the singleton as the following
code shows:

template<class Type>
void Destroyer<Type>::doomed(Type* t)
{ // Set the doomed object

// doomed_object will be the singleton
doomed_object=t;

}

template<class Type>
Destroyer<Type>::~Destroyer()
{ // Destructor

delete doomed_object;
}

We have now finished with the details of the implementation. As a client of Singleton
you do not have to know or worry about the above internal details. All you need to know
is how to use its public interface function. In particular, you create singleton objects by
using template specialisation. For example, each of the following declarations gives us a
pointer to a unique object of the corresponding instantiated template class:

Uniform* u = Singleton<Uniform>::instance();
Gamma* g = Singleton<Gamma>::instance();
Uniform* uList = Singleton<list<Uniform> >::instance();

cout << u -> expected() << endl;
cout << g -> pdf(3.0) << endl;

The third example is interesting because it is a model for a singleton repository, that is a
singleton object that contains a collection of Uniform instances (in this case it is a list).
Of course, we realise that the code may be a bit difficult to understand so we document
the new classes using UML notation (see Rumbaugh, 1999, p. 175). In this case we can
model both template classes and their instance classes using the usual notation in UML;
see Figure 23.1. In this case we see that the class SingletonUniform is a so-called
binding in the sense that the generic template argument T has been replaced by a real
class Uniform. The corresponding C++ looks something like:

class SingletonUniform: public Singleton<Uniform>
{

// put your specialised functions here
};

266 Financial Instrument Pricing Using C++

Singleton

SingletonUniform

T

<<bind>>(Uniform)

Figure 23.1 Documenting singletons

23.2.2 An extended example

In Part I of this book we saw how to create classes for options by modelling them using
the Property and SimplePropertySet classes, for example:

ExactEuropeanOption futureOption("C", "Future Option");
futureOption.U(105.0);
futureOption.K(100.0);
futureOption.T(0.5);
futureOption.r(0.10);
futureOption.sig(0.36);
futureOption.b(0.0);

// Calculate all interesting values
SimplePropertySet<string,double> r = futureOption.propertylist();

// Iterate over the result and print the values
SimplePropertySet<string,double>::const_iterator it;

cout << "\nDump the parameters, call prices ... \n";
for (it=r.Begin(); it!=r.End(); it++)
{

cout << (*it).name() << ", " << (*it)() << endl;
}

Instead of having to key in all the parameters each time we create an option, we define
a singleton object that contains these ‘default’ parameters and clone this object. To this
end, we carry out the following steps:

• Create a class as a specialisation of Singleton<EuropeanOption> and add some
new member functions to it. This class will have one unique instance.

• Show how the unique object can be modified by assigning new values to its parameters.
• Use the unique object as a prototype for ‘normal’ European objects.

Object Creational Patterns 267

For the sake of the example in this section we consider a stripped-down class defined
as follows:

class EuropeanOption
{ // For test cases only. Real class is more extensive

public:
EuropeanOption ()
{
attributes = SimplePropertySet<string, double>();

}
SimplePropertySet<string, double> attributes; // Member data
void setProperties (const SimplePropertySet<string,double>& pset)
{
attributes = pset;

}
void print()
{
SimplePropertySet<string,double>::const_iterator it;
cout << "\nPrinting normal option\n";
for (it = attributes.Begin(); it!= attributes.End(); it++)
{
cout << (*it).name() << ", " << (*it)() << endl;

}
}

};

We now wish to define a Singleton containing only one instance of EuropeanOption:

class UniqueOption: public Singleton<EuropeanOption>
{ // Singleton class this is a prototype for all European options
public:

static void configure(const
SimplePropertySet<string,double>& pset)
{ // Function to customise the member data of unique option
(instance() -> attributes) = pset;

}
static void print()
{
SimplePropertySet<string,double>::const_iterator it;
EuropeanOption* eo = instance();
cout << "\nPrinting Unique option\n";
for (it = eo -> attributes.Begin();it!=eo -> attributes.End(); it++)
{
cout << (*it).name() << ", " << (*it)() << endl;

}
}

};

Notice that the new class is derived from Singleton<EuropeanOption> and has
its functions for defining properties and printing them. We have created two functions to
define sets of option properties. The only difference between these two functions is that
they have different property names:

void myPset(SimplePropertySet<string,double>& myDefaultSet)
{ // My property set that is default for my European Option class

// You can customise this to suit your own needs and wants

268 Financial Instrument Pricing Using C++

Property<string, double> r; // Interest rate
Property<string, double> sig; // Volatility
Property<string, double> K; // Strike price
Property<string, double> T; // Expiry date
Property<string, double> U; // Current underlying price
Property<string, double> b; // Cost of carry

r = Property<string, double> ("Interest rate", 0.08);
sig = Property<string, double> ("Volatility", 0.30);
K = Property<string, double>("Strike Price", 65.0);
T = Property<string, double>("Expiry date", 0.25);
U = Property<string, double>("Underlying Asset", 60.0);
b = Property<string, double>("Cost of carry rate", r());
myDefaultSet.add(r); myDefaultSet.add(sig); myDefaultSet.add(K);
myDefaultSet.add(T); myDefaultSet.add(U); myDefaultSet.add(b);

}
void yourPset(SimplePropertySet<string,double>& myDefaultSet)
{ // Another property set that is default for my European Option class
// You can customise this to suit your own needs and wants

Property<string, double> r; // Interest rate
Property<string, double> sig; // Volatility
Property<string, double> K; // Strike price
Property<string, double> T; // Expiry date
Property<string, double> U; // Current underlying price
Property<string, double> b; // Cost of carry

r = Property<string, double> ("R", 0.08);
sig = Property<string, double> ("V",0.30);
K = Property<string, double>("S", 65.0);
T = Property<string, double>("E", 0.25);
U = Property<string, double>("U", 60.0);
b = Property<string, double>("B", r());

myDefaultSet.add(r); myDefaultSet.add(sig); myDefaultSet.add(K);
myDefaultSet.add(T); myDefaultSet.add(U); myDefaultSet.add(b);

}

We now show how to use the new singleton as a prototype object containing default
properties that can be copied into normal objects.

int main()
{ // All options are European

// Fill the singleton with first property set
SimplePropertySet<string,double> myDefaultSet; myPset(myDefaultSet);
UniqueOption::configure(myDefaultSet);
UniqueOption::print();

// Now choose the second property set
SimplePropertySet<string,double> yourDefaultSet; yourPset(yourDefaultSet);
UniqueOption::configure(yourDefaultSet);
UniqueOption::print();

// Now copy all default parameters to a 'normal' object
EuropeanOption eo;
eo.setProperties(yourDefaultSet);
eo.print();

return 0;
}

Object Creational Patterns 269

The output from the main() programs is given as follows:

Printing Unique option
Interest rate, 0.08
Volatility, 0.3
Strike Price, 65
Expiry date, 0.25
Underlying Asset, 60
Cost of carry rate, 0.08

Printing Unique option
R, 0.08
V, 0.3
S, 65
E, 0.25
U, 60
B, 0.08

Printing normal option
R, 0.08
V, 0.3
S, 65
E, 0.25
U, 60
B, 0.08

This simple example should show how powerful templates are when used in conjunction
with the Singleton pattern. This example could be extended to create a configuration class
for plain and exotic options, their properties and other related information (such as the
payoff functions, for example). In the future, we could use standard names in standards
for instruments (see FpML, 2003).

23.2.3 Applications to financial engineering

You should use the Singleton pattern in applications where it is logical and correct to
define well-known unique objects that can be accessed by other objects. Furthermore,
you may need to use a singleton in cases where you want to be absolutely sure that you
are working with objects containing reliable data. Singletons could be used as prototypes
for configuring various kinds of entities in financial engineering applications:

• Standard properties for plain and vanilla options: you can define singleton Sim-
plePropertySet objects that you can clone and use in your option calculator
applications.

• Standard instruments: for each kind of financial instrument we can create a representa-
tive prototype object that the developer can use as a reliable representative containing
all necessary member data.

• Standard distributions: you can create a singleton for the standard normal distribu-
tion N (0, 1) for example without having to recreate it every time you work with
this distribution.

• Other objects in an application that represent patterns can be singletons. For example,
in this book we have created a class called ExcelDriver whose responsibility it is
to present data in Excel charts. This is a Singleton class because we only want one

270 Financial Instrument Pricing Using C++

instance of Excel to be up and running at any given moment in time. For some details,
see Chapter 22 where we discussed an Excel-based application.

• A repository object that contains settings for our application.

23.3 THE PROTOTYPE PATTERN

The intent of the Prototype pattern is to create an object, not by instantiating a class
but by cloning or making a copy of a special object that we call the prototype. In other
words, there is an assumption that we can create an object as a deep copy of some other
prototypical object. This latter object is highly representative of its class. All member
data and values are copied to the new object. Of course, you can modify the new object
thereafter but the original object will be unchanged.

At a very basic level we see an example of the Prototype pattern in the copy constructor.
This is a hard-coded constructor that creates an instance of a class from another instance,
for example:

Point pt1(1.0, 2.0);
Point pt2(pt1); // Calls copy constructor

This code is a bit too hard-wired for our liking because we usually work with lists of
pointers to objects and we wish to have some means of polymorphically creating copies
of these pointers without having to worry about the actual object types. Let us take an
example to show what we mean. Suppose that we create a class called ShapeComposite
that is implemented as follows:

class ShapeComposite: public Shape
{ // A Shape is a base class for all 2d things like
// Point, Line, Circle

private:
// The shapelist using the STL list
std::list<Shape*> sl;

public:
// ...
ShapeComposite(const ShapeComposite& source);

};

Here we see that this class represents a heterogeneous list of Shape pointers. The copy
constructor is interesting because we must copy a heterogeneous list to another hetero-
geneous list and hard-coded constructors will not do the job. Instead, we must create
a function

virtual Shape* Clone() const; // Create a copy of the shape

This function creates a deep copy of the current object and is declared as pure virtual in
the base class Shape and each of its derived classes must implement it. Returning to the
copy constructor in the composite shape class, what we need to do is to iterate over its
elements and recursively call the clone function on each of its elements as the following
code shows:

ShapeComposite::ShapeComposite(const ShapeComposite& source)
: Shape(source)

Object Creational Patterns 271

{ // Copy constructor

sl=std::list<Shape*>();

// Create STL list iterator
std::list<Shape*>::const_iterator it;

for (it=source.sl.begin(); it!=source.sl.end(); it++)
{ // Copy the whole list
// Add a copy of the shape to our list
sl.push_back((*it)->Clone());

}
}

Shape* ShapeComposite::Clone() const
{ // Create a copy of the shape

return new ShapeComposite(*this);
}

This code shows the essence of cloning in C++ and how to apply the Prototype pattern.
The pattern can be directly applied to other class hierarchies.

23.3.1 The Prototype pattern: Solution

We now describe what needs to be done in order to implement the Prototype pattern. In
general, it is most useful when we have a hierarchy of C++ classes. We are only interested
in single inheritance hierarchies at this moment. To take a generic example, let us assume
that we have a base class B and two derived classes D1 and D2. Then the procedure for
the application of the Prototype pattern is:

• Create a pure virtual clone() function in B
• Create the implementations of the clone function in D1 and D2.

We show the code for the classes B and D1:

Class B
{
public:
// ...
virtual B* Clone() const = 0;

};

class D1 : public B
{
public:
B* Clone() const { return new D1(*this);}

};

For composite classes we can apply the techniques that we used for the Shape hierarchy.
It is of course important that the developer has created the code for the copy constructor
for every class in the hierarchy in order to avoid unexpected results!

23.3.2 Applications to financial engineering

The Prototype pattern and its applications seem to be a well-kept secret. Many early
Computer Aided Design (CAD) systems used this pattern as a means of letting users

272 Financial Instrument Pricing Using C++

create objects and then use them to create more complex objects. In fact, the first example
of a prototype was in Ivan Sutherland’s Sketchpad system. Another example is the Visual
Basic environment where the user can create sophisticated controls (such as buttons, text
boxes and dialog boxes) by copying them onto a form and changing the values of the
properties of the newly created objects.

So where could we use the Prototype pattern in financial engineering applications? In
general, you can create default objects for a range of artefacts, such as:

• Plain and exotic option properties
• Plain and exotic option classes (and of course other classes for financial instruments)
• Default vectors for cash flow dates
• Default function classes for option payoffs (we discussed functions in Chapter 9)
• Default exact option price and sensitivity formulae.

A discussion of these specific topics is outside the scope of this book.

23.4 FACTORY METHOD PATTERN (VIRTUAL
CONSTRUCTOR)

This pattern defines an interface for creating an instance of a given class but the actual
implementation is deferred to derived classes. A synonym for this pattern is virtual con-
structor because it eliminates the need to bind application-specific classes into your code.
In other words, there is no need to have hard-wired constructors in your application
code. In short, we define an interface that creates an instance of some class and its
derived classes implement this interface. Let us take the generic example, as shown
in Figure 23.2. Here we have a Product class with two derived classes CP1 and CP2
(‘CP’ stands for ConcreteProduct). There are two major varieties of factory method
(see Gamma et al., 1995):

• The ProductFactory class is an abstract class and does not provide an implemen-
tation for the factory method. This option requires that derived classes implement the
factory method because there is no reasonable default.

• The ProductFactory class is a concrete class which provides a default implemen-
tation for the factory method.

We now give some code to show how this pattern works. The code is very easy to
understand and once you get the idea you can then apply the patterns to more complex

Product ProductFactory

CP1 CP2 MyProductFactory

<<creates>>

.

{abstract} {abstract}

Figure 23.2 Documenting the Factory Method pattern

Object Creational Patterns 273

and interesting applications. First of all, the product hierarchy is as follows:

class Product
{

// Your stuff
};
class CP1 : public Product
{

// Your stuff
};
class CP2 : public Product
{

// Your stuff
};

The base class for the product factory is (notice the presence of the pure virtual function):

class ProductFactory
{
public:

virtual Product* createProduct() = 0;
};

The code for the two specific factory classes is (notice that all code is inline):

class MyProductFactory : public ProductFactory
{

public:
Product* createProduct()
{
cout << "CP1 just made\n";
return new CP1;

}
};

class YourProductFactory : public ProductFactory
{

public:
Product* createProduct()
{
cout << "CP2 just made\n";
return new CP2;

}
};

We now create a function that allows us to select a specific factory. This is the only place
in the application that has to know about derived factory classes. If you add a new kind
of factory, this is the function in which this action should be carried out:

ProductFactory* getFactory()
{

cout << "1. My Factory, 2. Your factory: " << endl;
int k; cin >> k;
if (k == 1)
return new MyProductFactory;

if (k == 2)

274 Financial Instrument Pricing Using C++

return new YourProductFactory;
// Default or future extensions here

return new MyProductFactory;
}

Finally, we test our classes in the following test program (notice that it does not have any
knowledge of derived factory classes):

int main()
{
ProductFactory* currentFactory = getFactory();
Product* myProduct = currentFactory -> createProduct();
delete myProduct;
return 0;

}

Another variation is to use parametrised factory methods. In this case the factory method
takes a parameter that identifies the kind of object to be created. See Gamma et al. (1995)
for further details.

23.4.1 An extended example

We now discuss a specific problem, namely creating instances of European and executive
options. An executive option is similar to a plain option except that it has an extra param-
eter, the so-called jump rate (Haug, 1998). The class hierarchy is shown in Figure 23.3.
We shall now describe how we create the factory code.

The C++ classes have the following structure (notice the polymorphic Price() mem-
ber function):

class Option
{ // Abstract base class for the options in this book
public:
virtual double Price() const = 0;

};

class ExactEuropeanOption : public Option
{
virtual double Price() const;

};

class ExecutiveOption : public Option
{
virtual double Price() const;

};

Option OptionFactory

European
option

Executive
option

MyOptionFactory . . .
Your

option
class

1 *

{abstract} {abstract}

<<creates>>

Figure 23.3 Creating a factory method for option classes

Object Creational Patterns 275

The factory classes are:

class OptionFactory
{
public:

virtual Option* createOption() = 0;
};

class MyOptionFactory : public OptionFactory
{
public:

virtual Option* createOption()
{ // In practice this code will be ‘more’
return new ExactEuropeanOption;

}
};

class YourOptionFactory : public OptionFactory
{
public:

virtual Option* createOption()
{
return new ExecutiveOption;

}
};

We now give the code that lets the user choose an option factory type. We then create a
pointer to Option and calculate the option’s price.

int main()
{

cout << "1. European, 2. Executive: ";
int k;
cin >> k;

OptionFactory* of;
if (k == 1)
of = new MyOptionFactory;

else
of = new YourOptionFactory;

Option* option = of -> createOption();
double d = option -> Price();
cout << "Price is: " << d << endl;
return 0;

}

You can modify the hierarchy in Figure 23.3 for new option and factory types.

23.5 ABSTRACT FACTORY PATTERN

This pattern can be compared to an extended Factory Method pattern because it defines
an interface, not just for one particular object or product but for families of related
or dependent objects without specifying their concrete classes. Thus the Abstract Factory
pattern contains Factory Method entries, one for each kind of class in a class hierarchy. Let
us take the example. Consider again the product hierarchy as shown in Figure 23.4 where

276 Financial Instrument Pricing Using C++

Product AbstractProductFactory

CP1 CP2 MyConfigurator . . .

{abstract} {abstract}

<<creates>>

Figure 23.4 Abstract Factory pattern

we now have a class called AbstractProductFactory that contains two factory
methods, namely for classes CP1 and CP2:

class AbstractProductFactory
{ // One particular interface for use in Abstract Factory pattern

public:
virtual Product* createCP1() = 0;
virtual Product* createCP2() = 0;

};

Derived classes must implement these member functions. For example, we have created
a factory class that creates default instances of CP1 and CP2:

class MyConfigurator: public AbstractProductFactory
{ // One particular interface for use in Abstract Factory pattern

public:
Product* createCP1() { return new CP1; }
Product* createCP2() { return new CP2; }

};

The next issue to be addressed is to use this factory class in an application. Here comes
the crux. Each factory method in MyConfigurator returns a pointer to the base
class Product; thus, you must cast the pointer to the correct Type as the following
code shows:

AbstractProductFactory* myF = new MyConfigurator;
CP1* cp1;
Product* prodA = myF -> createCP1();
cp1=dynamic_cast<CP1*>(prodA);
if (cp1!=0)
{

cout << "OK, RTTI works, this is a CP1 thing\n";
}

If this casting approach is not to your liking, you could define the interface in the abstract
factory class to return the pointer to the specific derived class of Product:

class AbstractProductFactory2
{ // One particular interface for use in Abstract Factory pattern

Object Creational Patterns 277

public:
virtual CP1* createCP1() = 0;
virtual CP2* createCP2() = 0;

};

class MyConfigurator2: public AbstractProductFactory2
{ // One particular interface for use in Abstract Factory pattern

public:
CP1* createCP1() { return new CP1; }
CP2* createCP2() { return new CP2; }

};

Using the factory class in an application allows us to get a real product without the need
for casting:

// Abstract Factory stuff, alternative 2
AbstractProductFactory2* myF2 = new MyConfigurator2;
CP1* prodA2 = myF2 -> createCP1();
CP2* prodB2 = myF2 -> createCP2();

23.5.1 The abstract factory: Solution

In general, we use this pattern when we are interested in creating product families (as
modelled in class hierarchies) using different creational processes. We thus assume that
we have a context class hierarchy in place. We then create an abstract class that contains
a number of pure virtual functions. Each virtual function is a factory method that specifies
the interface for one class in the context hierarchy. There are different possibilities for
specifying the signature of this function. Then we create derived factory classes that
actually implement the interface in the abstract factory class.

23.5.2 An extended example

In Chapter 10 we introduced a C++ class hierarchy that models discrete and continuous
probability distributions. In this section we discuss how we have applied the Abstract
Factory pattern to the family of continuous distributions and in order to reduce the scope
we have focused on the classes Uniform, Gamma and Exponential. The interface is:

class CnsDistFactory
{
private:
public:
// Usual stuff
virtual ContinuousDistribution<double,double>*
CreateUniform() = 0;
virtual ContinuousDistribution<double,double>*
CreateGamma() = 0;
virtual ContinuousDistribution<double,double>*
CreateExponential() = 0;
};

We notice, first, that we are working with instantiated template classes and, second, that
the factory method returns a pointer to the base class. This means that we can switch
between distributions at run-time while at the same time retaining polymorphic behaviour.

278 Financial Instrument Pricing Using C++

We have created a class called CommandFactory that has functions for creating
continuous distributions from the command line. The interface function that shows how
to implement one of the functions is:

virtual ContinuousDistribution<double, double>*
CommandFactory::CreateGamma()

{
double r, a;
cout << "Creating a Gamma distribution" << endl;
cout << "Input r: ";
std::cin >> r;
std::cout << "Input a: ";
std::cin >> a;
return new Gamma<double> (r, a);

}

The other functions for the Uniform and Exponential classes can be programmed in
a similar vein.

The power of the pattern can be seen in applications because we can switch between
distributions while at the same time retaining access to the polymorphic functions for the
mean, variance, pdf and cdf.

First, we create a function that lets the user decide which factory to use. This function
only needs to be written once and that is where all references to specific factories are
placed; client code is thus shielded from these context-dependent issues:

CnsDistFactory* CreateFactory()
{
// Normally you would have to make a choice which factory
// to instantiate, for example in a GUI radio button box
// This is the function where the real choice is made.
return new CommandFactory();

}

We will need a function to print some details about any continuous distribution:

void print(const ContinuousDistribution<double, double>& dis)
{
cout << "Mean value: " << dis.expected() << "Variance: " << dis.variance()
<< endl;

}

Finally, we can use the factory class in our applications as shown by the following
example code:

void main()
{
// Create the current factory
CnsDistFactory* myFactory = CreateFactory();
// Pointer to current continuous distribution
ContinuousDistribution<double, double>* myDist;
myDist = myFactory->CreateGamma();

print (*myDist); // We have no knowledge of derived classes!
delete myDist;
delete myFactory;

}

Object Creational Patterns 279

Notice that this code has no knowledge of the specific factory object; all it gets is a
pointer to the base factory. Thus, adding new factories has no effect on the client code!

23.6 APPLICATIONS TO FINANCIAL ENGINEERING

The Abstract Factory pattern is very powerful and it is useful for configuring related or
dependent objects. In general, we wish to create instances of objects in a class hierarchy
and this pattern is a good candidate. Examples where it can be used are:

• Discrete and continuous probability distributions
• Class hierarchies representing financial instruments
• Class hierarchies for partial differential equations
• Class hierarchies that model finite difference schemes

. . . and many more. For example, let us suppose that we have developed classes that model
finite difference schemes for some partial differential equation. The class hierarchies are
shown in Figure 23.5. Each hierarchy could have its own factory hierarchy. For example,
for the class FDM, we could create its instances using the following devices:

• From an XML source file
• From a dialog box or menu option
• By sending data from Excel to the C++ application.

The third option will be developed in more detail in Chapters 28 and 29 when we show
how to create two-way interfaces between C++ and Excel.

23.7 CONCLUSIONS AND SUMMARY

We have discussed four major creational patterns in this chapter, namely Singleton, Pro-
totype, Factory Method and Abstract Factory. These patterns have one thing in common:
they create instances of classes and are an improvement over using hard-coded construc-
tors. The Singleton pattern allows us to create a class that has only one instance. Any
attempts to create another instance of the class are thwarted. The Prototype pattern is
based on the idea that we create an object as a deep copy or clone of another prototyp-
ical object. This is an important feature in some object-based languages where we do
not create an object as an instance of a class (as in most languages such as C++, Java
and C#) but objects are copied from other objects and modified as desired. The Factory

PDE FDM

Parabolic Fitted

uses

. . . Euler Crank−
Nicolson

1 *
{abstract}{abstract}

Figure 23.5 Class hierarchies

280 Financial Instrument Pricing Using C++

Method pattern defines an interface for creating an instance of a class. Specific fac-
tory classes implement the interface and they also determine the specific derived class
instance that you return. Finally, the Abstract Factory pattern defines an interface for cre-
ating instances of various classes. These classes are usually part of a C++ context class
hierarchy. Each method in the interface describes how to create an instance of one spe-
cific context class. In fact, the Abstract Factory pattern can be described as an extended
Factory Method pattern because each method in the former pattern is a factory method.

24

Object Structural Patterns

‘Within this process, every individual act of building is a process in which space gets differentiated. It is
not a process of addition, in which pre-formed parts are combined to create a whole; but a process of
unfolding, like the evolution of an embryo, in which the whole precedes its parts, and actually gives birth
to them, by splitting.’

CHRISTOPHER ALEXANDER

24.1 INTRODUCTION AND OBJECTIVES

After having created an object (by applying one or more of the creational patterns in
Chapter 23, for example) we must introduce the object to other objects. This means that
we create structural relationships between the newly created object and other objects in our
application. To this end, we introduce the reader to the major structural relationships in the
object-oriented paradigm and we document these relationships using the Unified Modeling
Language (UML). We then describe a number of special object structural patterns based
on the results in GOF (Gamma et al., 1995) and POSA (Buschmann et al., 1996). In
particular, we focus on the following patterns:

• Whole–Part pattern (complex objects)
• Composite pattern (nested objects and tree structures)
• Bridge pattern (allow an object to have several implementations)
• Façade pattern (creating a unified interface to a logical grouping of objects).

These are the patterns we shall discuss in this chapter. Of course, these are not the only
object structural patterns available, but they are probably the most important ones. In
particular, we are able to give several good applications of these patterns to financial
engineering. For a discussion of object structural patterns, we again refer the reader to
Gamma et al. (1995). It is not possible in this book to discuss all the GOF patterns and
their applications.

24.2 KINDS OF STRUCTURAL RELATIONSHIPS
BETWEEN CLASSES

Creating well-designed, correct and robust object-oriented applications demands more than
just drawing pretty pictures in UML. We must first discover the most important classes
in the domain of discourse and then we define the semantic relationships between these
classes. Gone are the days when objects were for the picking; objects are not intuitive and
the object-oriented paradigm does not always reflect the way people think. Some people
think in terms of processes, others in terms of functional and non-functional requirements.
A discussion of the issues involved when analysing and designing software systems using
object technology can be found in Duffy (2004a).

282 Financial Instrument Pricing Using C++

The main semantic relationships in this chapter are:

• Aggregation
• Association
• Generalisation.

Large applications can be built by the use of these relationships. Of course, we are
building a model of reality and not reality itself. It is possible (and inevitable) that your
class diagrams many undergo several revisions before they stabilise. In the immortal
words of Demming, ‘All models are wrong, some are useful’.

24.2.1 Aggregation

Aggregation relationships (also known as Whole–Part relationships) are central to many
applications and it is important to identify such relationships. The common feature of
these relationships is that one object (the so-called Whole) is composed of, or consists of,
other objects (the components or Parts). The Whole has its own attributes and operations
and these are distinct from those of its parts. Thus, the object-oriented analyst must take
note of the following issues when modelling aggregation structures:

• The interface of the Whole
• How the Whole is structured in terms of its parts
• How the Whole and its parts communicate (possibly in both directions).

In general, the Whole consists of zero or more parts (and the parts need not necessarily
belong to the same class), but a part (when viewed as an object) cannot simultaneously
belong to more than one Whole. Some initial (and specific) examples of aggregations
are shown in Figure 24.1 and we paraphrase the aggregations and their corresponding
multiplicity as follows:

• A Spread consists of two Options
• A BullSpread object consists of a long and a short position (Hull, 2000)
• A Portfolio consists of Options (one or more Options)

In general, a portfolio will contain instruments other than just options, as we shall see
later. A spread is a special kind of portfolio that consists of two (or more) options. Each

Portfolio

Option

Spread

Option

1 . . * 'long'

(a) (b)

Bull spread

Option

(c)

'short'

Figure 24.1 Examples of aggregation

Object Structural Patterns 283

option plays a role in the portfolio. For example, in a bull spread one option is long
and the other is short. We discuss spreads and other option strategies in more detail in
Chapter 30 and, in particular, we show how to implement these classes in C++.

We discuss aggregation relationships in some more detail in section 24.3. Like rock
music, there are several kinds.

In general, aggregation structures are important in financial engineering applications
because we can use them to model various kinds of instruments, portfolios and other
structured products. Some possibilities are:

• Various kinds of option trading strategies (spreads, straddles, strangles)
• A diversified portfolio
• Options based on two or more underlying assets.

24.2.2 Association

In contrast to aggregation relationships (where there is a clear ‘parent–child’ or ‘whole–
part’ metaphor), associations describe possible relationships between ‘independent’
classes. Associations represent the ‘glue’ in object-oriented systems. There are various
kinds of association but we focus on two main types because they are important for real
applications.

Binary associations

A binary association represents a relationship between two different classes. The classic
example is given in Figure 24.2, and this summarises that a person can work for zero or
more companies and that a company can give employment to zero or more persons. Here
we introduce the notion of a role in UML; in this association the person plays the role of
‘employee’ while the company plays the role of ‘employer’. We shall also need to model
roles in a financial engineering context. Some typical examples are:

• Long and short roles for an option
• The derivative role and the underlying role.

In general, there is a many-to-many relationship between roles and objects. An object can
have several roles, and several objects can play a role. For example, an option can play
the roles of ‘derivative’ for an asset (which plays the role of ‘underlying’) while the same
option can be an underlying for another option; in this case the derivative role is called
a compound option (or option on an option).

It is possible to let the following assets play the role of underlying (Haug, 1998):

• Stock (with or without cash dividend)
• Stock indexes
• Futures

Person *
works for

Company*

'employee' 'employer'

Figure 24.2 My first binary association

284 Financial Instrument Pricing Using C++

• Currency
• Swap (cash flow exchange between two companies).

In general, we can define a large class of derivative roles for the above underlyings:

• Options on stock
• Options on future
• Currency options
• Options on options
• Options on swaps (options on interest-rate swaps).

We can describe some of the above relationships by an initial association using UML
notation, as shown in Figure 24.3. In this case we have a class called Option and a
class called Asset (in fact, we shall see that Asset is an abstract class and has classes
such as Future as specialisations). In this case, we have a one-to-many relationship
between Option and Asset: an option has to do with one or more assets while an
asset has to do with one option. This is a simplifying assumption in this book. In real
applications the multiplicity will be many-to-many.

In Part I of this book we imagined an option as having a number of properties such
as volatility, interest rate and so on. Real life is a bit more complicated because we see
that an option may have several underlyings in general. In this case the C++ classes from
Part I are not up to the job and we must model the option differently. For example, we
could model the Option class as follows:

class Option:
{
private:

list<Asset*> underlying;
public:

// Public interface here
};

Unary associations

A unary (or recursive) association represents a relationship between two instances of the
same class. A simple example is given in Figure 24.4 where we describe how people

Option

Call

Commodity

Put

. . .Stock

1 . . *1

Type

Asset
{abstract}'derivative' 'underlying'

*

0, 1

Figure 24.3 Derivatives and underlying

Object Structural Patterns 285

Person

* coach

student *

is trainer for

Figure 24.4 My first unary association

relate to each other in a particular use case: a person (who plays the role of ‘coach’)
manages zero or more persons (who play the ‘student’ role).

There are several possible applications of unary associations in financial engineering.
Let us take the particular example of the class Instrument that subsumes all financial
products. This is an abstract class because it is not possible to create objects from it.
Typical specialisations of instruments are:

• Assets of all kinds
• Options of all kinds
• Swaps
• Bonds

. . . and so on. In general (and in principle) it should be possible to define one instrument
as the derivative quantity and another instrument (or instruments) as the underlying. We
document this as shown in Figure 24.5 and here we see that any instrument can have any
other instrument as underlying. This is very flexible and is an improvement on the initial
class structure that the author created in Duffy (1995). At that time object technology was
an emerging technology and the market was just starting to learn this new way of thinking.

Finally, ternary, quaternary and high-order association can be modelled in UML but
they are difficult to understand and to implement, and we refer the reader to the UML
specifications.

Associations are well documented in the UML literature. This is the reason why we
do not discuss them in great detail as it would be like bringing coals to Newcastle! For
more information on UML, see Rumbaugh (1999).

BondOption AssetSwap

'derivative'

Instrument
{abstract} 'underlying'

*

Future

. . .CommodityStock

1

Figure 24.5 Unary association and instrument

286 Financial Instrument Pricing Using C++

24.2.3 Generalisation/specialisation

We now come to the third and final kind of relationship that we define between classes.
We say that a class D (sometimes called a derived class or subclass) is a specialisation
of a class B (called a base class or superclass) if an instance of D is in every respect
an instance of the class B. This means that an instance of D ‘inherits’ all the attributes
and operations from B. It thus behaves as an instance of B but it may also add its own
extra attributes and operations. The derived class may even redefine operations from the
base class.

Saying that D is a specialisation of B is equivalent to saying that B is a generalisa-
tion of D. Object-oriented languages such as C++, Java and C# support the Gen/Spec
relationship (as it is conveniently called) by the use of the inheritance mechanism.

Abstract classes and concrete classes

An abstract class is, by definition, a class that has no instances. A concrete class, on the
other hand, is one that does have and may have instances. An abstract class represents a
root or base class for other classes sharing similar interfaces.

In order to denote that a class is abstract we use the constraint symbol {abstract}.
An example is shown in Figure 24.5 where Instrument is the abstract base class for all
more specific classes. To convince yourself that Instrument is indeed abstract, answer the
following question: When is the last time that you traded an Instrument?

Generalisation health warnings

Too much generalisation can damage the understandability and maintainability of your
software if it is carried to excess. Each new generation of object-oriented programmers
(and we appear to be in the third generation at the moment) seems to apply inheritance
in much the same way as the previous generations. We are referring to the incorrect use
of inheritance and many of the problems have been reported in the annals of the OO
masters. We mention some of the ways that inheritance is misused:

• Creating deep inheritance hierarchies
• Using inheritance to model roles (roles are really objects and not classes)
• Implementation inheritance instead of interface inheritance
• Using multiple inheritance incorrectly in C++.

The application of inheritance using one or more of the above scenarios is a major source
of risk in object-oriented projects. It is a symptom of a bad design.

A full discussion of the dangers and opportunities when applying inheritance is beyond
the scope of this book.

24.3 WHOLE–PART PATTERN

We introduce a special kind of aggregation relationship in this section and the results
are based on the work in Buschmann et al. (1996) where such relationships are used
in documenting design and system patterns. We apply them to analysing classes in the
problem domain itself. Quite a lot of work has been done in this area during the 1990s

Object Structural Patterns 287

(see, for instance, the Journal of Object Oriented Programming (JOOP)). As always, the
Whole consists of several parts but it is possible to specialise the pattern to include more
precise information on the types and multiplicities of the parts and the Whole’s interface
functions. The three main types are:

• Assembly parts
• Container contents
• Collection members.

An assembly parts structure is the most rigid of the three types in the sense that the Whole
consists of a predetermined number of parts of predefined types. These parts are created
when the Whole is created. A container contents relationship models loosely coupled
parts; the Whole does not have a well-developed interface as such but is a ‘wrapper’ for
its contents. It may be likened to a white box through which clients can peek. The parts
in this type may be heterogeneous. The Collection Members pattern is an aggregation in
which all the parts are essentially of the same type. Which specific Whole–Part pattern you
should use in an application depends on the level of flexibility desired and the structure
of the objects that your are modelling. Some general remarks and conclusions are (for
more, see Buschmann et al., 1996):

• In general, the interface of the Whole is different from that of its parts; in fact, the
Whole is more than just the sum of the parts.

• The parts in an assembly–parts relationship are added to the Whole at initialisation time;
it is not possible to add or remove parts at run-time. Container contents or collection
members do not suffer from this restriction.

• The interface of the Whole in the container–contents relationship tends to be fairly
‘lightweight’.

• The interface of the Whole in the Collection–Members relationship contains function-
ality for iterating over its parts; for example, a portfolio has an operation Payoff ()
that calculates the payoff function and is calculated by iterating over its parts (in this
case, options).

Composition: a special kind of aggregation

We discuss another special type of aggregation that is supported in UML. It is called
Composition and is for all intents and purposes the same as the assembly–parts rela-
tionship already referred to. The defining characteristic of a composition is that the
Whole and its parts have coincident lifetimes. In other words, the parts are added to the
Whole when the latter is created. It is not possible to add or remove parts as long as
the Whole exists. The parts are destroyed when the Whole dies. UML depicts the compo-
sition relationship by a filled diamond. We give an example in Figure 24.6 where we state
that a Spread instance is composed of two Option instances. It is, strictly speaking,
more accurate than the drawing in Figure 24.1(b).

In general, the author is not very concerned with the niceties of filled or unfilled
diamonds during the analysis phase of the software life cycle. We have included a short
discussion of composition because students tend to ask the questions: What is composition;
what’s that filled diamond doing there?

288 Financial Instrument Pricing Using C++

Spread

Option

Figure 24.6 Modelling a spread as a composition

24.4 THE COMPOSITE PATTERN

We discuss an interesting pattern (by the way, it is not the same as Composition), namely
aggregate objects that consist of objects of the same class. In general, we call these nested
objects. Some examples of nested objects are:

• Directories consist of other directories and files
• A dialog box may consist of other dialog boxes
• A portfolio may contain other portfolios.

We model these and other nested objects by application of the famous Composite pat-
tern (see Gamma et al., 1995). The general UML structure is given in Figure 24.7. We
paraphrase the diagram as follows:

‘A Composite class is a derived class of B and it consists of zero or more references
to B’.

B

D3

CompositeD2D1

. . .D4

*

{abstract}

Figure 24.7 Atomic and Composite class

Object Structural Patterns 289

Instrument

Asset. . .Option

*

{abstract}

Composite

Figure 24.8 Composite pattern with instruments

Many developers who meet this pattern for the first time have difficulty in visualising
how it would be implemented in an object-oriented language. In order to help those people
we give a specific example of Composite GUI controls (for example, dialog boxes). The
C++ code is given as follows:

class Control{}

class TextBox : public Control {};

class Composite : public Control
{
private:
list<Control*> elements; // Use STL library templates

public:
// Public functions here

};

An example of a Composite class in financial engineering is shown in Figure 24.8. Here
we see that it is possible to create complex new instruments to any level of complexity.
Whether this is a good thing or not depends on the context.

We give several examples of the C++ code for this pattern on the accompanying CD.
The Composite is very powerful because it allows us to nest objects to any depth. The
reader can find more details on the Composite pattern in Gamma et al. (1995).

24.5 THE FAÇADE PATTERN

In general, clients of an aggregation structure cannot access the parts of a Whole directly.
In this sense we see that the Whole is the parent or owner of its parts. It may choose
whether to expose or hide its parts to outside clients. In this context we speak of white
box and black box structures. In other words, in the white box case the clients can peek
into the internal structure of the Whole while in the case of a black box the clients see an
impenetrable interface and are unable to determine the Whole’s internal structure. White
boxes and black boxes represent design decisions and, of course, we must accept the
consequences of these decisions. In general, the designer must choose between short-term
gains and long-term maintainability benefits. In general, design by the white box approach
is easier than the black box approach.

The white box approach introduces undesirable coupling between objects. In partic-
ular, badly designed and/or runaway object-oriented applications are networks whose
complexity can be objectively measured.

290 Financial Instrument Pricing Using C++

If you discover that your UML class diagrams are becoming too complex, it is then time
to stop and think! The author has once seen a diagram containing 2000 classes and it took
almost 30 minutes to load the corresponding file from disk when using a particular CASE
tool. This is a ridiculous state of affairs and the problem should be redressed as soon
as possible (actually, the problem should not have occurred in the first place). In order
to reduce the complexity of classes themselves and coupling between classes, we can
consider grouping closely related classes into so-called façades and defining new unified
interfaces for these Façade classes. This technique is discussed in Gamma et al. (1995).

24.6 THE BRIDGE PATTERN
This object structural pattern is very powerful. Its main intent is to separate a class into
two distinct parts by using a separation mechanism. In precise term, we divide a class
into two other classes. The first class contains the code that is in principle invariant and
does not change while the second class contains code that is implementation or context-
dependent. Since the classes are now disjoint we can switch between implementations
at configuration-time or even at run-time. There are very many situations where we can
apply this pattern in financial engineering and we shall discuss some of them now.

Some examples of the Bridge pattern in numerical analysis are:

• Structuring a matrix as a full matrix or as a sparse matrix.
• Solving the linear system AU = F by Double Sweep, LU decomposition or itera-

tive techniques.
• Integrating functions using various quadrature techniques (e.g. Newton–Cotes).
• Various finite difference schemes for ordinary and partial differential equations.

Some other examples closer to financial engineering are:

• Modelling stochastic differential equations by Wiener and other processes.
• Calculating option price and sensitivities by Monte Carlo, finite differences or finite

element methods.
• Calculating option price and sensitivities depending on whether it is a call option or a

put option.

Desiring flexibility in switching from one regime to another is the reason for using a
Bridge pattern in the first place. Each of the above descriptions can be posed in the
same general form and we discuss this form now. In general, we create two hierarchies:
the first contains invariant code while the second contains implementation-dependent or
context-dependent code, as shown in Figure 24.9. In general, clients call member functions
in classes in the application hierarchy and these classes then forward the request to a
specific class in the implementation hierarchy. The UML sequence diagram that shows
the flow of control is shown in Figure 24.10. In more specific cases, the message names
with have particular significance in a given application.

24.6.1 An example of the Bridge pattern

We now give a concrete example of the Bridge pattern. In this case we wish to integrate
real-valued functions of a single variable using a variety of numerical integration rules. In
some cases the functions may be well behaved but they may also have nasty discontinuities

Object Structural Patterns 291

B

D2 . . .D1

1

{abstract}

I2 . . .I1

BImp
{abstract}

Application classes Implementation classes

Figure 24.9 Bridge pattern

:Client

request()

:B :BImp

ack()

execute(this)

ack()

Figure 24.10 Information flow in Bridge pattern

either on the boundary or in the region where the function is to be integrated. To this
end, we wish to create numerical integrators that can switch between specific numerical
integration regimes. The UML class structure is shown in Figure 24.11. In this case the
class NumIntegrator plays the role of the abstraction and the classes TanhRule and
the well-known midpoint rule defined by the class MidpointRule play the roles of the
Bridge implementations. Mathematically, these integration rules are given by∫ b

a

f (x)dx ≈ 2 tanh

(
h

2
f

(
a + b

2

))
, h = b − a

∫ b

a

f (x)dx ≈ hf

(
a + b

2

)
, h = b − a

(24.1)

292 Financial Instrument Pricing Using C++

NumIntegrator

Function MidpointRuleTanhRule

Integrator Imp
{abstract}

uses

Figure 24.11 Bridge and numerical integration

Incidentally, the Tanh rule was discovered in Duffy (1980) as a by-product of the work
on exponentially fitted difference schemes, and the rule is suitable for difficult functions
for which traditional rules do not always work. In principle, NumIntegrator delegates
all requests to the bridge but, in the current test case, we have concentrated just on the
function that actually calculates the approximate value of the integral.

class NumIntegrator
{ // The Application class (implementation-independent)

private:
int nSteps; // Number of subdivisions of interval
Range<double> interval; // Interval of interest
double (*f)(double x); // C style function
IntegratorImp* imp; // The 'real' integrator

public:
NumIntegrator(double (*fp)(double x), const Range<double>& myRange,

IntegratorImp& implementor, int numSteps = 30);
// Modifiers
void function(double (*fp)(double x));
void range (const Range<double>& myRange);

// Selectors
int numberSteps() const;
Range<double> getInterval() const;
double calculate(double x) const; // Value at value == x

// Calculating the integral of the function. Functions that are
// delegated to the Bridge implementation.

double value() const;

};

The Bridge implementations are very easy and are based on the formulae in equation (24.1)
above. The corresponding code is:

class IntegratorImp
{
public:
virtual double value(const NumIntegrator& f) const = 0;
};

Object Structural Patterns 293

class TanhRule: public IntegratorImp
{ // Rule for integrating nasty functions; based on Duffy 1980
public:

virtual double value(const NumIntegrator& f) const;
};

class MidpointRule: public IntegratorImp
{ // The Midpoint integration rule
public:

virtual double value(const NumIntegrator& f) const;
};

The code for evaluating the integral using the Tanh rule and Midpoint rule is:

double TanhRule::value(const NumIntegrator& f) const
{

// Get all the stuff from the client in order to do my job
Range<double> r = f.getInterval();
double A = r.low();
double B = r.high();

int N = f.numberSteps();
double res = 0.0;
double nd = double(N);
double h = r.spread() / nd;
for (double x = A + (0.5 * h); x < B; x += h)
res += tanh(f.calculate(x) * 0.5 * h);

return 2.0 * res;
}

double MidpointRule::value(const NumIntegrator& f) const
{

// Get all the stuff from the client in order to do my job
Range<double> r = f.getInterval();
double A = r.low();
double B = r.high();

int N = f.numberSteps();
double res = 0.0;
double nd = double(N);
double h = r.spread() / nd;
for (double x = A + (0.5 * h); x < B; x += h)
res += f.calculate(x);

return res*h;
}

Of course, there are opportunities for refactoring in the above two functions; common
and invariant code could be placed in the base class IntegratorImp.

How do we use the classes? Here is a test program:

double myfuncx (double x)
{ // Nasty function

return log(x) / (1.0 - x);
}

int main()
{

// Choose your specific integrator

294 Financial Instrument Pricing Using C++

IntegratorImp* imp = new TanhRule;

// Build NumIntegrator function
Range<double> r(0.0, 1.0); // Region of integration
int N = 200; // Number of subdivisions

NumIntegrator context(myfuncx, r, (*imp), N);
double result = context.value();
cout << "And the value is: " << result << endl;

// Choose another specific integrator
IntegratorImp* imp2 = new MidpointRule;
context = NumIntegrator(myfuncx, r, (*imp2), N);
result = context.value();
cout << "And the value is: " << result << endl;

delete imp;
delete imp2;
return 0;

}

The output from this program is:

And the value is: -1.64319
And the value is: -1.64321

This example of a Bridge pattern can be used as a springboard for other similar problems.
For example, we could envisage more functionality for class NumIntegrator:

• Numerical differentiation of functions
• Displaying functions in different media

and many more. To this end, we use a Visitor class (more about this in Chapter 25) that
is coupled with a Bridge to help us to achieve the desired level of flexibility. The UML
class diagram for this problem is shown in Figure 24.12.

Function

Display VisitorDivided Difference
Visitor

Integrator Visitor

Visitor
{abstract}

<<uses>>

Implementor Type Medium

Excel ConsoleCentral One-sidedTanh Rule Midpoint

delegates to delegates to delegates to

Figure 24.12 Central Visitor pattern for functions

Object Structural Patterns 295

24.7 CONCLUSIONS AND SUMMARY

We have discussed a number of ways to help us to structure classes and define relationships
between them. These relationships are called aggregation, association and generalisation.
It is possible to define some well-defined and recurring structural patterns that we can
use in financial engineering applications, namely Whole–Part, Composite, Bridge and
Façade. Many object networks can be described as a combination of these basic patterns.
We use the Unified Modeling Language (UML) to document all structural relationships
because it is unambiguous and is a de-facto standard in the IT industry.

Having defined the structural interclass relationships, we now need to model how
instances of these classes exchange information by message passing. This is the subject
of Chapter 25 when we introduce Object Behavioural Patterns.

25

Object Behavioural Patterns

‘In order to define this quality in buildings and in towns, we must begin by understanding that every place
is given its character by certain patterns of events that keep on happening there.’

CHRISTOPHER ALEXANDER

25.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce the patterns that come into play after an object has been
created and structured. In other words, we are interested in how objects communicate in
a network, tree or other dependency graph. In particular, behavioural patterns deal with a
number of issues whose resolution dramatically increases the flexibility of your software:

• Creating flexible and interchangeable member data
• Creating flexible and interchangeable member functions
• Extending the functionality of a class without having to touch its source code
• Preserving data integrity in an object graph.

In general, behavioural patterns have to do with member data and member functions. As
developer, you must decide if the application of a design pattern is worth the effort; the
return on investment may not be commensurate with the effort expended.

Behavioural patterns are very important in financial engineering applications. Some of
the reasons are:

• Suitability for various user groups: We can customise object methods to suit various
needs. For example, some clients may wish to choose a specific algorithm that imple-
ments a member function, others may wish to extend the functionality of a class to
include interfaces to Excel and XML (to take two examples) while others may be
satisfied with minimal functionality.

• Interoperability: We may wish to create applications that can share data and infor-
mation with other applications. For example, we could develop an option calculator
program in C++. This program could get its input data from a C# or Java program in
another process. Both programs can read and write XML data, thus ensuring interop-
erability between the programs even though they are in different address spaces and
have different byte orderings.

• Efficiency: We can choose algorithms and data structures that allow us to achieve
desired levels of time and resource efficiency. For example, we could customise our
application to allow us to work with two algorithms to calculate the price of an option
(for example, an Asian option); one algorithm could be time efficient (for example, the
exact solution or using finite difference techniques) while the other algorithm would
be very reliable but also very time consuming (for example, the Monte Carlo method).

Furthermore, there are different ways to model member data. For example, you could
model member data by hard-coded types or you could use the Property pattern.

Object Behavioural Patterns 297

• Maintainability: It is estimated that at least 70% of the effort spent in IT is devoted to
keeping applications up and running. We do not go into the details of describing why
this percentage is so high but we do give one major reason:

C++ programs tend to become more complex

In other words, C++ applications tend to evolve into monolithic monsters. One way
to avoid this situation is to create a stable architecture for an application by breaking
the problem into smaller manageable pieces (see Duffy, 2004a). At the level of design
patterns we try to separate concerns by a suitable application of patterns such as
Strategy, Mediator, State and Visitor. The upside is that your software becomes easier
to modify and to change than monolithic applications. The downside is that you have
to invest in learning how these patterns work and how to apply them to financial
engineering.

• Portability: By encapsulating hardware and software specific code in special objects
you can shield your application code from changes in the environment. For example,
you can use patterns to encapsulate the following specific features:

– Different kinds of relational database systems (Oracle, SQL/Sever)
– Different user interfaces (GUI, command line, direct manipulation)
– Presentation issues (MS Excel, OpenGL, GDI, VRML, MS Word)
– Coupling with other systems (for example, market data feed systems)

Again, we encapsulate specific code in special objects.
• Usability: Code that is based on design patterns tends to be easier to understand than

code that is based on some undocumented and idiosyncratic solution (however clever
it might be). An important proviso in this regard is that if you use design patterns
in your code you must document your design blueprints using UML class diagrams
and sequence diagrams, otherwise it will be almost impossible to determine what
is happening.

25.2 KINDS OF BEHAVIOURAL PATTERNS
There are 11 documented behavioural patterns in GOF (Gamma et al., 1995). They are
all concerned with the member functions of existing objects and the 11 patterns can be
differentiated on the basis of their intent. There are three main sub-categories:

Variational patterns

These are patterns that describe behaviour in an object that may have different implemen-
tations. No new functionality is added to the object. The main variational patterns are:

• Strategy: Define a family of algorithms and model them using objects. This makes the
algorithms interchangeable because client code and algorithms can vary independently
of each other. For example, we could create strategies for calculating the price and
sensitivities for call and put options.

• Iterator: An iterator is an object that provides access to the elements of an object
aggregate. In particular, we can navigate in aggregates without exposing their underly-
ing representations. In general, all the iterators in our own development work are based
on the STL iterators.

298 Financial Instrument Pricing Using C++

• Command: This is a pattern to encapsulate a request or function as an object. Thus, no
hard-wired functionality resides in client code but client and command are independent.
The Command pattern is similar to the notion of function object or functor in STL.

Extension patterns

These are patterns that allow us to add functionality to a class or object without necessarily
having to modify the source code of the class. In Gamma et al. (1995) there is (only) one
such pattern:

• Visitor: This is a pattern that allows us to extend the functionality of the classes in
a (context) class hierarchy without having to modify the structure of the classes in
the context hierarchy. This is a very useful pattern because different customer groups
can extend a class hierarchy without having to modify or pollute the source code in
the context.

There are other ways to extend the functionality of classes and objects, for example using
Role patterns and a form of component-based programming, but a discussion of these
interesting topics is outside the scope of this book.

Notification patterns

These are patterns that model the interactions in graphs or networks of objects. In particu-
lar, we are interested in keeping the data in an object network synchronised and consistent.
The most important patterns are:

• Observer: Define a one-to-many dependency relationship between one object (called
the publisher) and a number of other objects (called the subscriber). Subscribers are
notified of changes in the state of the publisher. As a result of this pattern, we can be
sure that data in a network remains consistent and synchronised.

• Mediator: Define an object that acts as a coordinator between a set of objects. Objects
receive and send messages through the mediator. This pattern promotes loose coupling
by preventing any object from referring to another.

Other patterns

There are other, less critical behavioural patterns in Gamma et al. (1995) that we do not
document in this book. Our feeling is that if you are able to understand and apply the
most important patterns then you are in a position to write flexible code.

We now begin on our journey in the behavioural pattern landscape. We give several
examples from financial engineering. The full source code can be found on the accompa-
nying CD. In this chapter we give the essential code that is needed for an understanding
of the appropriate pattern.

25.3 ITERATOR PATTERN

The Iterator pattern described in Gamma et al. (1995) is a pointer-type mechanism that
allows us to navigate sequentially in a composite structure. There are various kinds of

Object Behavioural Patterns 299

iterators (sequential, random and so on) and it is indeed possible to create your own iterator
classes but this is probably overkill in C++ because the Standard Template Library (STL)
already provides us with most of the iterators that we need. However, we must show how
to integrate STL iterators with our application code. To this end, we show how to do this
using composite two-dimensional graphics objects.

25.3.1 Iterating in composites

A good way to learn how to implement iterators is to look at the work of other developers.
We use the classes that model two-dimensional shapes as a springboard. The full source
code can be found on the accompanying CD. In particular we define a base class Shape
that has derived classes such as Point, Circle, Polyline and so on. The technique
for creating iterators can be applied to other class hierarchies. The relevant interface is:

class ShapeComposite: public Shape
{ // N.B. Stripped down version
private:

// The shapelist using the STL list
std::list<Shape*> sl;

public:
// User can use the STL iterator
typedef typename std::list<Shape*>::iterator iterator;
typedef typename std::list<Shape*>::const_iterator

const_iterator;

// Iterator functions
iterator Begin(); // Return iterator at begin
const_iterator Begin() const; // Return const iterator at begin
iterator End(); // Return iterator after end
const_iterator End() const; // Return const iterator after end

// Remove functions
void RemoveAll(); // Remove all shapes from the list

};

We now discuss the code that implements this functionality. We wish to define iterators
than are read-only as well as iterators that are read and write and, furthermore, we wish
to model the following features:

• Go to the beginning of the list
• Go to the end of the list
• Remove all elements in the list by iterating in the list
• Copy one list to another list.

The source code now follows.

// Iterator functions
ShapeComposite::iterator ShapeComposite::Begin()
{ // Return iterator at begin of composite

return sl.begin();
}

ShapeComposite::const_iterator ShapeComposite::Begin()

300 Financial Instrument Pricing Using C++

const
{ // Return const iterator at begin of composite

return sl.begin();
}

void ShapeComposite::RemoveAll()
{ // Remove all shapes from the list

// Create STL list iterator
std::list<Shape*>::iterator it;

for (it=sl.begin(); it!=sl.end(); it++)
{ // Delete every shape in the list

delete (*it); // Delete shape
}

// Remove the shape pointers from the list
sl.clear();

}

void ShapeComposite::Copy(const ShapeComposite& source)
{ // Copy the source composite to this shape composite

// Create STL list iterator
std::list<Shape*>::const_iterator it;

for (it=source.sl.begin(); it!=source.sl.end(); it++)
{ // Copy the whole list

// Add a copy of the shape to our list
sl.push_back((*it)->Clone());

}
}

25.3.2 Iterating in property sets

A bit closer to home, we now define a class that represents a list of Property instances
and the corresponding iterators for it. To this end, we examine the class:

template <class N, class V> class SimplePropertySet
{ // N.B. Stripped down version

private:
N nam; // The name of the set
// The SimplePropertySet list using the STL list
list<Property<N,V> > sl;

public:
// User can use the STL iterator
typedef typename list<Property<N,V> >::iterator iterator;
typedef typename list<Property<N,V> >::const_iterator const_iterator;

// Iterator functions
iterator Begin();
const_iterator Begin() const;
iterator End();
const_iterator End() const;

// Add and remove functions (mixin or embedded inheritance)
void add(const Property<N,V>& p);
void add(const SimplePropertySet<N,V>& p);

Object Behavioural Patterns 301

void remove(const N& value); // Remove all elements with 'value'

// + more
};

This class can then be used in other classes, for examples classes for options. To motivate,
let use consider a class for European options and let us suppose that we wish to code a
member function that returns the parameters of the option as a property set. The code for
this is:

SimplePropertySet<string, double>
ExactEuropeanOption::propertylist() const
{

SimplePropertySet<string, double> result;

result.add(Property<string, double> ("Option Value", Price()));
result.add(Property<string, double> ("Delta",Delta()));
result.add(Property<string, double> ("Gamma",Gamma()));
result.add(Property<string, double> ("Vega",Vega()));
result.add(Property<string, double> ("Vega",Theta()));
result.add(Property<string, double> ("Rho",Rho()));
result.add(Property<string, double> ("Cost of Carry",Coc()));

return result;
}

Finally, how do we use iterators in code? Here is an example that creates an option and
prints its value on the console:

ExactEuropeanOption indexOption3("P", "Index Option");
SimplePropertySet<string, double>
allprops = indexOption.properties();

// Now iterate in the list
SimplePropertySet<string,double>::const_iterator ci;

cout << "\nDump the values \n";
for (ci=allprops.Begin(); ci!=allprops.End(); ci++)
{
cout << (*ci).name() << ", " << (*ci)() << endl;

}

25.4 THE VISITOR PATTERN
This pattern is a so-called extension pattern because it allows us to extend the functionality
of the classes in a class hierarchy (the context) without actually having to change the
context’s source code. We can then speak of non-intrusive extensions. The advantage of
this pattern is that different customers and clients can choose which Visitor functionality
they wish to obtain. In other words, you do not pay for what you do not use.

We have already had an example of a Visitor pattern in Chapter 24 in which the
functionality of a class that encapsulates a real-valued function with one argument can be
extended by the use of Visitor. In fact there were three main Visitor specialisations that
extend the functionality in some way, namely:

• Numerical integration
• Numerical differentiation
• ‘Displaying’ functions in different environments.

302 Financial Instrument Pricing Using C++

Entity

Property

*

N, V

N, V

EntityVisitor

{abstract}

<<uses>>

XMLReader XMLWriter

N, V

Figure 25.1 Entities and XML Visitor classes

We saw from Figure 24.12 that we can construct a specific Visitor class for each desired
piece of functionality. The Function class sends requests to a specific Visitor class. The
actual mechanics for setting up this structure is described in GOF (Gamma et al., 1995).
On the other hand, the CD in this book gives several examples describing how we have
implemented the Visitor pattern in C++. Furthermore, we also describe how we have used
Visitor in order to create XML representation of Property objects (and vice versa).

The advantages of the Visitor pattern are:

• Separation of Concerns: Each Visitor class is dedicated to a specific feature. We can
concentrate on one thing at a time and it is possible to keep features independent of
each other.

• Flexibility: You can extend the functionality of a class or class hierarchy almost at will.

We shall now give a specific example of the Visitor pattern.

25.4.1 Visitors and the Extensible Markup Language (XML)

Suppose that we have defined a template class representing entities. An entity has a name
or ID and consists of a collection of Property objects. The UML class diagram is
shown in Figure 25.1. In general terms we see that clients of an Entity receive a request
to perform a specific Visitor function. The entity then delegates to the specific Visitor
class. To this end, we need the following Entity function:

template <class N, class V>
void Entity<N, V>::accept(EntityVisitor<N, V>& visitor)

{ // The delegation function in the Visitor

visitor.visit(*this);
}

Thus, we see that Visitors must implement the visit() function. In fact, the classes
Property and SimplePropertySet implement the accept() function as well. This
leads us to the following interface specification for EntityVisitor:

Object Behavioural Patterns 303

template <class N, class V> class EntityVisitor
{
public:

// Visit functions.
virtual void visit(Property<N, V>& property) = 0;
virtual void visit(SimplePropertySet<N, V>& pset) = 0;
virtual void visit(Entity<N,V>& entity) = 0;

};

Derived classes of EntityVisitor must implement these pure virtual member func-
tions. In order to reduce the scope we concentrate on the Visitor class that writes the
properties in an Entity to an XML file. Its interface specification is:

template <class N, class V> class XMLWriter : public
EntityVisitor<N,V>
{
private:

// Member data. Microsoft-specific libraries!
MSXML2::IXMLDOMDocument2Ptr m_pXMLDoc; // XML document
MSXML2::IXMLDOMElementPtr pRoot;

// No copy-constructor and assignment operator for now
XMLWriter(const XMLWriter<N,V> &) { }
XMLWriter & operator = (const XMLWriter<N,V> &) { }

// Private Visit functions
virtual void visit(Property<N, V>& property);
virtual void visit(SimplePropertySet<N, V>& pset);

public:
// Constructor and destructor
XMLWriter();
virtual ~XMLWriter();

// Public Visit functions
virtual void visit(Entity<N,V>& entity);

// Saves XML nodes to file
void Save(const string & name);

// Write XML nodes to string
string ToString();

};

In this class we have defined three functions that visit properties, property sets and entities.
Without going into the gory details, we can state the following general rules:

• Writing a property to XML entails writing the property using Microsoft’s implementa-
tion of the Document Object Model (DOM).

• Writing a property set entails iterating over its properties and calling the visit()
function for each of its properties. This occurs in a roundabout way:

template <class N, class V>
void XMLWriter<N,V>::visit(SimplePropertySet<N, V>& pset)

{
pset.accept(*this);

}

304 Financial Instrument Pricing Using C++

template <class N, class V>
void SimplePropertySet<N,V>::accept (EntityVisitor<N,V>& v)

{
// We iterate over the list and visit each element
iterator it;
for (it=sl.begin(); it!=sl.end(); it++)
{
v.visit(*it);

}
}

• Writing an entity entails creating a new node in the DOM hierarchy and then writing
its encapsulated property set:

template <class N, class V> void
XMLWriter<N,V>::visit(Entity<N,V>& entity)
{ // Write an entity to XML document

// 1. Write name as the root of the XML document
// 2. Write property set

try
{
// Create root
string N = entity.name.name();
_bstr_t root = N.c_str();
pRoot = m_pXMLDoc->createElement(root);

// Add root to document element.
m_pXMLDoc->appendChild(pRoot);

}
catch(_com_error & error)
{
bstr_t description = error.Description();
throw string(description);

}
visit(entity.properties);

}

Finally, we show how to use the class. To this end, we create a program that does
the following:

• Creates an option as an entity
• Writes the entity to XML (using XMLWriter)
• Reconstructs the option by reading the XML file (using XMLReader)
• Iterates over the option properties and prints their properties.

Here is the source code.

int main()
{
XMLWriter<string, double> xmlW, xmlW2;

// Names in properties may not contain spaces/funny characters
Property<string, double> K("StrikePrice", 100.0);
Property<string, double> r("InterestRate", 0.06);
Property<string, double> T("Expiry", 1);
Property<string, double> S("Stock", 120);

Object Behavioural Patterns 305

Property<string, double> U("UnderlyingAsset", 134.2);
Property<string, double> b("CostOfCarry", 12.0);

Entity<string, double> option("EuropeanOption");
option.AddProperty(K); option.AddProperty(r);
option.AddProperty(T); option.AddProperty(S);
option.AddProperty(U); option.AddProperty(b);

xmlW.visit(option);
xmlW.Save ("Option.xml");

// Now read the file back in
XMLReader<string, double> xmlR;
xmlR.Load("Option.xml");

Entity<string, double> option2;
xmlR.visit(option2);

SimplePropertySet<string, double>
optionParams = option2.properties;

// Iterate over the result and print the values
SimplePropertySet<string,double>::const_iterator it;

cout << "\nDump the parameters, call prices ... \n";
for (it=optionParams.Begin(); it!=optionParams.End(); it++)
{
cout << (*it).name() << ", " << (*it)() << endl;

}

return 0;
}

The output from this program is:

<?xml version="1.0"?>

<EuropeanOption><StrikePrice>100</StrikePrice><InterestRate>0.06
</InterestRate><Expiry>1</Expiry><Stock>120</Stock><UnderlyingAsset>134.2
</UnderlyingAsset><CostOfCarry>12</CostOfCarry></EuropeanOption>

Dump the parameters, call prices ...
StrikePrice, 100
InterestRate, 0.06
Expiry, 1
Stock, 120
UnderlyingAsset, 134.2
CostOfCarry, 12

25.5 NOTIFICATION PATTERNS

We give a brief overview of the sub-category of behavioural patterns that have to do with
keeping the data in an object-oriented application consistent. For example, in a hedging
application we would like to support the following features:

• Update a portfolio when an important event takes place.
• Recalculate option price and delta when a stock parameter changes.
• Display new values in Excel when an instrument has been modified.
• Advise on what to do.

306 Financial Instrument Pricing Using C++

attach()
detach()
notify()

Subject

update() = 0

Observer

Concrete

update()

Concrete

1 *

1 1
. . .

has dependents

attached to

Figure 25.2 Structure of Observer pattern

Model update() = 0

ControllerView

Observer

gets data

call service

*

Figure 25.3 MVC structure

In general, object-oriented systems are graphs or networks of objects. For each object
(called the Subject or Publisher) there may be zero or more other objects (that play
the role of Observer or Subscriber) that must be notified of changes in the former
objects. There are a number of very important design patterns in this category:

• Observer: Define a 1 : N dependency relationship between a Subject and its
Observers. Observers register/unregister themselves with the subject. When some
interesting event occurs in the subject it will then update its associated observers. The
structure of the Observer pattern is shown in Figure 25.2.

• Mediator: In this case we define an object that acts as a central hub or coordinator
between other loosely coupled objects. All communication takes place via the mediator.

• Model-View-Controller MVC (Buschmann et al., 1996): This is an extended version of
the Observer pattern and was built with interactive applications in mind. In general,
interactive applications have three main components:

Object Behavioural Patterns 307

– Model (the functional core of the application)
– View (the presentation/output component)
– Controller (in the input component)

The structure of the MVC is shown in Figure 25.3.

A full discussion of these patterns is outside the scope of this book. However, we provide
some examples on the CD.

In Duffy (2004a) we have developed reference architectures for enterprise systems and
these subsume and use many of the more basic patterns in GOF (Gamma et al., 1995)
and POSA (Buschmann et al., 1996).

25.6 CONCLUSIONS AND SUMMARY

We have introduced behavioural patterns in this chapter. These are needed because a
typical object-oriented application is essentially a graph of dependent objects. There are
a number of scenarios involved with such graphs and they are all concerned with object
methods (member functions):

• Variational: Choose between different implementations of a method.
• Extensions: The ability to add/remove methods and properties in an object or class.
• Notification: Changes in one part of an object graph should propagate to other depen-

dent objects in the graph.

We introduced three very important notification patterns, namely Observer, Mediator and
Model-View-Controller. For a full discussion of these patterns, see Gamma et al. (1995)
and Buschmann et al. (1996). There are also several examples on the CD.

Part VI

Design and Deployment Issues

26
An Introduction to the Extensible

Markup Language

26.1 INTRODUCTION AND OBJECTIVES

In this chapter we give an introduction to the Extensible Markup Language (XML). XML
is a so-called markup language and it describes rules for encoding text for human and
computer processing. In general terms, we can say that XML allows different software
systems to exchange data in a uniform and standard manner. In fact, XML is a universal
standard as specified by the World Wide Web Consortium (W3C). XML is free and no
royalties need be paid if you use it in your applications.

Our interest in XML is that it allows instrument properties and data to be exchanged
between different software systems. It is no longer necessary to define proprietary data
formats that only work with a specific compiler or network byte protocol. Instead, diverse
applications can exchange data once they understand its structure and semantics.

We now describe the contents of this chapter. In section 26.2 we give a brief overview
of XML. Section 26.3 introduces the reader to the basics of XML and describes how an
XML document is structured. In section 26.4 we introduce Document Type Definition
(DTD). The DTD defines the allowed structure for XML documents and, in general,
we say that it describes the semantics of an XML document. We describe how to model
UML-like relationships (such as groups, sequences and multiplicities) using DTDs. DTDs
are a part of the XML standard. We discuss XML stylesheets in section 26.5.

Section 26.6 discusses the application of XML to financial applications.
This chapter is a self-contained and compact introduction to XML and the focus is on

understanding the most important syntax in this language and learning how to read XML
files with the same ease as you would read the morning newspaper.

26.1.1 What’s the big deal with XML?

This book is concerned with numerical methods (in particular, finite differences) for option
pricing. We use C++ for all calculations, classes and algorithms. C++ is ideal for this kind
of work but we must have some way of getting data into our C++ applications by means of
a User Interface (UI) component. We could write this component in C++ (using the MFC
or OWL graphics libraries, for example). However, in large system development a part of
an application may be written in Java, another part in C++ while the UI could be written in
Visual Basic. We then experience major problems with data interoperability because each
language has its own way of representing data. Also, the situation is exacerbated when the
components in an application are in different address spaces. XML resolves data format
problems between different applications. Would it not be better if there were a single
data standard that all systems could understand without the necessity of having to write
dedicated code? Well, the good news is that XML resolves these problems. Furthermore,
you can start using it now in your applications.

312 Financial Instrument Pricing Using C++

26.2 A SHORT HISTORY OF XML
The term ‘markup’ has its roots in the printing industry and refers to how documents are
formatted. In this case notes or marks were placed in a piece of text for a typist or printer
in order to indicate that the text should be made bold, italic and so on. The objective
of markup is to make the interpretation of text explicit. The grand daddy of all markup
languages is the Standard Generalised Markup Language (SGML), an ISO standard dating
from 1986. XML is a subset of SGML but is simpler and has stricter rules than the latter.
XML was designed specifically for use in Internet applications but it is not restricted to
such applications. The standards body W3C has created specifications to improve Internet
interoperability and promote standardisation.

26.3 THE XML STRUCTURE
In this section we give a gentle introduction to XML syntax by examining a simple
example. We consider documenting two-dimensional points using XML. Each point has an
x coordinate and a y coordinate as well as corresponding values. For example, the syntax

<X>23</X>

denotes a so-called element in XML. An element is a means of structuring text. In this
case <X> denotes the begin tag of the element and </X> is the end tag. The element name
is ‘X’. The value ‘23’ denotes the contents of the element. In short, the above syntax could
describe a point’s x coordinate. But how would we describe a point in XML? In short,
we define a new element called ‘Point’ that contains two simpler elements as follows:

<Point>
<X>2</X>
<Y>6</Y>

</Point>

We thus see that elements can be nested and we shall discuss this in more detail at a
later stage.

26.3.1 XML files

In general, we store XML data in so-called XML documents. An XML document is a unit
of data storage and has the file extension ‘.xml’. It must conform to some rules (which
we shall discuss at a later stage) and in general contains instantiated data. It is possible to
have multiple elements with the same name in a single XML document as the following
example shows:

<Shapes>
<Point>
<X>1</X>
<Y>4</Y>

</Point>
<Point>
<X>6</X>
<Y>7</Y>

</Point>
</Shapes>

An Introduction to the Extensible Markup Language 313

Shapes

Point

X Y

1 4

Point

X Y

2 3

Point

X Y

6 5

Figure 26.1 Tree structure

In this example we see that two Point elements are embedded in a root element called
Shapes. We could represent this structure as a tree that highlights the nesting, as shown
in Figure 26.1.

We now give another example to show how to document the properties of a European
option. We create a root element and each property is modelled as a nested element:

<EuropeanCallOption>
<Name>EuropeanCallOption</Name>
<T>1</T>
<K>15</K>
<sigma>0.01</sigma>
<r>0.15</r>
<Dividend>0.03</Dividend>
<S>20</S>

</EuropeanCallOption>

This structure is similar to the member data of the class for European options in
Appendix 1 of this book.

We shall encounter more examples from financial engineering in Chapter 27, but the
above example should give you a feeling for what XML syntax is for this domain.

26.3.2 XML syntax

The first line in each XML document must contain the following:

<?xml version="1.0" encoding="UTF-8" ?>

Furthermore, you can create structures containing parent and child elements. Child ele-
ments must be completely defined within the scope of their parent, as the following correct
example shows:

<Course>
<Name>C++ and Design Patterns</Name>
<Body>
<Module>
<Title>Structural Patterns</Title>
<Bullet>Bridge</Bullet>
<Bullet>Decorator</Bullet>

</Module>
<Module>
<!-- and more stuff -->

314 Financial Instrument Pricing Using C++

</Module>
</Body>

</Course>

This structure describes part of a course on design patterns: the course has a title and a
body. The body consists of a number of modules. However, the following XML structure
is incorrect because the element ‘Module’ is closed after the scope of the element ‘Body’:

<Course>
<Name>C++ and Design Patterns</Name>
<Body>

<Module>
<Title>Structural Patterns</Title>
<Bullet>Bridge</Bullet>
<Bullet>Decorator</Bullet>

</Body>
</Module>

</Course>

It is possible to include text in an XML document without having to define a corresponding
element as the following example shows:

<Module>
<Title>Structural Patterns</Title>
Structural patterns are concerned with how

classes and objects are composed to form
larger structures. Examples of these patterns
Bridge, Composite, Proxy, Facade (see Gamma et al., 1995)
<Bullet>Bridge</Bullet>
<Bullet>Decorator</Bullet>

</Module>

26.3.3 Attributes in XML

An attribute in XML is a description of a specific element but it does not refer to the ele-
ment’s contents. An attribute provides metadata information about an element. It provides
extra information about the contents of the element in which it appears. A given element
may have several attributes and these are serialised inside the start tag for the element.

In general, an attribute is a name–value pair and is similar to the Property pattern in
Part I of this book. Some simple examples are:

<Person name = “Abraham” age = “250”>

<Point Colour = "Blue" Name=‘p1’>
<X>7</X>
<Y>3</Y>

</Point>

You can use either single quotes or double quotes to denote literal strings, as the above
example shows.

Finally, you can place comments in XML documents as the following example shows:

<!-- (C) Datasim Education BV 2002 -->
<!-- This is a collection of shapes. -->

An Introduction to the Extensible Markup Language 315

<Shapes>
<!-- Point element. -->
<Point>
<X>2</X>
<Y>7</Y>

</Point>
</Shapes>

26.4 DOCUMENT TYPE DEFINITION
Whereas XML documents contain information pertaining to objects or instances, they do
not contain information pertaining to the allowed structure of these objects. To this end,
we need syntax for describing and constraining the logical structure of an XML document;
in particular, we would like to address the following issues:

• What elements are allowed in a document?
• What attributes are allowed?
• What are the restrictions on the values of an attribute?
• How is element nesting defined and what is allowed?

These issues and considerations are taken care of in the Document Type Definition (DTD)
and it should be seen as a kind of Data Definition Language (DDL). It is part of the official
XML and it is usually referenced from an XML document; in other words, an XML
document may know about its DTD but not the other way around. The DTD information
is defined in a separate ASCII file having the file extension ‘.dtd’. It is not mandatory to
create a DTD file (the XML document is sufficient) but if you do create one and reference
it from the XML document then all elements used must be referenced in the DTD. In
general, multiple XML documents refer to a given DTD file.

26.4.1 DTD syntax

Defining the element names and their contents in DTD can be difficult to understand. It
is very compact but once you get used to it you will find it quite easy and will be in a
position to create your own DTD files.

We discuss the following topics:

• Defining element types and element contents
• Special elements: sequence, choice and group
• Multiplicity issues
• Attribute list declaration and value types
• Identifiers and references
• Entity declarations.

This is quite a list, but we shall discuss each topic in turn and give illustrative examples
for each. XML uses a number of keywords that we use in the following discussion.

Element types

In this case we define the name of an element and the allowed contents. The data type
of the contents is one of the following:

316 Financial Instrument Pricing Using C++

#PCDATA (free-form text)
EMPTY (an element with no contents)
ANY (unspecified, a combination of text and elements).

The EMPTY type is used for elements that do not have contents (or that do not need
contents) and they can be likened to control data in applications. An example is the page
break control element in HTML.

Some examples of element using the above types now follow (note that these are
defined in the .dtd file):

<!ELEMENT A (#PCDATA)>
<!ELEMENT Scale (#PCDATA)>
<!ELEMENT br EMPTY>
<!ELEMENT X ANY>
<!ELEMENT Scale (#PCDATA)>

Note the presence of the keyword !ELEMENT in the above examples.
Some examples of how these elements are correctly instantiated in XML documents are:

<A>Hello XML

<Scale>23</Scale>

<X>

32
<Scale>2</Scale>

</X>

Special elements

We can model the following special elements (we take a set with three elements A, B

and C for convenience):

• Sequence (A, B,C): choose an element from a list of candidate elements
• Choice (A|B|C): choose an element from a mutually exclusive set of candidate

elements
• Group (A|(B,C)): nest a group of elements.

We now give some examples of these special elements by giving the entries in the .dtd
file as well as some instances in the XML document.

An example of the Sequence specifier is:

<!ELEMENT Point (X, Y)>
<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>

<Point>
<X>1.2</X>
<Y>3.4</Y>

</Point>

An example of the Choice specifier is:

<!ELEMENT Answer (Choice_A|Choice_B)>
<!ELEMENT Choice_A (#PCDATA)>

An Introduction to the Extensible Markup Language 317

<!ELEMENT Choice_B (#PCDATA)>

<Answer>
<Choice_B>Apple</Choice_B>

</Answer>

An example of the Group specifier is:

<!ELEMENT Point ((X, Y)|(Angle, Length))>
<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>
<!ELEMENT Angle (#PCDATA)>
<!ELEMENT Length (#PCDATA)>

<Point>
<X>1</X>
<Y>1</Y>

</Point>

<Point>
<Angle>45</Angle>
<Length>1.1</Length>

</Point>

This example shows how a DTD can generate multiple XML instances; the first one is a
point in Cartesian space while the second example is a point in polar coordinates.

Multiplicity

This option is concerned with the number of child elements within a parent element. This
is achieved by appending a special sign or marker to the child element. The options are:

• ‘?’ zero or 1 time (an optional multiplicity in UML terms)
• ‘*’ zero or more times
• ‘+’ 1 or more times
• No sign signifies just once.

The following example is an element representing an e-mail message. The message must
be sent to at least one recipient, it is from exactly one sender, there are zero or more ‘cc’
addresses, the subject is optional and the body is also optional:

<!ELEMENT EMail (To+, From, CC*, Subject?, Body?)>
<!ELEMENT To (#PCDATA)>
<!ELEMENT From (#PCDATA)>
<!ELEMENT CC (#PCDATA)>
<!ELEMENT Subject (#PCDATA)>
<!ELEMENT Body (#PCDATA)>

An example of an XML document corresponding to this DTD is:

<EMail>
<To>Ilona</To>
<To>Brendan</To>
<From>Danny</From>
<Subject>Anyone for tennis?</Subject>
<Body>3 o’clock next Wednesday</Body>

</EMail>

318 Financial Instrument Pricing Using C++

Attribute lists and value types

It is possible to declare one or more attributes of an element. To this end, we use the
ATTLIST keyword and define a list of attributes where each attribute is in essence a
name–value pair in conjunction with the value type of the attribute. The allowed value
types are:

• CDATA (text)
• ID (this is a document-specific identifier)
• IDREF (identifier reference, a reference to a document-specific identifier)
• IDREFS (multiple references to document-specific identifiers)
• NMTOKEN (a name composed of characters but no white space)
• NMTOKENS (multiple NMTOKEN names)
• Enumerations

Identifiers must be unique in a given document. No duplicates are allowed. Furthermore,
it is possible to assign default values to an attribute. Thus, when no value is given the
default value is assumed.

Let us take an example of a point with two attributes: the first attribute is the name of
the point (default value ‘P’) while the second attribute is the geometry type (default is
‘Cartesian’). Both attributes are text types.

<!ELEMENT Point (X, Y)>
<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>

<!ATTLIST Point
Name CDATA "P"
Geometry CDATA "Cartesian">

An example of use in an XML document is as follows:

<Point Name = "P1">
<X>1.2</X>
<Y>3.4</Y>

</Point>

In this case the default coordinate system is ‘Cartesian’.

Identifiers and references

An ID is similar to a primary key from database theory and it is a unique identifier for
an element. An IDREF is a pointer to a unique ID. The following example shows how
these are used:

<All>
<Point Id = "P1">
<X>1</X>
<Y>2</Y>

</Point>
<Reference IdRef="P1"/>

</All>

An Introduction to the Extensible Markup Language 319

Concluding with our discussion of attributes, we note that are three ways to control the
values of attributes. First, we can demand that a value is mandatory (#REQUIRED), in
which case the attribute value must be defined for each element instance. Second, the
value may be optional (#IMPLIED), in which case no attribute value is given. Finally,
the value may be fixed (#FIXED), which in fact says that the attribute is a constant. The
following example shows the usage:

<!ELEMENT Point (X, Y)>
<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>
<!ATTLIST Point
Name CDATA #IMPLIED
Dimensions CDATA #FIXED "2">

Entity declarations

We now come to the important issue of defining entities and referencing them from an
XML document. There are two kinds of entity:

• Internal entity
• External entity.

An internal entity is a text string while an external entity is a file. There are three good
reasons for using entities: first, they avoid text duplication; second, we can compose XML
documents from multiple files; and, finally, we can use reserved or special characters.
We concentrate on internal entities in this chapter. We take an example. In a .dtd file
we define

<!ELEMENT X (#PCDATA)>
<!ENTITY CopyRight2002 "(c) 2002 Datasim">

while we refer to the copyright entity by using a reference to it from an XML document
as follows:

<!DOCTYPE X SYSTEM "x.dtd">
<X>&CopyRight2002;</X>

We conclude with a short discussion of parameter entities. These are entities that are used
only inside the DTD itself. The general form is:

<!ENTITY % entity_name “entity_type”>

Having defined a parameter entity we can reference it in other parts of the DTD document
using the notation (%entity_name;).

26.4.2 Validation issues

In general we use the DTD file to validate the structure of an XML document. In fact,
the XML document should refer to its corresponding .dtd file, as shown in the follow-
ing example:

320 Financial Instrument Pricing Using C++

<!DOCTYPE Point SYSTEM "point.dtd">
<Point>

<X>2</X>
<Y>6</Y>

</Point>

In this case the first line defines the location of the .dtd file. We use the keyword
‘DOCTYPE’. The other parameters have the following meaning:

Point (the root element)
SYSTEM (this indicates that the next item is the file location)
“point.dtd” (the file location itself).

Finally, we can draw analogies between the object paradigm and XML. A class is similar
to a DTD because it is abstract and describes the allowed structure of instances of the
DTD, for example objects or XML documents. In short, DTD is the class and the XML
document contains instances of the class.

The uses of DTDs can be summed up as follows:

• They document the structure of a markup language or application (for example,
FpML, MathML).

• They provide default attribute values.
• They can check the structure of hand-written XML documents.
• They are used as input to XML-editing tools in order to automatically generate

XML elements.

26.4.3 Limitations of DTDs

DTDs do have some limitations. First, they have support for attribute data types but they
have no data types for element values. Furthermore, they have limited support for child
element multiplicity constraints and it is not possible to validate an XML document that
combines elements from different markup languages. This poses serious problems for
enterprise B2B applications.

We shall see in the next chapter how XML schemas overcome some of these limitations.

26.5 EXTENSIBLE STYLESHEET LANGUAGE
TRANSFORMATION (XSLT)

The Extensible Stylesheet Language (XSL) is used to present XML data over the Internet.
It is an XML application language and it is used to transform an input document to an
output document. The output document can be any one of a number of types:

• HTML document displaying XML data
• An XML document containing a subset of XML data
• An XML document using some other markup language.

XSL uses a fixed set of tags (vocabulary) used to define presentation templates called
stylesheets. Stylesheets are used to manipulate the data and they describe formatting
information in an XML document. In short, we say that XSL provides a language for

An Introduction to the Extensible Markup Language 321

XML document

XSLT stylesheet

Resulting documentApply stylesheet

Figure 26.2 Applying a stylesheet

creating stylesheets that describe how XML documents should be rendered. The main
advantages of using stylesheets are (see Ceponkus and Hoodbhoy, 1999):

• Reuse of data
• Standardisation of presentation style
• Separation of concerns: data and presentation are in distinct files
• Transform a source document to multiple output formats.

The basic UML activity diagram for the transformation is shown in Figure 26.2. There
are two input files, namely the XML document and the XSL stylesheet containing trans-
formation rules (please note that a stylesheet is also an XML document). The output can
be Text (RTF), XML or HTML, for example.

We wish to give a more detailed account of XSL but before we do that we need to
introduce the concept of a namespace in XML.

26.5.1 Namespaces in XML

The main reason for using namespaces is to avoid name collisions. Thus, it is possible to
define an element name more than once provided it is defined in different namespaces.
By the way, if you know how namespaces work in C++ you will not have much problem
understanding the XML namespace concept.

A namespace is identified by a Universal Resource Locator (URL) and the URL is in
essence the location of a file on the Web. There are two ways to identify a namespace. The
first way is by means of a namespace prefix. You can define your own namespaces while
XML has a reserved keyword ‘xmlns’ that identifies an URL. Let us take an example:

<crs:Point
xmlns:crs="http://www.datasim.nl/cartesian">
<crs:X>1.2</crs:X>
<crs:Y>5.8</crs:Y>

</crs:Point>

In this case we see that two namespaces are defined. In fact, ‘crs’ is declared as a new
namespace in this example.

A default namespace uses just one namespace, that is ‘xmlns’. Let us take an example.
The elements Point, X and Y are in the namespace identified by

xmlns="http://datasim.nl/cartesian"

322 Financial Instrument Pricing Using C++

The full structure is

<Point xmlns="http://datasim.nl/cartesian">
<X>5.1</X>
<Y>3.5</Y>

</Point>

It is possible to use elements from different namespaces in an XML document. We give an
example again to show what we mean. Let us suppose that we have representations for a
Point in both Cartesian and polar formats and we wish to initialise the data accordingly.
The following code shows how:

<All xmlns:crs="http://www.datasim.nl/cartesian"
xmlns:plr="http://www.datasim.nl/polar">

<crs:Point>
<crs:X>1</crs:X>
<crs:Y>1</crs:Y>

</crs:Point>

<plr:Point>
<plr:Angle>45</plr:Angle>
<plr:Length>1.14</plr:Length>

</plr:Point>

</All>

26.5.2 Main concepts in XSL

A stylesheet consists of one or more templates. Each template matches a pattern that
specifies a set of XML elements. A pattern is a very simple query language. XSL defines
a limited set of XML elements under the XSL namespace that XSL processors interpret
as executable functions. A full description of these elements can be found in Ceponkus
and Hoodbhoy (1999). We concentrate on three specific elements:

• xsl:stylesheet (root node containing templates that we apply to the source
document)

• xsl:template (define a series of transformations or formatting options)
• xsl:output (define how output is to be serialised)
• xsl:value-of (insert the string value of a specified node).

The xsl:stylesheet element is used once for every XSL stylesheet and is the root
node of every stylesheet. It informs the XSL processor that the document is an XSL
stylesheet and houses all templates:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

The xsl:output element describes the output format of the transformed document.
Possible output types are XML, HTML, text and qualified names. (A qualified name
consists of a namespace and a local part. The namespace name selects the namespace
while the local part is the local document element or attribute name.) An example is:

<xsl:output method="text"/>

An Introduction to the Extensible Markup Language 323

The xsl:template element is used to create a template in which formatting and trans-
forming actions are specified, as shown in the following example:

<xsl:template match="/Shapes/Point">
P(<xsl:value-of select="./X"/> , <xsl:value-of select="./Y"/>)

</xsl:template>

In this example we match X and Y elements in the pattern "/Shapes/Point" and we
show literal text in bold. The input file for this code is:

<Shapes>
<Point>
<X>1</X>
<Y>2</Y>

</Point>
</Shapes>

and the transformed document has the following form:

P(1 , 2)

We conclude this section with a discussion of the xsl:value-of element. This ele-
ment is used to insert the text/string value of the node indicated by a pattern. It can be
used any number of times. Let us take an example of an XML input document contain-
ing points:

<Shapes>
<Point>
<X>1</X>
<Y>2</Y>

</Point>
<Point>
<X>3</X>
<Y>4</Y>

</Point>
<Point>
<X>5</X>
<Y>6</Y>

</Point>
</Shapes>

and let us suppose that we wish to print these values in the following way:

P(1 , 2) P(3 , 4) P(5 , 6)

The code that realises this output is:

<xsl:template match="/Shapes/Point">
P(<xsl:value-of select="./X"/>, <xsl:value-of select="./Y"/>)

</xsl:template>

Again, we show literal text in bold.

324 Financial Instrument Pricing Using C++

26.6 AN APPLICATION OF XML: FINANCIAL PRODUCTS
MARKUP LANGUAGE

The Financial products Markup Language (FpML) is a protocol enabling e-commerce
activities in the field of financial derivatives (see FpML, 2003). It establishes the industry
protocol for sharing information on, and dealing in, financial swaps, derivatives and
structured products over the Internet. One of the objectives of FpML is to support many
kinds of products such as portfolios for risk management and over-the-counter (OTC)
derivatives. FpML is an application of XML.

We include a discussion of FpML in this chapter because of its relevance to XML
and to financial engineering. FpML supports XML definitions for the following kinds
of products:

• Interest rate cap
• Interest rate floor
• Interest rate swaption
• FX resetable cross-currency swap
• Equity derivatives

This list is only a snapshot in time and many other products are being added. For an
up-to-date account, please refer to the FpML website www.fpml.org. For example, FpML
deals with Equity Options and other derivative products.

26.6.1 Product architecture overview

FpML adopts a structured approach by grouping related elements into so-called compo-
nents. A component describes one particular feature of a trade. Components are recursive
in the sense that they may contain, and be contained in, other components. Components
may also contain primitive types such as strings and dates. Thus, all these features allow
components to be used as building blocks for a flexible and extendible model. Each com-
ponent serves a particular semantic purpose and is typically represented as an entity in an
XML DTD. However, most new development work centres on XML Schema. Arbitrarily
complex financial products can be created by combining a few simple ideas in a variety
of different ways.

Some primitive components in FpML are:

FpML_Money
FpML_Interval
FPML_BusinessCenters
FPML_BusinessDayAdjustments

Some examples of entries in the FpML DTD are:

<!ENTITY % FpML_MONEY “currency, amount”>
<!ENTITY % FpML_Strike “strikeRate, buyer?, seller?”>
<!ENTITY % FpML_BusinessCenters “businessCenter+”>

Higher-level components are built from simpler components as the following
examples show:

<!ENTITY % FpML_ProductSelection “bulletPayment |
capFloor | fra | swap | swaption”>

An Introduction to the Extensible Markup Language 325

FpML uses a graphical notation to display an XML entity definition. The representation
is similar to UML (see FpML, 2003). In this section however, we prefer to use UML
because it is a well-accepted standard and is highly expressive (see www.omg.org for the
UML specification).

We begin our discussion of FpML architecture by looking at core trade components.
A trade is a top-level component with the root element FpML. A trade is an agreement
between two parties to enter into a financial contract and the trade component contains
all the economic information necessary to execute and confirm that trade. A trade has the
following parts:

• tradeHeader (common to all kinds of trades, for example, dates and trade parties)
• product (abstract concept, base class for all specific products, for example, fra)
• party (holds information about a party involved in the trade)
• otherPartyPayment (additional payment to third parties, for example, brokers).

The UML diagram for a trade is shown in Figure 26.3. Each of the classes in this diagram
is also an aggregate containing parts. The corresponding DTD entry is:

<!ENTITY % FpML_Trade “tradeHeader,
%FpML_ProductSelection; , party+ ,
otherPartyPayment*”>

The product entity in Figure 26.3 is abstract and has a number of specialisations. For
example, the swap entity is documented in the FpML specification as a complex aggregate
entity, as shown in Figure 26.4.

A swap contains one or more instances of the swapStream component, zero or more
instances of the additionalPayment component as well as an optional cance-
lableProvision component, Furthermore, it contains an optional extendiblePro-
vision component and an optional earlyTerminationProvision component

FpML

Swap

PartyProductTradeHeader OtherParty
payment

Capfra . . .

*

Trade

role 2 . . *

Figure 26.3 Trade entity

326 Financial Instrument Pricing Using C++

ProductType

SwapStream

Early termination provision

Cancelable provision

Extendible provision

Additional payment

0 . . 1

1 . . *

0 . . 1

0 . . 1

0 . . 1

*

Swap

Figure 26.4 Interest rate swap

Finally, the swapStream contains the elements required to define an individual swap
leg. Each of these entities has its corresponding DTD entry in the FpML specification.
We give the structure for swaps:

<!ENTITY % FPML_Swap “%FpML_Product; , swapStream+ ,
earlyTerminationProvision? , cancelableProvision? ,
extendibleProvision? , additionalPayment*”>

The reader might like to check that this structure and the UML structure in Figure 26.4
are two representations of the same information.

26.6.2 Example: Equity derivative options product architecture

FpML has support for a range of put and call options with European or American exercise
styles. These options can be based on single stocks or indices and delivery can be either
cash or physical stock. FpML has support for the following:

• Bermudan exercise style
• Basket underlyings
• Forward starts

An Introduction to the Extensible Markup Language 327

• Quantos and composites
• Averaging; knock-in, knock-out and binary (digital) options.

FpML models options by the equityOption entity that contains approximately 15
parts! We discuss a few of them to motivate the structure:

underlyer
equityExercise
equityOptionFeatures

The underlyer component specifies the asset(s) on which the option is granted, for
example a singleUnderlyer or basket and it may consist of equity, index or con-
vertible bond components or some combination of these. FpML supports three styles of
equityExercise: European, American and Bermudan. Each of these styles is repre-
sented by its own component.

26.7 CONCLUSIONS AND SUMMARY

We have given an introduction to the Extensible Markup Language (XML). XML is
a universal information exchange format. In particular, it is a vehicle for exchanging
information over the Web. With XML we can structure data in almost any way we wish
and it can be accessed by a variety of programming languages, for example, C++, Java,
Visual Basic and C#.

In this chapter we introduced you to the most important syntax in XML and described
how to read and understand XML documents. We also gave an overview of Document
Type Definition (DTD). DTD gives us the syntax we need for describing and constraining
the logical structure of an XML document; in particular, it addresses the following issues:

• What elements are allowed in a document?
• What attributes are allowed?
• What are the restrictions on the values of an attribute?
• How is element nesting defined and what is allowed?

We use the DTD to validate XML documents.
Finally, we gave an introduction to Financial products Markup Language (FpML), an

application of XML. FpML is a protocol enabling e-commerce activities in the field of
financial derivatives (see FpML, 2003). It establishes the industry protocol for sharing
information on, and dealing in, financial swaps, derivatives and structured products over
the Internet.

We expect to see growing interest in applications of XML for financial engineering in
the years to come.

27
Advanced XML and Programming

Interface

27.1 INTRODUCTION AND OBJECTIVES

We continue with our discussion of XML. Chapter 26 was devoted to the major syntax
issues in XML and we gave numerous examples to give the reader some feeling for the
subject. We also gave an introduction to the FpML, an application based on XML that is
used to represent financial instruments in a vendor-neutral and language-neutral manner.
In this chapter we concentrate on the programming aspects of XML and its environment.
In particular, we wish to read and write XML documents using C++ and to this end we
employ a set of interface implementations of the Document Object Model (DOM). We
first develop code to show how to use the individual methods and we then hide this rather
low-level code in easy to use Visitor classes (recall that Visitor is a design pattern, see
Chapter 25 of this book and Gamma et al., 1995). We then extend our results to financial
instruments, in particular plain and exotic options.

We include a discussion on XML Schema, the ‘next generation’ DTD. We describe its
essential features and how it differs from DTD.

27.2 XML SCHEMA

The XML Schema serves the same purpose as DTD, namely to define the allowed structure
and value types for specific XML documents. XML Schema offers more functionality
than DTD.

As with DTD, we need two files: one file for the schema and a file that represents the
XML document.

Some features of XML Schema are:

• XML schemas are XML documents and we can thus use the same tools as with normal
XML documents. No new tools are needed.

• Support for at least 40 built-in data types.
• It is possible to create both user-defined primitive and complex data types.
• XML namespace support.

Some of the types are primitives while others are derived types that we describe in a
schema. Both primitive and derived types are available to schema authors to use in their
current form, or from which to derive new types.

We can group the data types into four main categories (see Skonnard and Gudgin, 2002):

• Numeric types (the usual stuff that you would expect)
decimal
integer
int, long

Advanced XML and Programming Interface 329

byte
float, double
etc.

• Date and time types
date
time
dateTime
duration
etc.

• XML types
Types as with DTD (ID, ENTITY, . . .)
NOTATION

• Name and string types
string
token (string with normalised white space)
QName (an XML Name)
etc.

All XML Schema elements are in the namespace defined by the URL, as can be seen in
the example

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!-- Types and declarations go here. -->

</xsd:schema>

Please note that ‘schema’ is a keyword in this context.

27.2.1 Element declaration

We now discuss how to declare the name and type of an element. To this end, we use
the keywords ‘element’ and ‘type’ to specify the name and data type of the element,
respectively. The following simple example shows how to define an element called ‘X’
of type double:

<?xml version="1.0"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Declare element 'X' which has built-in -->
<!-- type 'double'. -->

<xsd:element name="X" type="xsd:double"/>
</xsd:schema>

For example, the following data is correct according to the schema

<!-- Valid according to XML Schema. -->
<X>
2.4

</X>

330 Financial Instrument Pricing Using C++

while the following example is incorrect because we are attempting to put text in an
element whose type is double

<!-- Invalid according to XML Schema. -->
<X>

Hi there!
</X>

27.2.2 User-defined simple and complex types

We create a user-defined simple type based on a built-in type and we can place user-
defined constraints on the new type (for example, range checking, length, format and so
on). To this end, we use the ‘simpleType’ element and ‘restriction’ to specify the
appropriate constraints. We take an example of defining a PO box number that consists
of four decimals, then a space and two letters. The user-defined type then looks like
the following:

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:simpleType name="PoBoxNLType">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d\d\d\d\s\D\D"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:element name="PoBox" type="PoBoxNLType"/>
</xsd:schema>

What have we done here? In essence, we have wrapped the standard string data type with
another user-defined string element having a defined structure.

We can also create so-called complex user-defined data types by composing them from
other elements and attributes. XML Schema do not have any complex types so you must
create your own. In order to create such a type we use the keyword ‘complexType’. The
resulting element may contain both attribute and element declarations by nesting them.
As with DTDs, we can define the following element declaration groups

• sequence: elements must appear in the given order
• all: elements may appear in any order
• choice: only one of the elements may appear.

We now give an example of a two-dimensional Cartesian point.

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="PointType">
<xsd:sequence>
<xsd:element name="X" type="xsd:double"/>
<xsd:element name="Y" type="xsd:double"/>

</xsd:sequence>
<xsd:attribute name="Name" type="xsd:string"/>

</xsd:complexType>
<xsd:element name="Point" type="PointType"/>

</xsd:schema>

Advanced XML and Programming Interface 331

The reader might like to compare the above structure with the way we have done this in
DTD (see Chapter 26). Recall

<!ELEMENT Point (X, Y)>
<!ELEMENT X (#PCDATA)>
<!ELEMENT Y (#PCDATA)>
<!ATTLIST Point
Name CDATA "P"
Geometry CDATA "Cartesian">

We now define what is meant by local and global element declarations. An element
declaration with a complex type is called a local element declaration. The elements X
and Y in the above XML Schema code are typical examples. An element that is directly
nested in the (root) schema element is called a global element declaration. In this case we
use the element as a root element. Again, the following example shows the distinction
(not all details have been filled in):

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="PointType">
<xsd:sequence>
<xsd:element name="X" .../>
<xsd:element name="Y" .../>

</xsd:sequence>
<xsd:attribute name="Name" type="xsd:string"/>

</xsd:complexType>
<xsd:element name="Point" .../>

</xsd:schema>

27.2.3 Multiplicity issues

In general, a parent element consists of a number of child elements. We wish to specify
upper and lower bounds using two keywords:

• minOccurs: the minimal allowed occurrence
• maxOccurs: the maximal allowed occurrence.

The default value in both cases is 1, which will be the value if these keywords are absent
in the element declaration.

We now take an example to show how this works. We return to the e-mail example
from section 26.4.1. The XML Schema is:

<?xml version="1.0"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="EmailType">
<xsd:sequence>

<xsd:element name="To" type="xsd:double" maxOccurs="unbounded"/>
<xsd:element name="From" type="xsd:double"/>
<xsd:element name="CC" type="xsd:double"

minOccurs="0" maxOccurs="unbounded"/>

332 Financial Instrument Pricing Using C++

<xsd:element name="Subject" type="xsd:double"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="Body" type="xsd:double"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="EMail" type="EmailType"/>

</xsd:schema>

An XML document that conforms to the above schema is:

<EMail
xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="EMail.xsd">

<To>Mary</To>
<To>Peter</To>
<From>John</From>
<Subject>Hi</Subject>
<Body>What's up?</Body>
</EMail>

27.2.4 An example

We take an example from two-dimensional geometry. The UML class diagram is shown
in Figure 27.1 and we have four classes that we wish to model using XML Schema. There
are three main steps in general:

1. Create the complete UML class diagram
2. Translate the UML class diagram to an XML Schema (manually/visually)
3. Create an XML document and validate it against the XML Schema.

In general, we define a complex type for each class and the attributes in the class are
mapped to the corresponding attributes in the complex type. We first define Point and

EndBegin

Centre

*

Line

X
Y

Point

Radius

CirclePolyline

Figure 27.1 UML class diagram

Advanced XML and Programming Interface 333

Circle. Notice that Point is reused as it were in Circle because we model a Circle
as having a centre point and radius:

<?xml version="1.0"?>

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="PointType">
<xsd:attribute name="X" type="xsd:double"/>
<xsd:attribute name="Y" type="xsd:double"/>

</xsd:complexType>

<xsd:complexType name="CircleType">
<xsd:sequence>
<xsd:element name="CentrePoint" type="PointType"/>

</xsd:sequence>
<xsd:attribute name="Radius" type="xsd:double"/>

We now define the elements for Line and Polyline. Notice how we have imple-
mented multiplicity in Polyline (note that minOccurs is absent, thus default is 1 and
maxOccurs is unbounded):

...
<xsd:complexType name="LineType">
<xsd:sequence>
<xsd:element name="BeginPoint" type="PointType"/>
<xsd:element name="EndPoint" type="PointType"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="PolylineType">
<xsd:sequence>
<xsd:element name="Point" type="PointType"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
...

Finally, we create an element that represents a Shape composite; this corresponds to a
class consisting of a list of arbitrary Shape objects:

...
<xsd:complexType name="ShapesType">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="Point" type="PointType"/>
<xsd:element name="Circle" type="CircleType"/>
<xsd:element name="Line" type="LineType"/>
<xsd:element name="Polyline" type="PolylineType"/>

</xsd:choice>
</xsd:complexType>
<xsd:element name="Shapes" type="ShapesType"/>

</xsd:schema>

We can use this example as a benchmark for other applications in financial engineering.
For example, we can model complex financial products such as straddles, strangles or
delta hedges using similar elements.

334 Financial Instrument Pricing Using C++

27.2.5 Comparing DTDs and the XML Schema

We compare DTDs and XML Schemas because they are competitors. In the future the
industry standard will be XML Schemas but in a transition period we shall have to support
DTDs as well.

We summarise some facts on DTDs and XML Schemas:

• DTDs tend to be small and simple.
• DTDs are good enough for (reasonably) unstructured text-oriented applications.
• Existing markup languages and applications based on XML already use DTDs; thus,

developers are and will be confronted with legacy problems.
• XML Schemas use XML syntax; no new editors or software tools are needed in order

to process schema files.
• XML Schemas have rich and extensible data type support; this feature eliminates val-

idation code in applications. The validation rules are part of a schema.
• XML Schemas are suitable for data-driven (for example, B2B) applications.

27.2.6 XML Schemas and FpML

Eventually, DTDs will be replaced by XML Schemas as the tool for creating future FpML
specifications. There are compelling business and technological reasons for wishing to
migrate in the first place (see FpML, 2002, for a more detailed discussion):

• DTDs are dead-end technology
• XML Schemas have better support for defining reusable structures in an object-oriented

fashion.
• XML Schemas have direct support for extensions.
• XML Schemas support separation of concerns: independent and decoupled develop-

ment groups can work on different parts of a specification with minimal cross-group
interaction.

• XML Schemas are expressed in XML itself while DTDs are expressed in their own
specific language.

• XML Schemas will enjoy better tool support than DTDs in the future.

In the short term, DTDs and XML Schemas must coexist and it may take some time
before DTDs completely disappear from the scene.

27.3 ACCESSING XML DATA: THE DOCUMENT
OBJECT MODEL

The Document Object Model (DOM) is a set of abstract programming interfaces (as
defined in IDLs) that map the data structures in an XML document onto a tree of
nodes. These interfaces form a layer of abstraction between the application and the XML
document. In other words, the programmer does not have to know about the internal
structure of the document but instead states what he or she wants from the document
without knowing how it should be done (this is called information hiding in computer
science jargon).

Advanced XML and Programming Interface 335

DOM mirrors XML constructs and elements. Each construct in XML is represented by
a DOM node. The major interfaces are given below.

• Node: This is the base interface for all more specific node types. It is similar to an
abstract class in C++, for example. It has methods that manage and manipulate nodes.
Furthermore, it has functionality for traversing the tree. A node has properties such as
name and value.

• Document: This is a representation of the document as a whole. It can be seen as the
root of the DOM tree and it is also a factory for other node types. Of course, it has
methods to allow us to search in the document.

• Element: This is a mirror-image of the XML element construct. It has methods to
access and modify attributes and child elements as well as some methods that can
retrieve properties of an element.

• Attr (Attributes): This is a node that models the attributes in an XML attribute. It
provides access to an attribute’s properties. This interface does not have many methods
because we can use the methods of the attribute’s ‘parent’ element node.

• CharacterData: This is the base interface for various kinds of data, for example Text,
Comment and CDATASection. This interface is never used directly.

• Text: This contains unstructured text (thus, no elements). This is usually a child of an
Element node.

27.3.1 DOM in a programming environment

DOM has been designed in such a way that it works with more than one programming
language. You can use DOM with your own favourite language, for example C++, Java,
C#, Visual Basic, JavaScript and VBScript. Each language will have its own instance for
accessing the DOM nodes. In this book we use the C++ parser from Microsoft.

27.4 DOM AND C++: THE ESSENTIALS
We now discuss how DOM with C++ as language is used in order to create an XML
document. The code is placed in one main() program to enable you to see the steps that
are needed. Later we shall hide much of the detail in several design patterns; therefore
you do not need to learn the function calls. The implementation is under Windows and
use is made of COM (Component Object Model) to implement the interfaces.

The example in this section generates the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<Point><X Name="X coordinate">2.71</X>
<Y Name="Y coordinate">2.71</Y></Point>

We now go through the steps that realise this output. All comments and code are inter-
leaved. This part is fairly detailed and you may skip it on a first reading.

// Simple demo of creating an XML document with MS' XML parser using
// the DOM interface.
//
// In this case we create an XML document for a two-dimensional point
// having X and Y coordinates.
//
// Required parser: MSXML 2.0 (Microsoft)

336 Financial Instrument Pricing Using C++

//
// (C) Datasim Education BV 2003

// Step 0
// Include/import for XML component. We must work in this way because
// we are usually a COM library and not ‘normal’ C library (in the
// latter it is sufficient to include the header file and to link the
// .lib file)

#import "msxml2.dll"
#include <msxml2.h>

// Standard stuff.
#include <string>
#include <iostream>

using namespace std;

void Demo()
{
// Initialise COM library (don't forget :)).
CoInitialise(NULL);

try
{

///
// Step 1. Create instance of XML COM class.
// COM smart pointers.
MSXML2::IXMLDOMDocument2Ptr doc; // XML document.
// Create document object.
doc.CreateInstance("Msxml2.DOMDocument.4.0");

//
// Step 2. Create processing instruction.

// Create the Processing Instruction
MSXML2::IXMLDOMProcessingInstructionPtr header = NULL;
header = doc->createProcessingInstruction("xml",
"version='1.0' encoding='UTF-8'");

// Add processing instruction.
_variant_t nullVal;
nullVal.vt = VT_NULL;
doc->insertBefore(header, nullVal);

///
// Step 3. Create root element.

// Create root.
_bstr_t root = "Point";
MSXML2::IXMLDOMElementPtr pRoot = doc->createElement(root);

// Add root to document element.
doc->appendChild(pRoot);

// Step 4. Create child element.
// Create new child (The X coordinate of the point)
_bstr_t Xcoord = "X";
MSXML2::IXMLDOMElementPtr pXcoord;
pXcoord = doc->createElement(Xcoord);

// Set value.
_variant_t value = 2.71;

Advanced XML and Programming Interface 337

value.ChangeType(VT_BSTR);
pXcoord->nodeTypedValue = value;

// Create first attribute.
pXcoord->setAttribute("Name", "X coordinate");

// Add child to root element.
pRoot->appendChild(pXcoord);

// Create another new child (The Y coordinate of the point)
_bstr_t Ycoord = "Y";
MSXML2::IXMLDOMElementPtr pYcoord;
pYcoord = doc->createElement(Ycoord);

// Set value.
_variant_t value2 = 2.71;
value2.ChangeType(VT_BSTR);
pYcoord->nodeTypedValue = value2;

// Create first attribute.
pYcoord->setAttribute("Name", "Y coordinate");

// Add child to root element.
pRoot->appendChild(pYcoord);

// Step 5. Create output.

// Save XML document.
doc->save("point.xml");

// Show XML on console.

string xml = doc->Getxml();
cout << xml << endl;

}
catch(_com_error & error)
{

// Get pointer to error description.
bstr_t description = error.Description();

// If no error description, try error message.
if(!description)
{

description = error.ErrorMessage();
}

// Display error.
cout << (const char*) description << endl;

}

// Uninitialise COM library.
CoUninitialise();

}

We now describe this code in some detail. Our approach is to paraphrase each of the
above steps.

Step 0: We include the header file needed for the MS XML parser and we must import
the corresponding DLL. The precise details may change in the future. Since the parser is
implemented as a set of Component Object Model (COM) interfaces, we must initialise
COM by calling CoInitialise().

Step 1: Having initialised COM, we then create an instance of the XML COM class
by calling the CreateInstance() function.

338 Financial Instrument Pricing Using C++

Step 2: We create an XML document in two steps. First, we must create processing
instructions (this step) and the root element with children (step 3).

Step 3: We use the createElement() function and we add the root element to it.
Notice that this element is a child of the XML COM object. Notice that the root’s tag is
called ‘Point’.

Step 4: We create a point with two coordinates. To this end, we create two elements
with tags named ‘X’ and ‘Y’ and we let them be children of ‘root’. Furthermore,
these elements both have an attribute called ‘Name’.

Step 5: We are almost there! It now remains to save the in-memory tree structure to a
file with extension ‘.xml’. We also print the output on the screen.

Finally, we call CoUninitialise() to close down COM.
The main program is:

int main()
{
Demo();
return 0;

}

The code in this section is the basis for a Visitor class that allows us to read and write XML
data for financial engineering applications. We discuss this problem in section 27.5.1.

27.5 DOM, ENTITIES AND PROPERTY SETS
The example in section 27.4 was very specific and the main objective there was to show
how to apply the DOM interfaces in C++ to produce an XML output document. In this
section we wish to produce code that writes and reads XML documents. In order to
reduce the scope we concentrate on a specific class of entities that we find useful for
financial engineering applications. In particular, we are interested in modelling entities
that consist essentially of properties. For example, an option entity consists of a number of
properties. The UML class diagram for the current discussion is shown in Figure 27.2. The
template classes Property and SimplePropertySet have already been discussed in
Chapter 5. The template class Entity is essentially a container for a logically related
group of attributes. From Figure 27.2 we see that an Entity consists of a Property
(this will play the role of the entity’s root element in the XML documentation) and a

EntityThing

. . .

{abstract}

SimplePropertySet

Entity
Property

'name'

* N,V

N,VN,V

Figure 27.2 Entity and Property classes

Advanced XML and Programming Interface 339

SimplePropertySet (and its properties will be child elements in the XML document).
We now view some sample output based on the following C++ code:

Property<string, double> K("StrikePrice", 150.0);
Property<string, double> r("InterestRate", 0.06);
Property<string, double> T("Expiry", 1);
Property<string, double> S("Stock", 120);
Property<string, double> U("UnderlyingAsset", 134.2);
Property<string, double> b("CostOfCarry", 12.0);

Entity<string, double> option("EuropeanOption");
option.AddProperty(K);
option.AddProperty(r);
option.AddProperty(T);
option.AddProperty(S);
option.AddProperty(U);
option.AddProperty(b);

The XML output is:

<?xml version="1.0" encoding="UTF-8"?>
<EuropeanOption>
<StrikePrice>150</StrikePrice>
<InterestRate>0.06</InterestRate>
<Expiry>1</Expiry>
<Stock>120</Stock>
<UnderlyingAsset>134.2</UnderlyingAsset>
<CostOfCarry>12</CostOfCarry>

</EuropeanOption>

The question of course is: How did we do this? We answer this question in section 27.5.1
where we apply the Visitor pattern (see Chapter 25 of this book and the definitive
GOF (Gamma et al., 1995)).

To avoid any misunderstandings, we define the scope of the XML readers and writers
and the things to watch out for. The features are:

• We support entities consisting of properties. There is no support for nested entities
(portfolios, straddles and so on) or nested properties.

• Names of entities and properties should not contain blank spaces or funny characters
(such as @, # and so on)

• The classes for reading and writing XML data are templated with two underlying data
types, for example Entity <Name, Value> where Name is a type that can be
converted to a string and Value is of type double or string.

In later exercises and chapters we shall discuss how to extend this setup to more complex
applications. We first of all wish to get it working and not shower the reader with loads
of ‘grunge’ C++ code.

The interface for EntityThing is:

template <class N, class V> class EntityThing
{ // N == Name field, V == Value field
private:
public:

EntityThing();
EntityThing(const N& t);

340 Financial Instrument Pricing Using C++

EntityThing(const EntityThing<N,V>& source);
EntityThing<N,V>& operator = (const EntityThing<N,V>& source);
virtual ~EntityThing();

// Member data modelled as a property and a property set
Property<N, V> name; // Entity ID
SimplePropertySet<N, V> properties; // Entity properties

// Add property and property set to Entity
virtual void AddProperty(const Property<N, V>& prop);
virtual void AddProperty(const SimplePropertySet<N, V>& pset);
virtual EntityThing<N,V>* Clone() const = 0; // Prototype copy

// Design patterns extensions (Visitor)
virtual void accept(EntityVisitor<N,V>& visitor) = 0;

};

The interface for Entity is:

template <class N, class V> class Entity : public
EntityThing<N,V>
{
private:
public:
// Constructors and destructor
Entity();
Entity(const N& ename);
Entity(const Entity<N,V>& source);
virtual ~Entity();

// Copy on heap (Prototype pattern)
virtual EntityThing<N,V>* Clone() const;
// Assignment operator
Entity<N,V>& operator = (const Entity<N,V>& source);
// Design patterns extensions (for Visitor)
void accept(EntityVisitor<N,V>& visitor);

};

27.5.1 XML readers and writers

Our entity class has no provision for writing its contents to an XML document nor can
its instances be created from an XML document. We do not wish to embed XML-specific

EntityVisitorEntity

. . .

{abstract}

N,VN,V

XMLWriter

N,V

XMLReader

N,V

<<uses>>

Figure 27.3 XML readers and writers

Advanced XML and Programming Interface 341

code in this class because it makes the class less portable and not every customer wishes to
have XML functionality. We extend the functionality by creating Visitor classes as shown
in Figure 27.3. XMLWriter creates an XML document for an entity while XMLReader
creates an entity from an XML document. We concentrate on XMLWriter (the structure
of XMLReader being similar). The interface is:

template <class N, class V> class XMLWriter : public
EntityVisitor<N,V>
{
private:

// Member data. Microsoft-specific stuff. See CD for details
// Private Visit functions.
virtual void visit(Property<N, V>& property);
virtual void visit(SimplePropertySet<N, V>& pset);

public:
// Constructor and destructor.
XMLWriter();
virtual ~XMLWriter();

// The visit() does the real work
virtual void visit(Entity<N,V>& entity);

void Save(const string& name); // Saves nodes to file.
string ToString(); // Write to string.

};

Notice that clients can only write entities, and not properties or property sets, to XML.
This is a design decision and it keeps things understandable. In general, the detailed work
is done in visit(Property<N,V>&) while we use the double dispatch mechanism
(see Gamma et al., 1995) for property sets:

template <class N, class V>
void XMLWriter<N,V>::visit(SimplePropertySet<N, V>& pset)
{
pset.accept(*this);

}

Finally, the code for writing an entity is:

template <class N, class V>
void XMLWriter<N,V>::visit(Entity<N,V>& entity)
{ // Write an entity to XML document
// 1. Write name as the root of the XML document
// 2. Write property set

// Create root element, This is the name of the Entity
try
{
// Create root.
string N = entity.name.name();
_bstr_t root = N.c_str();
pRoot = m_pXMLDoc->createElement(root);

// Add root to document element.
m_pXMLDoc->appendChild(pRoot);

}

342 Financial Instrument Pricing Using C++

catch(_com_error & error)
{

bstr_t description = error.Description();
throw string(description);

}

visit(entity.properties); // Call visit of entity’s props
}

The reader can consult the CD for the complete source code.

27.5.2 Examples and applications

Using the Visitor classes for reading and writing XML documents is very easy because all
low-level code has been hidden in constructors and visit() functions. Let us take an
example of creating an entity that contains the attributes of an option, writing the entity
to XML and then reading the file back in. We take the entity that we already created in
this section. It only remains to show how to use the visitors:

XMLWriter<string, double> xmlW;
xmlW.visit(option);
xmlW.Save ("Option.xml");

// Now read the file back in
XMLReader<string, double> xmlR;
xmlR.Load("Option.xml");
Entity<string, double> option2;
xmlR.visit(option2);

SimplePropertySet<string, double> optionParams = option2.properties;
// Iterate over the result and print the values
SimplePropertySet<string,double>::const_iterator it;
cout << "\nDump the parameters, call prices ... \n";
for (it = optionParams.Begin(); it!=optionParams.End(); it++)
{

cout << (*it).name() << ", " << (*it)() << endl;
}

The output from this code is:

Dump the parameters, call prices ...
StrikePrice, 150
InterestRate, 0.06
Expiry, 1
Stock, 120
UnderlyingAsset, 134.2
CostOfCarry, 12

27.6 XML STRUCTURES FOR PLAIN AND BARRIER
OPTIONS

The first part of this section is an introduction to plain and barrier options and may be
skipped if you are already familiar with the subject.

An option is a so-called financial derivative (see Hull, 2000). There are two types of
option: first, a call option gives the holder the right to buy the underlying asset by a certain

Advanced XML and Programming Interface 343

date for a certain price. A put option gives the holder the right to sell the underlying asset
by a certain date for a certain price. The price in the contract is called the strike price or
exercise price. The date in the contract is known as the expiry date, maturity or exercise
date. American options can be exercised at any time up to maturity while European
options can only be exercised at maturity.

There are two sides to every option contract. First, there is the investor who has taken
the long position, by which we mean that he or she has bought the option, while on the
other side we have the investor who has taken the short position, that is the person who
has sold or written the contract. The writer of the option receives cash up-front but has
potential liabilities later. To this end, we define the payoff as the amount of money to be
made at maturity. In principle, the payoff is between zero and plus infinity for the long
position while it is potentially minus infinity for the short position. This means that the
writer is exposed.

The above option types are called plain or vanilla options. This is in contrast to so-
called exotic options where the payoff is somewhat more complicated. Exotic options are
designed to suit particular needs in the market. For example, barrier options are options
where the payoff depends on whether the underlying asset’s price reaches a certain level
during a certain period of time before the expiry date (Haug, 1998). Barrier options are
the most popular of the exotic options. There are two kinds of barrier that are defined as
a particular value of the underlying asset (whose value we denote by H):

• In barrier: This is reached when the asset price S hits the barrier H before maturity.
In other words, if S never hits H before maturity, then the payout is zero.

• Out barrier: This is similar to a plain option except that the option is knocked out or
becomes worthless if the asset price S hits the barrier H before expiration.

Furthermore, there are four variations on each of these two main categories; for in barrier
options they are:

Down-and-in call (knockin) option
Up-and-in call option
Down-and-in put option
Up-and-in put option

For out barriers the combinations are:

Down-and-out (knockout) call option
Up-and-out call option
Down-and-out put option
Up-and-out put option

We would like to model both plain and barrier options using XML. Of course, FpML has a
number of structures for these option types but you can create your own XML documents
that you can use in your own specific applications. For example, we have used XML
in the Datasim Option Calculator Program as the communication channel between the
User Interface (written in C#) and the C++ number-crunching code. In this way we have
the best of both worlds, namely C# is very good for creating dialog boxes and input
screens while C++ is the language of choice for numerical analysis in our opinion. In the

344 Financial Instrument Pricing Using C++

examples to date we implicitly assumed that tag values were of double types. We can
extend the code to add type information to an element, for example:

<?xml version="1.0" encoding="UTF-8" ?>
<!-European Call Options -- >
<EuropeanCallOption type="propertySet">

<Name type="string">EuropeanCallOption</Name>
<T type="double">1</T>
<K type="double">15</K>
<sigma type="double">0.01</sigma>
<r type="double">0.15</r>
<Dividend type="double">0.03</Dividend>
<S type="double">20</S>

</EuropeanCallOption>

Furthermore, we can include dividends, rebates and boundary conditions in barrier options:

<DoubleBarrierCallOption type="propertySet">
<Name type="string">DoubleBarrierCallOption</Name>
<T type="double">1</T>
<K type="double">15</K>
<sigma type="double">0.01</sigma>
<r type="double">0.15</r>
<Dividend type="double">0.03</Dividend>
<RebateLeft type="double">10</RebateLeft>
<RebateRight type="double">20</RebateRight>
<UpAndOutBarrier

type="double">20</UpAndOutBarrier>
<DownAndOutBarrier

type="double">10</DownAndOutBarrier>
</DoubleBarrierCallOption>

<SingleBarrierCallOptionUpAndOut type="propertySet">
<Name

type="string">SingleBarrierCallOptionUpAndOut</Name>
<T type="double">1</T>
<K type="double">15</K>
<sigma type="double">0.01</sigma>
<r type="double">0.15</r>
<Dividend type="double">0.03</Dividend>
<RebateRight type="double">20</RebateRight>
<UpAndOutBarrier

type="double">20</UpAndOutBarrier>
</SingleBarrierCallOptionUpAndOut>

<SingleBarrierPutOptionDownAndOut type="propertySet">
<Name

type="string">SingleBarrierPutOptionDownAndOut</Name>
<T type="double">1</T>
<K type="double">15</K>
<sigma type="double">0.01</sigma>
<r type="double">0.15</r>
<Dividend type="double">0.03</Dividend>
<RebateLeft type="double">10</RebateLeft>
<DownAndOutBarrier

type="double">10</DownAndOutBarrier>
<S type="double">20</S>

Advanced XML and Programming Interface 345

</SingleBarrierPutOptionDownAndOut>

<SingleBarrierPutOptionUpAndOut type="propertySet">
<Name

type="string">SingleBarrierPutOptionUpAndOut</Name>
<T type="double">1</T>
<K type="double">15</K>
<sigma type="double">0.01</sigma>
<r type="double">0.15</r>
<Dividend type="double">0.03</Dividend>
<RebateRight type="double">20</RebateRight>
<UpAndOutBarrier

type="double">20</UpAndOutBarrier>
</SingleBarrierPutOptionUpAndOut>

To this end, we need to extend the code that adds a node in DOM to the XML document.
In this case we create a method we create an element having a value and a given attribute
called ‘type’.

// Add new element to current parent. Code taken out of a larger context
void XmlWriter::AddElement(string key, variant_t& value, string& type)
{

// Create element.
RemoveIllegalChars(key);
_bstr_t bstrKey = key.c_str();
MSXML2::IXMLDOMElementPtr pEelem=doc->createElement(bstrKey);
// Set type attribute.
_bstr_t bstrType = type.c_str();
pElem->setAttribute(_T("type"), bstrType);

// Set value.
value.ChangeType(VT_BSTR);
pElem->nodeTypedValue = value;
// Add to current node.
m_pCurrentParent->appendChild(pNewElement);

}

The possibilities are endless. You can customise the code to suit your own specific needs.

27.7 CONCLUSIONS AND SUMMARY

We have looked at XML from the viewpoint of the developer in this chapter. In particular,
we discussed the Visitor classes XMLWriter and XMLReader that write and read XML
documents, respectively. The code in these classes uses low-level XML interfaces from
an XML parser but the developer does not have to worry about the gory details. Instead,
he or she calls well-known Visitor functions to read and write XML data. We also gave
an introduction to XML Schema and its applications to FpML. DTDs will disappear from
the scene in time and we thought that the inclusion of XML Schema would be a good
addition. Finally, since XML Schema uses the same syntax as XML it is possible to use
XMLWriter and XMLReader to write and read XML Schema documents. This is a big
bonus. It means that we can operate at class or meta level in our applications.

28

Interfacing C++ and Excel

28.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a number of design principles to help to improve the flexibility
of our financial engineering applications. First, we define C++ classes that interface to the
extremely popular spreadsheet program Microsoft Excel. We create an environment that
allows us to use Excel as an input dialog to our applications and as well as functionality
to display the results of calculations in the form of cells, charts and line charts. Since
Excel is very popular in the financial world we hope that the reader will find this chapter
useful. We discuss the essentials of the technicalities of the two-way interface between
C++ and Excel.

The main topics of concern in this chapter are:

• The object model in Excel
• Accessing Excel objects from C++
• Getting data into C++ from Excel
• Display vector and matrix data in Excel
• Displaying functions in Excel.

The software has been written in such a way that developers can use it without having
to worry about low-level C++ code. Unfortunately, a lot of the low-level interfacing to
Excel is not well documented.

28.2 OBJECT MODEL IN EXCEL: AN OVERVIEW

We examine Excel from a programmer’s point of view in this section and, in particular,
we discuss those Excel objects that are of direct relevance to us in our projects to inte-
grate Excel with our financial engineering applications. Of course, the focus is on C++
interoperability in this book and to this end we shall access Excel by means of COM
interfaces. What we access is described in the Excel object model, a part of which we
show in Figure 28.1. A workbook is a file in which we work and where we store data.
A worksheet is used to list and analyse data. A chart displays data from a worksheet in
some form, for example as a line chart, bar chart, pie chart or surface chart. A workbook
consists of a number of worksheets and charts. (It is possible to embed a chart in a work-
sheet but we shall not discuss this feature here.) Each sheet has a so-called sheet tab that
appears on tabs at the bottom of the workbook window.

A cell is an atomic entity in Excel and is a placeholder for data. We address a cell
giving its row and column position in a worksheet. In general, a worksheet consists of
cells. A range is a collection of cells. A range can be a one-dimensional array or a
two-dimensional array. Finally, we remark that an Excel application may contain several
workbooks.

We shall show in the rest of this chapter how to create and access these objects from
our C++ code. To this end, we encapsulate the implementation of the COM interfaces for

Interfacing C++ and Excel 347

Excel App

WorkBook

*

ChartWorksheet

Cell

* *

*

Figure 28.1 UML model for Excel

User data

A1 A2 A3

BasicData ConvertedData

Excel chart

Registration Convertion Presentation

Figure 28.2 Information flow in Excel applications

Excel in a class that clients can use without having to learn low-level functions. In general,
we are interested in using Excel as a tool where we can enter data into our applications
and where the calculated results can be displayed. This core process is realised by a
number of activities as shown in the UML activity diagram in Figure 28.2. Each activity
has well-defined input and output data. The activity ‘Registration (A1)’ converts raw data
from some external data source to an internal format that our application can understand.
Examples of sources and their formats are:

• Command line
• Dialog box
• XML document
• Excel itself (this is the subject of Chapter 29).

348 Financial Instrument Pricing Using C++

Examples of BasicData from A1 are:

• Properties
• Vectors
• Matrices and numeric matrices.

The second activity ‘Conversion (A2)’ is responsible for coupling BasicData with
some algorithm or function that calculates some kind of data set such as:

• Vectors
• Lists of vectors
• Lists of two-dimensional points.

Finally, activity ‘Presentation (A3)’ transforms and formats ConvertedData to
a form that allows us to display it in Excel. We are interested in the following cases:

• Line diagrams for equally spaced data
• Scatter (smoothed) diagrams for unequally spaced data
• 3D surface diagrams.

In particular, the objects and activities are a fertile ground for an application of the
Gamma design patterns (see Gamma et al., 1995). In this chapter, however, we consider
a simpler case:

• We use the iostream for Registration (data input)
• We use Excel cells for Registration (data input) (see Chapter 29)
• We use C function pointers whose values in a certain range will be displayed in a chart
• We develop a (medium) reusable class ExcelDriver.

The ExcelDriver class will be used in activity A3, as we shall see in the coming
sections.

28.3 UNDER THE BONNET: TECHNICAL DETAILS OF C++
INTERFACING TO EXCEL

Before we discuss the details of Figure 28.2 and how we have programmed activities and
objects we give an introduction to some low-level and fundamental code that we need in
later sections.

28.3.1 Startup

We describe the ‘life cycle’ of the Excel application by a number of activities:

1. Initialise COM (otherwise we cannot start Excel)
2. Create an instance of the Excel application
3. Optional: you can make Excel visible or invisible at start up time
4. Make a workbook the (current) active workbook
5. Access a given worksheet in a workbook
6. Rename a worksheet.

Interfacing C++ and Excel 349

In the ExcelDriver class the following steps are executed in its default constructor by
the following code:

try
{

// Initialise COM Runtime Libraries.
CoInitialise(NULL);
// Start Excel application.
xl.CreateInstance(L"Excel.Application");
xl->Workbooks->Add(Excel::xlWorksheet);

// Rename "Sheet1" to "Chart Data".
Excel::_WorkbookPtr pWorkbook = xl->ActiveWorkbook;
Excel::_WorksheetPtr pSheet=pWorkbook->Worksheets->GetItem("Sheet1");
pSheet->Name = "Chart Data";
}
catch(_com_error & error)
{
ThrowAsString(error);

}

Furthermore, we can toggle Excel to be visible or invisible by calling the function:

void ExcelDriver::MakeVisible(bool b = true)
{
// Make excel visible.
xl->Visible = b ? VARIANT_TRUE : VARIANT_FALSE;

}

We have thus encapsulated several low-level functions in the default constructor. We use
it as follows:

ExcelDriver excel;

This ensures that Excel is created and initialised properly. Furthermore, it is invisible
by default.

28.3.2 Creating charts and cell values

Having completed the first round, we must discuss a number of other features that we
will need later, namely:

• Getting data into cells (writing)
• Getting data out of cells (reading)
• Defining the titles of axes and charts
• Creating charts and adding them to a workbook.

Most of the code for these features can be found on the accompanying CD. An important
function is for creating a chart. Its function prototype is:

void CreateChart(
const Vector<double, int>& x,
const list<string>& labels,
const list<Vector<double, int> > &

350 Financial Instrument Pricing Using C++

vectorList,
const std::string& chartTitle,
const std::string& xTitle = "X",
const std::string& yTitle = "Y")

In general terms, this function creates a line chart whose input values in the vector ‘x’;
this corresponds to the abscissa values. The variable ‘labels’ are the string values for
the output values while ‘vectorList’ is the desired output. It is a list of vector values.
It is also possible to create a chart using a matrix using row and column labels, as the
following function prototype shows:

void AddMatrix(
string name,
const NumericMatrix<double, int> & matrix,
const list<string> & rowLabels,
const list<string> & columnLabels)

28.3.3 Interoperability with the SimplePropertySet

It would be useful if we could produce code to let properties interface with Excel in
both directions. Why should we wish to do that? First, properties have both string names
and values and they can be imported into Excel, thus preserving the semantics of the
applications. For example, all the properties of an option

r , 0.6 T , 1 K , 120.0 sigma, 0.2

can be imported into Excel cells in a form that is understandable to the user of that
application. In a near future, we could envisage XML data (for example, the schemas
in FpML) being exchanged in a similar way. The function prototypes for Property to
Excel (and back) interfacing are:

void AddPropertySet(const SimplePropertySet<string, double>& pset)
void GetPropertySet(SimplePropertySet<string, double> & pset)

We include the source code for AddPropertySet() to show how to use the low-level
C++ functionality in Excel:

void AddPropertySet(const SimplePropertySet<string, double> & pset)
{
// Add sheet.
Excel::_WorkbookPtr pWorkbook = xl->ActiveWorkbook;
Excel::_WorksheetPtr pSheet = pWorkbook->Worksheets->Add();
pSheet->Name = L"Input";

// Add properties to cells.
Excel::RangePtr pRange = pSheet->Cells;
long row = 1;
for(SimplePropertySet<string, double>::const_iterator
it = pset.Begin(); it != pset.End(); ++it, row++)
{

// Set name and value.
pRange->Item[row][(long)1] = it->name().c_str();
pRange->Item[row][(long)2] = (*it) ();

}
}

Interfacing C++ and Excel 351

In this piece of code we first of all add a worksheet to the current active workbook
because it is on this sheet that the values from the property set instance will be placed.
In particular, we access all the cells in the worksheet but we start at the first row in the
sheet and iterate in the property set, thereby calling the range Item() function twice,
first for the name of the current property in the set and then for its value.

We now give the source code that shows how to extract a property set from an
Excel sheet.

void GetPropertySet(SimplePropertySet<string, double> & pset)
{ // NOTE: THERE ARE SOME MAGIC NUMBERS AND HARD-WIRED CODE HERE

// Get input sheet.
Excel::_WorkbookPtr pWorkbook = xl->ActiveWorkbook;
Excel::_WorksheetPtr pSheet=pWorkbook->Worksheets->GetItem("Input");

// Get values from cells as long as there are no BLANKS
Excel::RangePtr pRange = pSheet->Cells;
long row = 1;
while(true)
{
// Get name from first column.
_bstr_t bstrName = pRange->Item[row][1];
string name = bstrName;
if(name != "")
{
// Get value from second column.
double value = (double)pRange->Item[row][2];
pset.set(name, value);

}
else
{
break;

}
row++;

}
}

Finally, when an ExcelDriver goes out of scope its destructor is automatically called of
course and COM is shut down:

virtual ~ExcelDriver()
{
CoUninitialise();

}

This function ensures that all dangling pointers are cleaned up.

28.4 IMPLEMENTING THE CORE PROCESS

We now take a very special case to show how the ExcelDriver class can be used in
an application. In this particular case, we display the graphs of the Gaussian (normal) pdf
and cdf on a given interval [A, B]. We employ a smooth (scatter graph) by sub-dividing
the interval into N pieces.

352 Financial Instrument Pricing Using C++

To this end, we create a main() program containing the three functions:

• Registration(): Get the values A, B and N

• Conversion(): Create two vectors for the pdf and cdf functions
• Presentation(): Display the functions as charts in Excel.

We now discuss the details of each of these functions and we give a test program to show
how to tie them in together.

28.4.1 Registration: Getting basic input

This function is responsible for getting the interval of interest (lower value A and upper
value B) and the number of sub-divisions N of that interval. We use the standard
iostream to get these values:

void Registration(double& A, double& B, int& N)
{
// Version 0.01, lots of opportunity for improvement
cout << "Give lower value of interval: ";
cin >> A;
cout << "Give upper value of interval: ";
cin >> B;
cout << "Give number of subdivisions: ";
cin >> N;

}

Of course, this function is very simple and real-life applications would be much more
complex. For example, we would use Graphical User Interfaces (GUI) or even XML
documents to get data into the application.

28.4.2 Calculations

We are interested in plotting the values of the Gaussian pdf and cdf functions in Excel.
To this end, we create an array of x values and we then calculate the values of the above
functions at each of the abscissae values and place the results in another array. Recall the
Gaussian functions:

double n(double x)
{
double A = 1.0/sqrt(2.0 * 3.1415);
return A * exp(-x*x*0.5);

}

double _N(double x)
{
double a1 = 0.4361836;
double a2 = -0.1201676;
double a3 = 0.9372980;

double k = 1.0/(1.0 + (0.33267 * x));

if (x >= 0.0)
{

return 1.0 - n(x) * (a1*k + (a2*k*k) + (a3*k*k*k));

Interfacing C++ and Excel 353

}
else
{
return 1.0 - _N(-x);

}
}

We now use these two functions in the following function that produces two arrays
n_result and N_result:

void Conversion(double& A, double& B, int& N,
Vector<double, int> & x,
Vector<double, int> & n_result,
Vector<double, int> & N_result)

{
// Step size.
double h = (B-A)/N;
// Calculate input values and call functions.
double current = A;
for (int i = x.MinIndex(); i <= x.MaxIndex(); i++)
{
// Call functions and set values in vectors.
x[i] = current;
n_result[i] = n(current);
N_result[i] = _N(current);

// Calculate next value.
current += h;

}
}

28.4.3 Displaying the results of the calculations

We have now done all the necessary calculations, namely the array of abscissa values and
the arrays of functions values. These are now used in code to produce the Excel charts.

void Presentation(const Vector<double, int> & x,
const Vector<double, int> & n_result,
const Vector<double, int> & N_result)

{
// Excel is invisible initially.
cout << "Creating Excel output, please wait a moment...";

// Create and initialise Excel.
ExcelDriver & excel = ExcelDriver::Instance();
excel.MakeVisible(true); // Default is INVISIBLE!

// Create list with the Gaussian pdf and cdf functions
list<Vector<double, int> > functions;
list<string> labels;
functions.push_back(n_result);
functions.push_back(N_result);
labels.push_back("pdf");
labels.push_back("cdf");

// Display both cdf and pdf function in one chart
excel.CreateChart(x, labels, functions, "Combined Functions");

354 Financial Instrument Pricing Using C++

// Create other charts
excel.CreateChart(x, n_result, "n", "X", "Y");
excel.CreateChart(x, N_result, "N (integrated)");

}

This code should give you insights into how to present arrays information in Excel in
chart form. You can generalise it to other applications.

28.4.4 The application (main program)

This is the easy part of the code as it entails calling the three core functions in succession.

int main()
{
double A, B;
int N;

// Run Registration activity.
Registration(A, B, N);

cout << "A etc " << A << ", " << B << ", " << N << endl;

// Create vectors.
Vector<double, int> x(N+1);
Vector<double, int> n_result(N+1);
Vector<double, int> N_result(N+1);

// Run Conversion activity.
Conversion(A, B, N, x, n_result, N_result);

// Run Presentation activity.
Presentation(x, n_result, N_result);

return 0;
}

28.5 EXTENSIONS

In this chapter we have used the standard iostream as the mechanism for data entry.
Another interesting possibility is to use Excel itself! We shall not deal with this at any
great length but we take an example that shows how the variables in section 28.4.1 can
be initialised using cells. To this end, we create a registration function based on Excel:

void Registration(SimplePropertySet<string, double> & input)
{
try
{

ExcelDriver & excel = ExcelDriver::Instance();

// Add property set.
excel.AddPropertySet(input);
excel.MakeVisible();

// Wait...
cout << "Enter values in Excel spreadsheet." << endl;
string abc;
cin >> abc;

// Get property set.

Interfacing C++ and Excel 355

excel.GetPropertySet(input);
}
catch(string & error)
{
cout << error << endl;

}
}

Notice that the return value is a property set instance and this is an improvement on the
hard-wired variables A, B and N in section 28.4.1.

The Conversion function based on the new Registration function uses the
methods in Property to extract the raw data:

// Get values from input.
double A = input.value("A")();
double B = input.value("B")();
int N = (int) input.value("N")();

28.6 APPLICATION AREAS

The code in this chapter can be used, extended and generalised to applications whose
results need to be displaced in numerical or graphical form. In this book, we are inter-
ested in displaying the numerical solutions of the following kinds of scalar differen-
tial equations:

• Ordinary and stochastic differential equations
• Boundary value problems
• One-factor Black–Scholes equation
• Multi-factor Black–Scholes equation.

Other applications are:

• Displaying function values and their derivatives (using divided differences)
• As a storage mechanism for vectors and matrices (a simple database)
• As a front-end and back-end to the Datasim Option Calculator application.

Excel is equipped to deal with this challenge. We must take care to determine how we
wish to present the data, how the titles of charts and the names of their axes are initialised,
and so on. Chapter 29 deals with this design issue.

28.7 CONCLUSIONS AND SUMMARY

We have given an introduction to the COM programming interface in Excel. In particular,
we have shown how to display array and matrix information in Excel charts. The class
ExcelDriver encapsulates much of the functionality needed for your development work
and we have shown how it can be used by taking a simple example: displaying the graph
of the normal distribution function and cumulative distribution functions in Excel charts.

We have included appropriate C++ code in this chapter to show how things work.
You can study this code and modify it to you own needs. In Chapter 29 we give some
examples of what we mean by this statement.

29
Advanced Excel Interfacing

(Daniel Duffy and Robert Demming)

29.1 INTRODUCTION AND OBJECTIVES

In this chapter we discuss how we can use Excel’s input mechanisms in combination with
its Add-In facility. An add-in corresponds to functionality that you can use to manipulate
and access the data in Excel sheets. The main objective is to show you how to create
new functions in C++ and integrate them with Excel by converting them to add-ins.
We take the ArrayMechanism package as a test case and extrapolate to show how
to apply the knowledge to your own specific situation. This chapter does not explain
how to analyse, design and implement medium and large-sized applications. Such topics
have been dealt with in Duffy (2004a) but are unfortunately beyond the scope of this
chapter.

We have written this chapter in a ‘how-do’ fashion and is a step-by-step account of
getting C++ applications and Excel to talk to each other.

The devil is in the details. You can use this chapter to write your own Excel add-ins.

29.2 STATUS REPORT AND NEW REQUIREMENTS

When embarking on a C++/Excel project we must realise that there is very little docu-
mentation and very few worked examples. We must then resort to our investigative skills
and a lot of dogged persistence to find out how it all works. Excel has a so-called object
model (again, not very well documented in C++ but well documented for Visual Basic)
that can be accessed via COM interfaces. In general, the author and colleagues have
fathomed the Excel COM depths and have encapsulated specific functionality in easy
to use classes. In fact, we have seen several examples of this encapsulation process in
Chapter 28.

We focus on using C++ to create Add-Ins and we try to avoid discussing Visual Basic
and VBA. This is not to say that we do not find them interesting or that they should not
be used in real-life applications, but they are outside the scope of this book. The main
requirements for us in this chapter are:

• Interoperability: The add-ins should work seamlessly with Excel and with the C++
classes that we have described in this book. In particular, it is important that the
add-ins can interoperate with the classes Array, AssociativeArray, Matrix,
AssociativeMatrix and the Property pattern. Ideally, communication should be in
both directions. In future versions we see XML and Excel interoperability as a business
opportunity.

• Usability: The developer should not have to worry about the fine details of COM or
nasty little details of interfacing.

• Efficiency: The add-ins should perform almost as well as native C++ applications.

Advanced Excel Interfacing 357

29.3 A GENTLE INTRODUCTION TO EXCEL ADD-INS

An Add-In is a piece of functionality that is written in some programming language and
uses the input and output facilities of Excel. We concentrate on the functionality that the
various options offer, in which languages they can and cannot be written, and a short note
on the limitations of each option.

29.3.1 What kinds of add-ins are there?

There are four main options that allow us to create Excel add-ins.

XLL add-ins

These are the oldest form of add-in. These are written in C using the Microsoft XLL
API and are compiled to a DLL library having the extension .xll. They can be used to
create Excel worksheet functions or functions that we call by means of a menu.

The main advantage of XLL is that it is fast and works with all versions of Excel from
Excel 95. The main disadvantage is that development work has ceased. Do not expect
XLL to move with the times.

XLL add-ins are managed from the Tools/Add-insmenu in the Excel user interface.

XLA add-ins

This option is based on the Visual Basic for Applications (VBA) development environment
from the time of Excel 97. We must use VBA to write these add-ins. In essence, an XLA
add-in is just a workbook with VBA code that we save with the .xla file extension.
They can be used to create Excel worksheet functions or functions that we call by means
of a menu.

It is possible to protect your code (from Excel 2000!) by using a password, but it is
fairly easy to crack (especially, if you really want to crack it!). A major disadvantage is
that the code is interpreted (instead of compiled) and hence we shall expect performance
degradation in practice.

XLA add-ins are managed from the Tools/Add-insmenu in the Excel user interface.

COM add-ins

These have been available since Excel 2000 and are based on a generic COM interface
for add-ins. This interface is used by all Office Products as well as Visual Studio and
VBA development environments.

On a technical level, we say that COM add-ins must implement the IDTExtensi-
bility2 COM interface. The most important methods that you implement are:

• OnConnection event: This is called when you load an add-in. The add-in initialises
itself and a menu item is loaded in the host application. The event has an argument that
is the object reference to the host application. You can query the type of this object
(for example, Excel or Word) and adjust your add-in behaviour accordingly.

• OnDisconnection event: This is called when the add-in is being unloaded. The add-in
uninitialises itself and this includes removing installed menu items, for example.

358 Financial Instrument Pricing Using C++

Some other points should be noted. First, the COM add-in must also register itself in the
registry for each host application that it supports. This allows the host application to find
it. Second, when loading we can specify the desired load behaviour. This means that a
COM add-in can be loaded when the host application is loaded or only when it is needed
(on-demand loading).

When using VB or VBA there exists a so-called add-in designer that makes life easier
for the programmer. It takes care of registration and other housekeeping chores.

A feature of COM add-ins is that they cannot be used to create Excel worksheet
functions directly. If you wish to do this, you must call the COM add-in function through
an XLA add-in worksheet function.

COM add-ins cannot be found in the Tools/Add-ins menu. Instead you have to
manually add the COM Add-ins button to the toolbar using the Tools/Customise
menu.

Automation add-ins

This is an advanced option and has been available since the introduction of Excel XP.
This option uses COM objects whose public functions can be used as worksheet functions.
Menus are not supported. An automation add-in is always loaded on demand.

Automation add-ins are managed from the Tools/Add-ins menu in the Excel user
interface.

Figure 29.1 Create an ATL project

Advanced Excel Interfacing 359

29.4 AUTOMATION ADD-IN IN DETAIL
We start with an Automation add-in. An Automation add-in can be any COM object with
an IDispatch interface and we can easily create such an object with the aid of the ATL
wizard in Visual Studio .NET.

In Visual Studio create a new C++ project, select an ATL Project as project type
and give it the name MyAtlExcelAddin. See Figure 29.1.

In the ATL Project Wizard screen, select Application Settings and de-
select the Attributed checkbox. See Figure 29.2.

The Attributed option is new in Visual Studio .NET. It uses attributes instead of
macros and IDL to help you to create COM objects from C++ classes. The code for
registering the COM object is replaced by attributes. If we create a COM add-in we must
make additional changes to the registry when registering the add-in. Since we cannot
change the registration code in the attributed version, we must deselect this option so that
normal register functions are generated.

When you create the project you will see that a workspace MyAtlExcelAddin is
created with a MyAtlExcelAddin project in which we write our code and a MyAtl-
ExcelAddinps project that generates Proxy/Stub dlls.

In the MyAtlExcelAddin project we must add our COM/Automation object. Do this
by right mouse clicking on the MyAtlExcelAddin project and selecting Add Class.
In the following dialog box select ATL Simple Object. See Figure 29.3.

In the next dialog box type in the short name MyExcelFunctions. All the other
fields will be filled automatically. See Figure 29.4.

Figure 29.2 ATL Project Wizard

360 Financial Instrument Pricing Using C++

Figure 29.3 Add a ATL Simple Object

Figure 29.4 Create a MyExcelFunctions COM object

Advanced Excel Interfacing 361

After selecting Finish the wizard will create a COM object with a dual interface. This
is an interface that supports the IDispatch interface that is required for Automation
add-ins.

Now we can add an Excel worksheet function to our Automation object. Do this by
right clicking on the IMyExcelFunctions interface in the class view and selecting
Add Method. First we create a function that always returns the same value, in this case
PI. Enter MyPI as method name and add a MyPIArg parameter of the type DOUBLE* as
retval type. See Figure 29.5.

The wizard now adds the function to the interface in the .IDL file and will also add
an empty implementation to the CMyExcelFunctions class. Implement the MyPI()
function in the following way:

STDMETHODIMP CMyExcelFunctions::MyPI(DOUBLE* MyPIArg)
{

// Return the value PI
*MyPIArg=3.14;

// No errors
return S_OK;

}

Now we can use this function in Excel. First we must add the Automation add-in to
Excel. On the Tools menu select Add-ins. In the Add-ins dialog box select the
Automation button. In the list of Automation objects you should select the Automation
object we just created. It is shown under the name we entered in the Type textbox when
we added the ATL Simple Object. In this case it was MyExcelFunctions Class.
See Figure 29.6.

Figure 29.5 Add the MyPI method

362 Financial Instrument Pricing Using C++

Figure 29.6 Select the Automation add-in

We can now use the Automation add-in functions on the worksheet. Select a cell in
which to use the function and select Insert Function. In the Insert Function
dialog box select the MyAtlExcelAddin.MyExcelFunctions category. Now you
can select the MyPI() function. See Figure 29.7. Now the value of PI will be shown in
the selected cell.

29.4.1 Functions with two parameters

We now extend our Automation add-in with a function that subtracts the value of one
cell from the value of another cell. On the IMyExcelFunctions interface, right
click and select Add method. Create a function called MySubtract with the follow-
ing parameters:

[in] DOUBLE* arg1
[in] DOUBLE* arg2
[out, retval] DOUBLE* result

This is also shown in Figure 29.8.
Now implement the function in the CMyExcelFunctions class in the following way:

STDMETHODIMP CMyExcelFunctions::MySubtract(DOUBLE* arg1,
DOUBLE* arg2, DOUBLE* result)

{
// Subtract two values
*result=*arg1-*arg2;

return S_OK;
}

Advanced Excel Interfacing 363

Figure 29.7 Select the MyPI() function

Figure 29.8 Adding a Subtract function

364 Financial Instrument Pricing Using C++

Figure 29.9 My subtract function in action

The result of this function is shown in Figure 29.9. Here the value of cell A1 is the value
of cell B1 minus C1.

29.4.2 Functions that accept a range

Creating a function that accepts a variable range of cells is more difficult than working
with cells. In this case the function must accept a VARIANT. The VARIANT then contains
an Excel range object. To use the Excel objects we have to import the Excel/Office COM
libraries. To import the COM libraries of Excel XP/2002 add the following lines of code
to the stdafx.h file below the #include statements (each import must be on one line
and not spread over multiple lines as shown here):

// Office XP (2002)
#import
"C:\Program Files\Common Files\Microsoft Shared\office10\mso.dll"
rename("DocumentProperties", "DocumentPropertiesXL")
rename("RGB", "RBGXL")

#import
"C:\Program Files\Common Files\Microsoft Shared\VBA\VBA6\vbe6ext.olb"
#import "C:\Program Files\Microsoft Office\Office10\EXCEL.EXE"
rename("DialogBox", "DialogBoxXL") rename("RGB", "RBGXL")
rename("DocumentProperties", "DocumentPropertiesXL")
rename("ReplaceText", "ReplaceTextXL")
rename("CopyFile", "CopyFileXL")
no_dual_interfaces

The file paths may be different on your system.
Now we can add our worksheet function. In this example we shall create a worksheet

function that adds all values of the selected cells together. To do that right click on the
IMyExcelFunctions interface and select the add method. Now create a function called
MyAdd, which has the following arguments:

[in] VARIANT* range
[out, retval] DOUBLE* result

This is also shown in Figure 29.10.

Advanced Excel Interfacing 365

Figure 29.10 Adding a function that accepts a range of cells

Now implement the function in the CMyExcelFunctions Class in the follow-
ing way:

STDMETHODIMP CMyExcelFunctions::MyAdd(VARIANT* range, DOUBLE* result)
{

// Check if a range object was passed
if (range->vt!=VT_DISPATCH)
{
// No range passed so just return the double value
*result=range->dblVal;
return S_OK;

}

// Retrieve the Excel range object from the variant
Excel::RangePtr pRange=range.pdispVal;

// Get the number of rows and columns in the range
int columns=pRange->Columns->Count;
int rows=pRange->Rows->Count;

// Temporary result
double tmp=0.0;

// Iterate the rows and columns
for (int r=1; r<=rows; r++)
{
for (int c=1; c<=columns; c++)
{
// Get the value of the current cell as double and

366 Financial Instrument Pricing Using C++

Figure 29.11 Adding a range of cells

// add to running result
tmp+=(((Excel::RangePtr)pRange->Item[r][c])->Value).dblVal;

}
}

// Return the result
*result=tmp;
return S_OK;

}

The result of this function is shown Figure 29.11, where the value of A1 is the sum of
the cells B1:D2.

29.4.3 Using the Vector template class

The Vector template class is our standard in this book. We now use it in order to
communicate with Excel. In particular, we use it to simplify the usage of ranges in Excel.
Before we can use the Vector class, we need to convert the input VARIANT to a
Vector of doubles. To this end, we have created two static functions in a COMUtils
class that does this for us and can be reused by other Excel worksheet functions. The two
functions are shown below:

// Convert a variant to our vector template class
Vector<DOUBLE> COMUtils::ExcelRangeToVector(VARIANT* range)
{
// Check if a range object was passed
if (range->vt!=VT_DISPATCH)
{

// No range passed so just return the double value in a vector
Vector<DOUBLE> v(1);
v[v.MinIndex()]=range->dblVal;
return v;

}

// Retrieve the Excel range object from the variant
// and convert it to a Vector<DOUBLE>
Excel::RangePtr pRange=range->pdispVal;

Advanced Excel Interfacing 367

return COMUtils::ExcelRangeToVector(pRange);
}

// Convert an Excel range to our vector template class
Vector<DOUBLE> COMUtils::ExcelRangeToVector(Excel::RangePtr pRange)
{

// Get the number of rows and columns in the range
int columns=pRange->Columns->Count;
int rows=pRange->Rows->Count;

// Create the vector with the correct size
Vector<DOUBLE> v(columns*rows);

// Iterate the rows and columns
int i=v.MinIndex();
for (int r=1; r<=rows; r++)
{
for (int c=1; c<=columns; c++)
{
// Add each element in the range to our vector
v[i++]=(((Excel::RangePtr)pRange->Item[r][c])->Value).dblVal;

}
}

// Return the vector
return v;

}

Now we can use the above functions from our worksheet function. The following example
uses the ExcelRangeToVector() function to convert the range passed by Excel to a
Vector of doubles. The vector is then passed to a template function that calculates the
sum of the values.

STDMETHODIMP CMyExcelFunctions::MySum(VARIANT* range, DOUBLE* result)
{

// Convert input to vector
Vector<DOUBLE> v=COMUtils::ExcelRangeToVector(range);

// Calculate sum
*result=sum(v);

return S_OK;
}

29.5 CREATING A COM ADD-IN

We now extend the Automation add-in we created earlier so that it is also usable as
a COM add-in. COM add-ins must implement the IDTExtensibility2 interface.
This can be done using the wizards in Visual C++. In the class view, right click on
the CMyExcelFunctions class and select Implement Interface. In the Imple-
ment Interface Wizard dialog box select the Microsoft Add-In Designer
type library and add the _IDTExtensibility2 interface to the interface to be imple-
mented. This is shown in Figure 29.12.

The wizard will now add the IDTExtensibility2 interface functions to the CMyEx-
celFunctions class. Open the header file of the CMyExcelFunctions class. You
will see that the five interface functions have a default implementation that returns

368 Financial Instrument Pricing Using C++

Figure 29.12 Selecting an interface to implement

E NOTIMPL. Change this return code to S OK or the add-in will not load. If you now
try to use the add-in as Automation add-in, the worksheet functions will not be recognised
because adding the interface has changed the binding of the IDispatch interface to the
IDTExtensibility interface instead of the IMyExcelFunctions interface. In the
header file of the CMyExcelFunctions class, search the following piece of code:

BEGIN_COM_MAP(CMyExcelFunctions)
COM_INTERFACE_ENTRY(IMyExcelFunctions)
COM_INTERFACE_ENTRY2(IDispatch, _IDTExtensibility2)
COM_INTERFACE_ENTRY(_IDTExtensibility2)

END_COM_MAP()

Change the binding of IDispatch to IMyExcelFunctions so that it works again as
Automation add-in. The code now likes like this:

BEGIN_COM_MAP(CMyExcelFunctions)
COM_INTERFACE_ENTRY(IMyExcelFunctions)
COM_INTERFACE_ENTRY2(IDispatch, IMyExcelFunctions)
COM_INTERFACE_ENTRY(_IDTExtensibility2)

END_COM_MAP()

Next we have to register the COM add-in to enable Excel to find it. Registering the COM
add-in takes place at the same time as registering the COM component itself. Registering
the COM add-in is putting some things in the registry. For that we have made a general
register function that can be found in the COMUtils class. Add this class to your project.

Advanced Excel Interfacing 369

Next open the MyExcelAddin.cpp file. At the top of the file include the COMU-
tils.hpp header file and add the following two variables:

// Strings for registering my COM add-in
LPSTR pszProgID = "MyAtlExcelAddin.MyExcelFunctions";
LPSTR pszFriendlyName = "My First Excel Add-in!";

The first variable is the add-in ProgID to register. This is the same as the ProgID text
field in the dialog shown in Figure 29.4. The second variable is the description of the
add-in, as shown in the Add-in dialog box of Excel.

Next find the DllRegisterServer() function. Add to this function a call to
the COMUtils::RegisterCOMAddin() function. The finished function will look
like this:

// DllRegisterServer - Adds entries to the system registry
STDAPI DllRegisterServer(void)
{

// Register this COM add-in for Excel
COMUtils::RegisterCOMAddin("Excel", pszProgID, pszFriendlyName, 3);

// registers object, typelib and all interfaces in typelib
HRESULT hr = _AtlModule.DllRegisterServer();
return hr;

}

The value ‘3’ in the function call determines the start-up mode of the add-in. The value ‘3’
means that the add-in is always loaded at start-up. The value ‘9’ is on-demand load and the
value ‘16’ is load only the first time at start-up, after which it reverts to load on demand.

Finally find the DllUnRegisterServer() function. Add to this function a call to
the COMUtils::UnRegisterCOMAddin() function. The finished function will look
like this:

// DllUnregisterServer - Removes entries from the system registry
STDAPI DllUnregisterServer(void)
{

// Unregister this COM add-in
COMUtils::UnRegisterCOMAddin("Excel", pszProgID);

HRESULT hr = _AtlModule.DllUnregisterServer();
return hr;

}

If you now compile the add-in, it will be registered and will be shown in the COM Add-
in dialog of Excel. However it still does nothing. For that we need to create a menu or
button for Excel in the IDTExtensibility2::OnConnection() function that calls
our add-in function.

We now add a menu item to the Excel Tools menu. For that we have made two
static functions in the COMUtils class named AddMenuItem() and RemoveMenu-
Item(). We create and remove the menu item in the functions OnConnection() and
OnDisconnection(), respectively. These are member functions of the CMyExcel-
Functions class.

To this end, we first create a private variable in the CMyExcelFunctions class to
hold a reference to a CommandBarButton object and then we create a variable that
holds a reference to the Excel instance that loaded our add-in. We then initialise these
variables to NULL in the constructor.

370 Financial Instrument Pricing Using C++

private:
// The Excel instance the add-in communicates with
Excel::_ApplicationPtr m_xl;

// The menu item added by the add-in
Office::_CommandBarButtonPtr m_menuItem;

In the OnConnection() method of the CMyExcelFunctions class we store the
Excel host application and create a menu item in the Excel Tools menu. The OnCon-
nection() function will look like this:

STDMETHODIMP CMyExcelFunctions::OnConnection(LPDISPATCH Application,
ext_ConnectMode ConnectMode, LPDISPATCH AddInInst,
SAFEARRAY * * custom)

{
// Store reference to the Excel host application.
// Exit if host application is not Excel.
m_xl=Application;
if (m_xl==NULL) return S_OK;

// If an AddInInst object given of the type COMAddin then
// loaded as COM Add-in.
// If AddInInst is the same object as myself then I’m loaded
// as Automation Add-in.
Office::COMAddInPtr cai=AddInInst;
if (cai!=NULL)
{

// Attach myself to the add-in object
// In that way I can call functions of this object from VBA
// using the add-in collections
void* id;
this->QueryInterface(IID_IDispatch, &id);
cai->put_Object((IDispatch*)id);

// Now install menu item
m_menuItem = COMUtils::AddMenuItem(m_xl, cai, CComBSTR("Tools"),

CComBSTR("My ATL Add-in"), CComBSTR("MyATLAddin"));
}

return S_OK;
}

In the OnDisconnection() function we shall remove the installed menu item:

STDMETHODIMP CMyExcelFunctions::OnDisconnection(
ext_DisconnectMode RemoveMode, SAFEARRAY * * custom)

{
if (m_menuItem!=NULL)
{

// Remove the menu item
COMUtils::RemoveMenuItem(m_xl, RemoveMode, CComBSTR("Tools"),
CComBSTR("My ATL Add-in"));

}
return S_OK;

}

When you now compile the add-in and start Excel you see that a MyATL Add-in menu
item is added to the Tools menu. However, if we select it nothing will happen. For that
we have to register an event sink to the menu item.

Advanced Excel Interfacing 371

ATL provides several techniques for implementing an event sink. The simplest to use
is the IDispEventImpl base class. So the first step is to add the IDispEventImpl
class as base class for the CMyExcelFunctions class:

class ATL_NO_VTABLE CMyExcelFunctions :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CMyExcelFunctions, &CLSID_MyExcelFunctions>,
public IDispatchImpl<IMyExcelFunctions, &IID_IMyExcelFunctions,
&LIBID_MyAtlExcelAddinLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,

public IDispatchImpl<_IDTExtensibility2,
&__uuidof(_IDTExtensibility2), &LIBID_AddInDesignerObjects,
/* wMajor = */ 1, /* wMinor = */ 0>,

public IDispEventImpl</*nID*/ 1, CMyExcelFunctions,
&__uuidof(Office::_CommandBarButtonEvents),
&__uuidof(Office::__Office), /*wMajor*/ 2, /*wMinor*/ 2>

{
// Rest of the class definition

}

The IDispEventImpl class is a template class. The first argument is a unique identifier
for this event sink. If you have to handle events of other objects you derive multiple times
from IDispEventImpl, each with its own identifier.

The second argument is the class that derives from the IDispEventImpl class. In
this case it is the CMyExcelFunctions class.

The third argument is the GUID of the event class to handle. In this case we handle
the events declared by the _CommandBarButtonEvents COM class.

The fourth, fifth and sixth arguments specify the GUID of the type library and its
version where the events to be handled are declared. In this case the events are declared
in the Office 2.2 type library. The version number must be the same as the type
library registered. So specifying version 1.0 will not work on a machine with Office XP.

The next step is to specify the function we want to call when an event occurs. The button
generates a click event that has, as arguments, a reference to the object that generated the
event and a Boolean that can be set in case you want to override a built-in button with
the same name.

In our handler we fill the range A1:B2 of the active worksheet with the text Add-in
called.

// Handle the Click event of the menu item
void __stdcall CMyExcelFunctions::OnButtonClick(

Office::_CommandBarButtonPtr Ctrl, VARIANT_BOOL * CancelDefault)
{

m_xl->GetRange("a1:b2")->Value2="Add-in called";
}

Next we must add an event sink map to the CMyExcelFunctions header file that
couples the click event with the event handler function.

BEGIN_SINK_MAP(CMyExcelFunctions)
SINK_ENTRY_EX(/*nID =*/ 1,
__uuidof(Office::_CommandBarButtonEvents),
/*dispid =*/ 1, OnButtonClick)

END_SINK_MAP()

372 Financial Instrument Pricing Using C++

The first argument of the SINK_ENTRY_EX is the id of the event sink. This must be
the same number as specified as the first template argument of the IDispEventImpl
base class. The second argument is the GUID of the event class to handle. In this case it
is the _CommandBarButtonEvents COM class. The fourth argument is the dispatch
id of the event we want to handle. The dispatch id of the Click event of the Command-
BarButton is 1. You can find this information in the type library. The last argument is
the function to call when the event occurs.

The final step is to register our event sink with the menu item we have created. So in
the OnConnection() function of the CMyExcelFunctions class add the following
line of code after the call to COMUtils::AddMenuItem():

// And add our event sink to the menu item
return DispEventAdvise(m_menuItem);

To unregister our event handler when the add-in is unloaded, add the following line of
code just before the call to COMUtils::RemoveMenuItem() in the OnDisconnec-
tion() function of the CMyExcelFunctions class:

// Remove our event sink from the menu item
DispEventUnadvise(m_menuItem);

When we now compile the add-in and start Excel, we shall see the MyATL Add-in
menu item in the Tools menu. When we click on it the cells A1:B2 will be filled with
the text Add-in called.

As last we give the implementation of the static AddMenuItem() and RemoveMe-
nuItem() functions:

// Add a menu item to Excel
Office::_CommandBarButtonPtr COMUtils::AddMenuItem(
Excel::_ApplicationPtr xl, Office::COMAddInPtr addin,
CComBSTR menuName, CComBSTR menuItemCaption, CComBSTR menuItemKey)

{

Office::CommandBarPtr cmdBar;
Office::_CommandBarButtonPtr button;

// Get the "menuName" dropdown menu
cmdBar=xl->GetCommandBars()->GetItem(CComVariant(menuName));

// If not found then end of exercitation
if (cmdBar==NULL) return NULL;

// Try to get the "menuItemCaption" menu item
button=cmdBar->FindControl(vtMissing, vtMissing,

CComVariant(menuItemKey), vtMissing, vtMissing);

// If not found, add it
if (button==NULL)
{

// Add new button
Office::CommandBarControlsPtr controls;
cmdBar->get_Controls(&controls);
button=controls->Add(Office::msoControlButton, vtMissing,

CComVariant(menuItemKey), vtMissing, vtMissing);

// Set button’s Caption, Tag, Style, and OnAction properties.
button->put_Caption(menuItemCaption);
button->put_Tag(menuItemKey);

Advanced Excel Interfacing 373

button->put_Style(Office::msoButtonCaption);

BSTR progId;
addin->get_ProgId(&progId);

// Use addin argument to return reference to this add-in.
CComBSTR str("!<");
str.AppendBSTR(progId);
str.Append(">");
button->put_OnAction(str);

}

// Return the created button
return button;

}

// Remove the installed menu item
void COMUtils::RemoveMenuItem(Excel::_ApplicationPtr xl,

ext_DisconnectMode removeMode, CComBSTR menuName,
CComBSTR menuItemCaption)

{
Office::CommandBarPtr cmdBar;

// If user unloaded add-in, remove button. Otherwise, add-in is
// being unloaded because application is closing; in that case,
// leave button as is.
if (removeMode == ext_dm_UserClosed)
{
// Get the "menuName" dropdown menu
cmdBar=xl->GetCommandBars()->GetItem(CComVariant(menuName));

// Delete the "menuItemCaption" menu item
cmdBar->Controls->GetItem(CComVariant(menuItemCaption))->Delete();
}

}

29.6 FUTURE TRENDS
Future releases of Excel will support XML. In general, XML is a perfect language for
defining structured data in a standardised form that all applications can use. Once we
agree on a standard format we can import and export data between applications. To this
end, Excel (at the moment of writing) has functionality for the following:

• Create a workbook and attach a custom XML Schema to the workbook.
• Identify and extract specific pieces of business data from ordinary business documents.
• Import and export XML data into and out of mapped cells.

In short, we define the structure of our data once in an XML Schema and Excel can then
create XML data based on this schema. We see many business opportunities for this new
feature in Excel.

29.7 CONCLUSIONS AND SUMMARY
We have given a detailed introduction to the problem of getting data into Excel by
defining add-in functionality. There are four main options for achieving this end but we are
interested mainly in the Automation interface because of its support for C++. In particular,
we provided a step-by-step procedure for defining your own add-ins and we applied it
to defining add-in functionality for some of the functions in the ArrayMechanisms
package. The CD gives the full source code for the examples in this chapter.

30
An Extended Application: Option Strategies

and Portfolios

30.1 INTRODUCTION AND OBJECTIVES

This short chapter discusses how to model a number of option trading strategies as C++
classes. In fact, we create aggregations that consist of two or more simpler types (mostly
options). We pay particular attention to spreads, straddles and strangles. Furthermore, we
give a short introduction to portfolio hedging.

We propose a simple portfolio hierarchy, as shown in Figure 30.1. A number of the
classes will be discussed in some detail while we give some tips and guidelines to help
you to develop your own code for the other classes.

30.2 SPREADS

A spread trading strategy involves taking a position in two or more options on the
same underlying asset and with the same expiry date. There are three major kinds of
spread (Hull, 2000):

• Bull spreads: We buy a call option with strike price X1 and we sell a call option
with strike price X2, where X2 ≥ X1. The investor with this strategy will gain if the
underlying asset rises in value.

• Bear spreads: We buy a call option with strike price X1 and we sell a call option
with strike price X2, where X2 ≤ X1. The investor with this strategy will gain if the
underlying asset falls in value.

Option

PortfolioThing

Spread Combination Composite

{abstract}

{abstract} {abstract}

BearBull Butterfly StripStrangle

. . .Portfolio

. . .

*

Figure 30.1 Basic portfolio hierarchy

An Extended Application: Option Strategies and Portfolios 375

Option

BullSpread

'short''long'

Figure 30.2 Bull spread structure

• Butterfly spread: This strategy uses three options with different strikes. The investor
buys a call option with relatively low strike price X1, buys a call option with a relatively
high strike price X3 and sells two call options with strike price X2, determined by
the formula:

X2 = (X1 + X3)/2

These trading strategies are well documented in, for example, Hull (2000), and it is our
objective to show how to model them as Assembly Parts classes in C++ (see Chapter 24
and Buschmann et al., 1996, for a discussion). In particular, we concentrate on modelling
bull spreads in C++ and we wish to write the following functions:

• Calculate the payoff for a given underlying asset price
• Calculate the ‘payoff curve’ for a range of underlying asset prices
• Display the payoff curve in Excel, for example.

An UML class diagram for a bull spread is shown in Figure 30.2.

30.3 COMBINATIONS: STRADDLES AND STRANGLES

A combination is an option trading strategy that involves taking a position in both calls
and puts on the same underlying asset. The main types are:

• Straddle: In this case we buy a call and a put with the same strike price (call it X)
and expiry date (long positions). The total payoff for a straddle is:

X − S if S ≤ X

S − X if S > X

This particular straddle is called a bottom straddle or straddle purchase.
• Strip: A strip consists of a long position in one call and two puts with the same strike

price and expiration date.
• Strap: This consists of a long position in two calls and one put with the same strike

price and expiration date.

376 Financial Instrument Pricing Using C++

• Strangle: An investor buys a put with strike price X1 and a call with strike price X2

with the same expiration date. The total payoff is:

X1 − S if S ≤ X1

S − X2 if S ≥ X2

0 otherwise, that is in the open interval (X1, X2)

As far as C++ is concerned, it is possible to model these strategies in much the same way
as we have done for spreads.

30.4 DESIGNING AND IMPLEMENTING SPREADS
We shall model option strategies and spreads in C++. The class hierarchy has already been
given in Figure 30.1. We shall now discuss how to program these items. We shall take
a minimalist viewpoint and implement those functions that are essential for a working
class. We shall concentrate on bull spreads.

The basic hierarchy in C++ is:

class PortfolioThing
{ // Base class for all derivative products
};

This is the (abstract) base class for all derivative products. At the moment of writing it
has neither member data nor member functions.

class OptionStrategy: public PortfolioThing
{
public:
Vector<double, int> payoffGraph(const Range<double>& interval,

int numberIntervals);
virtual double payoff(double StockPrice) const = 0;

};

This class is the base class for all trading strategy classes. Notice that it has two member
functions: first, a function that creates the vector object that represents the total payoff
curve in a given range and, second, a pure virtual member function (PVMF) that calculates
the payoff for a particular value of the stock price. Derived classes must implement this
function. In fact, the function payoffGraph is an application of the Template Method
patterns (see Gamma et al., 1995) because it represents an algorithm, some of whose steps
are delegated to derived classes:

Vector<double, int> OptionStrategy::payoffGraph(
const Range<double>& interval, int numberIntervals)

{
// This is an application of the Template Method pattern because
// the graph is calculated at each Stock value by calling the
// payoff() function in the derived classes (the so-called
// variant part of the algorithm).
// The invariant part of the algorithm is the looping in the
// interval.

// The vector of stock prices
Vector<double, int> SArr = interval.mesh(numberIntervals);

// The vector containing payoff for each stock price

An Extended Application: Option Strategies and Portfolios 377

Vector<double, int> result (SArr.Size(), SArr.MinIndex());

// Now calculate the payoff array
for (int j = result.MinIndex(); j <= result.MaxIndex(); j++)
{
result[j] = payoff(SArr[j]);

}
return result;

}

The classes derived from OptionStrategy have the following prototype definitions:

class Spread: public OptionStrategy
{ // Take a position in two or more options of the same type

private:

protected: // This has been done for convenience only
EuropeanOption * f;
EuropeanOption * s;

public:
Spread(EuropeanOption& first, EuropeanOption& second);

};

class BullSpread: public Spread
{ // One long call and one short call

private:
// Redundant data
double X1; // Smaller strike price
double X2; // Larger strike price

public:
BullSpread(EuropeanOption& first, EuropeanOption& second);

double payoff(double StockPrice) const;
};

It is interesting to show how we have coded the constructor for the bull spread class.
Notice in particular how we have determined the strike prices:

BullSpread::BullSpread(EuropeanOption& first, EuropeanOption& second)
: Spread(first, second)

{
X1 = f -> K;
X2 = s -> K;

}

The code for the payoff function is very easy and is based on the formulae in Hull (2000):

double BullSpread::payoff(double S) const
{ // Based on Hull's book

if (S >= X2)
return X2 - X1;

if (S <= X1)
return 0;

// In the interval [X1, X2]
return S - X1;

}

We shall give an example of the use of bull spreads in section 30.6.

378 Financial Instrument Pricing Using C++

30.5 DELTA HEDGING
We know that the delta of a derivative security is the rate of change of its price with
respect to the price of the underlying asset. We also know how to calculate the delta
of plain European options because there is an exact formula for the calculation. For
exotic options, we must resort to numerical schemes in general to calculate the delta. For
example, the exponentially fitted finite difference scheme produces a good approximate to
the delta while the Keller Box scheme gives second-order accurate approximations to it.

Let P denote the value of a portfolio consisting of one long option position and a short
position in some quantity � (called delta) of the underlying:

P = V (S, t) − �S (30.1)

We can show that the portfolio change is given by (Wilmott, 1998):

dP = ∂V

∂t
dt + ∂V

∂S
ds + 1

2
σ 2S2 ∂2V

∂S2
dt − �dS

=
(

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2

)
dt +

(
∂V

∂S
− �

)
dS (30.2)

This equation has a deterministic term (the coefficient of dt) and a random term (the
coefficient of dS). Thus everything is known on the right-hand side of (30.2) with the
exception of the random term. We can eliminate this term and a corresponding source of
risk by defining the delta as follows:

� = ∂V

∂S
(30.3)

Any reduction in randomness is called hedging. In the current situation, in which we
exploit correlation between an instrument and its underlying, it is called delta hedging.
We now turn our attention to finding the delta of a portfolio consisting of a number of
options. In this case, define the following variables:

�j = delta of option j

wj = number of options for option j

� = delta of the portfolio

(30.4)

Then since the delta of the portfolio is a linear functional, we know that its delta is the
sum of the deltas of the individual options times the number of options:

� =
n∑

j=1

wj�j (30.5)

Of course, we can calculate the deltas of the individual options by exact or approxi-
mate methods.

We now discuss how to implement a portfolio class. We concentrate on a special case of
Figure 30.1. In this case we document the class as in Figure 30.3. We note the following:

• A ‘basic’ portfolio consists of options
• A composite portfolio consists of other portfolios.

An Extended Application: Option Strategies and Portfolios 379

Option

Portfolio

delta()

delta()

*

*

Figure 30.3 Test case: Portfolio class

The basic C++ interface for this class is:

class Portfolio: public PortfolioThing
{
private:
list<pair<int, Option*> > contents;

public:
// Usual stuff

double delta() const;
};

We have given an exercise to let you program this class in C++.

30.6 AN EXAMPLE
We give an example of a bull spread and how to calculate and display its payoff function.

// All options are European; Bull spread

// Buy a call option
EuropeanOption futureOption("C");
futureOption.U = (32.0);
futureOption.K = (30.0);
futureOption.T = (0.5);
futureOption.r = (0.10);
futureOption.sig = (0.36);
futureOption.b = (0.0);

// Sell a call option
EuropeanOption futureOption2("C");
futureOption2.U = (32.0);
futureOption2.K = (35.0);
futureOption2.T = (0.5);
futureOption2.r = (0.10);
futureOption2.sig = (0.36);

380 Financial Instrument Pricing Using C++

futureOption2.b = (0.0);

BullSpread spr1(futureOption, futureOption2);
double pay = spr1.payoff (32.0);
cout << "pay off at 32 is: " << pay << endl;

We now wish to print the total payoff graph in Excel. The corresponding code is:

Range<double> r(20.0, 40.0);
Vector<double, int> payoffGraph = spr1.payoffGraph(r, 20);
print(payoffGraph);

Vector<double, int> x = r.mesh(20);
printOneExcel(x, payoffGraph, "Bull Spread (Call)");

For completeness, we include the actual code that presents the vector in Excel:

void printOneExcel(const Vector<double, int> & x,
const Vector<double, int>& functionResult,
const string& title)

{
// N.B. Excel has a limit of 8 charts; after that you get a
// run-time error
cout << "Starting Excel\n";
ExcelDriver & excel = ExcelDriver::Instance();

excel.MakeVisible(true); // Default is INVISIBLE!
excel.CreateChart(x, functionResult, title, "Stock S", "Profit");

}

The output is given in Figure 30.4.

−1

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45

Stock S

P
ro

fi
t

Bull Spread (Call)

Figure 30.4 Bull spread (call)

An Extended Application: Option Strategies and Portfolios 381

30.7 TIPS AND GUIDELINES

We give some ideas on extending the functionality in this chapter.

1. Create a C++ class for a bear spread. The total payoff is (Hull, 2000):

double BearSpread::payoff(double S) const
{ // Based on Hull's book
if (S >= X2)
return -(X2 - X1);

if (S <= X1)
return 0;

// In the interval [X1, X2]
return -(S - X1);

}

2. Create a class for a butterfly spread. The total payoff is:

double ButterflySpread::payoff(double S) const
{ // Based on Hull's book
if (S < X1)
return 0.0;

if (S > X3)
return 0.0;

if (X1 < S & S < X2)
return S - X1;

if (X2 < S & S < X3)
return X3 - S;

}

The graph of the total payoff for a butterfly spread is shown in Figure 30.5.

X1 X2 X3

Profit

Figure 30.5 Total payoff for butterfly spread

382 Financial Instrument Pricing Using C++

3. Create a software environment in which it is possible to display both the total payoff
of a spread as well as its parts. The display should be done in Excel with the function
we used for initial value problems:

void printInExcel(const Vector<double, int>& x, // X array
const list<string>& labels, // Names of each vector
const list<Vector<double, int> >& functionResult) // The list of Y

// values
{ // Print a list of Vectors in Excel. Each vector is the output of
// a finite difference scheme for a scalar IVP

cout << "Starting Excel\n";
ExcelDriver & excel = ExcelDriver::Instance();
excel.MakeVisible(true); // Default is INVISIBLE!
excel.CreateChart(
x, labels, functionResult, string("FDM Scalar IVP"),
string("Time Axis"), string ("Value"));

}

You can adapt this function to suit your current needs. To give a hint, for a bull spread
you should have three lines in the graph, one for the payoff from the long call option,
one for the payoff from the short call option and one for the total payoff.

4. Write the C++ code that implements the Portfolio class in section 30.5. Create a
test program and check your answer with the results from a standard reference book on
option theory (for example, Hull, 2000).

Appendix I

My C++ Refresher

A1.1 SUMMARY

This appendix is meant as a C++ refresher. If the material is new for you it is probably
an idea to study an introductory text on the subject before proceeding. Of course, a good
way to learn C++ is to study the examples on the CD accompanying this book.

We develop a class in C++ that models the price and sensitivities of European options.

A1.2 WHAT IS C++ AND WHY IS IT IMPORTANT?

The C++ language was born some time around 1980. Its inventor was Dr Bjarne Strous-
trup, a researcher at AT&T labs. Since then the language has become one of the major
programming languages and it is being used in many business, industrial and scientific
domains. C++ has its roots in the C language and it supports the so-called object-oriented
paradigm. One of the central features of this paradigm is ‘encapsulation’. Encapsulation
is the ability to group data and its related functionality into one coherent whole that
we call a class. For example, a plain vanilla option has data for strike price, expiry
data and so on while there are functions for the calculation of its price and sensitivi-
ties. Encapsulation is very powerful and it helps the developer to integrate related data
and functionality. It is safe to say that C++ is the language of choice for many appli-
cations. We hope to see it being used more for financial engineering applications in the
coming years.

Encapsulation is not the only feature in C++ that makes it a great language for software
development in financial engineering. This appendix deals with one particular example,
namely creating C++ classes for plain vanilla options. We have applied the object-
oriented paradigm and C++ to analysing, designing and implementing other problems
such as:

• Finite difference methods for one-factor and two-factor models
• Creating reusable foundation classes (statistics, trees, arrays and matrices)
• C++ classes for binomial and trinomial trees
• Monte Carlo simulations and parallel processing.

We see C++ as the de-facto programming language for financial engineering applications.

A1.3 THE DATASIM C++ SELF-TEST

This section consists of a number of key questions to test your knowledge of C++. If you
answer the questions correctly then your background is OK, if not you should brush up
on your C++ skills. In general, you should be able to give on-the-spot answers to these
questions. Then you can be sure that you have a good knowledge of basic C++. Discuss
your answers to the 10 questions below based on the following viewpoints:

384 Financial Instrument Pricing Using C++

• What is the topic (for example, virtual destructors)?
• Why do you need it?
• How do you implement it?
• What are the consequences if you don’t use it?

The questions are:

1. The minimal class interface that is needed in C++ (the so-called canonical header file).
2. Call-by-value versus call-by-reference.
3. const member functions, const input arguments and const return types. The relation-

ship between call-by-reference and const.
4. The two different ways to apply operator overloading in C++. Advantages and dis-

advantages of each approach.
5. How to implement the operator ‘=’ (assignment in a class). Consider also how

dynamic memory is organised in the body of this operator.
6. What is a friend function/operator?
7. Let B be a base class and D is a derived class of B. What is inherited and what is

not inherited from B to D? How do you (re)implement these members in D?
8. How is memory implemented in D? What is a virtual destructor?
9. What is an abstract (base) class?

10. What is polymorphism?

A1.4 THE ESSENTIALS OF A C++ CLASS: THE CANONICAL
HEADER FILE

We assume that you know how to program the following special member functions when
creating header and code files for a class:

• Default constructor
• Copy constructor
• Assignment operator
• Destructor (must be virtual!).

This is called the canonical header file and each class must have these functions. Do you
know why? Why must the destructor always be public but the constructors may either
be private or public? (By the way, we never use the protected specifier in our
code; life is difficult enough as it is without introducing multiple access specifiers.)

A1.5 AN OVERVIEW OF OBJECT-ORIENTED
PROGRAMMING IN C++

C++ is an example of a class-based object-oriented language. A class is a description
of a group of related attributes and operations. In C++ we use the synonyms ‘member
data’ for attributes and ‘member functions’ for operations. The member data and member
functions are closely related. This feature is called encapsulation. In short, the ‘class’
functions know which attributes to use. Let us take an example of a class implementing
European options for stocks. The defining parameters for the European option will be
designed in C++ as the following member data:

My C++ Refresher 385

The risk-free interest rate: r

The volatility of the relative price change: σ

The strike price: K

The time to expiration (in years): T

The stock price: S (or U depending on the underlying)
The cost-of-carry: b.

The cost-of-carry for the Black–Scholes model has the same value as r but will have
different values depending on the type of underlying asset (for example, b = 0 for a
futures option, see Haug, 1998). We must define the data types of the member data. In
this case we usually design them as double precision numbers although C++ allows
us to design classes with so-called generic data types. This means that the member
data can be customised with different specific data types depending on programmer
preference.

Having defined the member data we now must decide what to do with the data. To this
end, we introduce the concept of object (or instance of a class). A class is abstract in the
sense that its member data has not been instantiated (they are just abstract description)
while an object is tangible and all its member data has been initialised. For example, the
following assignments describe a European put option on an index (Haug, 1998, p. 15):

Underlying value (stock price index), U = 500
Volatility, σ = 0.15
Strike price, K = 490
Time to expiry, T = 0.25 (3 months)
Risk-free interest rate, r = 0.08
Cost-of-carry, b = 0.03.

Having discussed member data we now describe the functionality of classes and objects.
In general, a class has member functions that model the life cycle of an object. The main
categories in general are:

• Member functions (constructors) for creation of objects
• Member functions that modify the member data (modifiers)
• Member functions that perform calculations on the member data (selectors)
• A member function (destructor) that deletes an object when no longer needed.

There are various ways to create an object using constructors. For example, it is possible
to create an instance of a European option class by initialising its member data. Two
other constructors deserve mention: first, the default constructor creates an object with
default member data values while the copy constructor creates an object as a deep copy
of some other object. The destructor is the other extreme; it removes the object from
memory when the object is no longer needed. We note that the names of constructors and
the destructor are the same as the names of their corresponding class.

We now discuss the member functions that operate on an object after it has been
constructed but before it is destructed. We concentrate on the class for European options
in order to be precise and look at the following categories:

• Modifying the object’s member data (modifiers)

386 Financial Instrument Pricing Using C++

• Getting the values of the member data (selectors)
• Calculating the option price and its sensitivities (selectors).

C++ is based on the message-passing paradigm. This means that client code sends a
message to an object by calling its member functions. For example, here is a piece of
code that calculates the price of the index put option (we assume that the member data
have been initialised):

ExactEuropeanOption myobject (“P”, “Index Option”);

// ...

double d = myObject.Price();

The value d will now contain the price of the put on the index option. Notice that there
was no need to include parameters in the function Price() because of the tight binding
between data and functions in C++. This is in contrast to procedural languages (such as
Visual Basic and Cobol) where the coupling between data and functions is looser.

A1.6 THE EUROPEAN OPTION IN C++: THE DETAILS

We now dissect the code to show how we have used C++ for European options. In
particular, there are three separate issues to be discussed in detail:

• Designing the member functions in the class
• Implementing the bodies of each member function
• How client code uses the class.

Once the reader has understood this section he or she should then be in a position to
appreciate how larger classes are created, tested and used in applications.

In general, all the code that is needed for a complete description of a class in C++ is
contained in two files: first, the so-called header file (this section), which contains the
formal descriptions of the member data and member functions in the class. Second, the
so-called code file, which contains the implementation of each declared member function
as seen in the header file. In other words, each member function declaration in the header
file must have a corresponding entry in the code file.

We now discuss the details of the header file. First, there are two regions or parts
called private or public, respectively. Both parts may contain member data and member
functions. Members that are declared in the private part are not accessible from outside
the class and may only be accessed by members in the class itself, while public members
may be accessed by any C++ code. In general, all data should be declared in the private
part because this data tends to change; however, in this article we place the data that
represents the structure of an option in the public area. This is for convenience only.
The public member functions in the options class can be categorised as follows (see the
code below):

• Constructors: The different ways of creating instances of the option class.
• Destructor: Deleting an object when it is no longer needed.
• Assignment operator: The ability to assign one object to another object (this is a

‘deep’ copy).

My C++ Refresher 387

• ‘Core business’ functions: These are the functions that calculate the price and the delta
for the option.

• Other functions: For example, it is possible to switch a call option to a put option (and
vice versa). Of course, the price and delta will be different!

The full interface for the option class is now given.

// EuropeanOption.hpp

#include <string>

class EuropeanOption
{
private:

void init(); // Initialise all default values
void copy(const EuropeanOption& o2);

// 'Kernel' functions for option calculations
double CallPrice() const;
double PutPrice() const;
double CallDelta() const;
double PutDelta() const;

public:
// Public member data for convenience only
double r; // Interest rate
double sig; // Volatility
double K; // Strike price
double T; // Expiry date
double U; // Current underlying price
double b; // Cost of carry

string optType; // Option name (call, put)

public:
// Constructors
EuropeanOption(); // Default call option
EuropeanOption(const EuropeanOption& option2); // Copy constructor
EuropeanOption (const string& optionType); // Create option type

// Destructor
virtual ~EuropeanOption();

// Assignment operator
EuropeanOption& operator = (const EuropeanOption& option2);

// Functions that calculate option price and (some) sensitivities
double Price() const;
double Delta() const;

// Modifier functions
void toggle(); // Change option type (C/P, P/C)

};

Having discussed the function prototypes for the options class, we need to describe how
to fill in the body of the code for these functions. To this end, there are two major issues
to be addressed. First, we must include the header file and the headers of libraries that
are needed by the code. In this case, this leads to:

388 Financial Instrument Pricing Using C++

#include "EuropeanOption.hpp" // Declarations of functions
#include <math.h> // For mathematical functions, e.g. exp()

Second, each function body must be specified. This is where C++ differs somewhat from
non-object-oriented languages, namely function overloading. This means that it is possible
to define several functions having the same name but differing only in the number and
type of arguments. Furthermore, each function is ‘scoped’ or attached to its class by use
of the so-called name resolution operator ‘::’ as shown in the following typical code:

double EuropeanOption::PutPrice() const
{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b + (sig*sig) * 0.5) * T)/ tmp;
double d2 = d1 - tmp;

return (K * exp(-r * T) * N(-d2)) - (U * exp((b-r)* T) * N(-d1));

}

This function calculates the price of a put option. Note that the function returns a double
value (the price of the put option) while all needed parameters (such as the volatility,
interest rate and so on) are none other than the member data of the object which of course
has already been initialised in a constructor!

We now give the full code of the code file.

// EurpeanOption.cpp
//
// Author: Daniel Duffy
//
// (C) Datasim Education BV 2003

#include "EuropeanOption.hpp" // Declarations of functions
#include <math.h> // For mathematical functions, e.g. exp()

// Kernel Functions
double EuropeanOption::CallPrice() const
{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b + (sig*sig) * 0.5) * T)/ tmp;
double d2 = d1 - tmp;

return (U * exp((b-r) * T) * N(d1)) - (K * exp(-r * T) * N(d2));

}

double EuropeanOption::PutPrice() const
{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b + (sig*sig)*0.5) * T)/ tmp;
double d2 = d1 - tmp;

return (K * exp(-r * T) * N(-d2)) - (U * exp((b-r) * T) * N(-d1));
}

double EuropeanOption::CallDelta() const
{

My C++ Refresher 389

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b + (sig*sig)*0.5) * T)/ tmp;

return exp((b-r)*T) * N(d1);
}

double EuropeanOption::PutDelta() const
{

double tmp = sig * sqrt(T);

double d1 = (log(U/K) + (b + (sig*sig)*0.5) * T)/ tmp;

return exp((b-r)*T) * (N(d1) - 1.0);
}

void EuropeanOption::init()
{ // Initialise all default values

// Default values
r = 0.08;
sig= 0.30;
K = 65.0;
T = 0.25;
U = 60.0; // U == stock in this case
b = r; // Black and Scholes stock option model (1973)

optType = "C"; // European Call Option (the default type)

}

void EuropeanOption::copy(const EuropeanOption& o2)
{

r = o2.r;
sig = o2.sig;
K = o2.K;
T = o2.T;
U = o2.U;
b = o2.b;

optType = o2.optType;

}

EuropeanOption::EuropeanOption()
{ // Default call option

init();
}

EuropeanOption::EuropeanOption(const EuropeanOption& o2)
{ // Copy constructor

copy(o2);
}

EuropeanOption::EuropeanOption (const string& optionType)
{ // Create option type

init();
optType = optionType;

if (optType == "c")optType = "C";
}

EuropeanOption::~EuropeanOption()

390 Financial Instrument Pricing Using C++

{ // Destructor

}

EuropeanOption& EuropeanOption::operator = (const EuropeanOption& opt2)
{ // Assignment operator (deep copy)

if (this == &opt2) return *this;

copy (opt2);

return *this;
}

// Functions that calculate option price and sensitivities
double EuropeanOption::Price() const
{
if (optType == "C")return CallPrice();
else return PutPrice();

}

double EuropeanOption::Delta() const
{
if (optType == "C")return CallDelta();
else return PutDelta();

}

// Modifier functions
void EuropeanOption::toggle()
{ // Change option type (C/P, P/C)

if (optType == "C")optType = "P";
else optType = "C";

}

The code file is compiled and syntax errors should be resolved. We then need to write
a program to test the class. The corresponding file is then compiled and linked with the
other code to form an executable unit.

In this section we give an example of a test program. The object-oriented paradigm
is based on the message-passing metaphor. Here we mean that client software sends
messages to an object (by means of member function calls) by using the so-called dot
notation. For example, to calculate the price of an existing option instance we code
as follows:

double option_price = myOption.Price();

Here myOption is an object and Price() is one of its member functions.
The following code is an example of how to use the option class. Please note that we

create four instances of the class EuropeanOption.

// TestEuropeanOption.cpp
//
// Test program for the solutions of European option pricing
// problems.
//
// (C) Datasim Education Technology BV 20003

#include "EuropeanOption.hpp"
#include <iostream> // I/O stuff like cout, cin
int main()

My C++ Refresher 391

{ // All options are European

// Call option on a stock
EuropeanOption callOption;
cout << "Call option on a stock: " << callOption.Price() << endl;

// Put option on a stock index
EuropeanOption indexOption;
indexOption.optType = "P";
indexOption.U = 100.0;
indexOption.K = 95.0;
indexOption.T = 0.5;
indexOption.r = 0.10;
indexOption.sig = 0.20;

double q = 0.05; // Dividend yield
indexOption.b = indexOption.r - q;

cout << "Put option on index: " << indexOption.Price() << endl;

// Call and put options on a future
EuropeanOption futureOption;
futureOption.optType = "P";
futureOption.U = 19.0;
futureOption.K = 19.0;
futureOption.T = 0.75;
futureOption.r = 0.10;
futureOption.sig = 0.28;

futureOption.b = 0.0;

cout << "Put option on future: " << futureOption.Price() << endl;

// Now change over to a call on the option
futureOption.toggle();
cout << "Call on future: " << futureOption.Price() << endl;

return 0;
}

The output from this program is:

Call option on a stock: 2.13293
Put option on an index: 2.4648
Put option on a future: 1.70118
Call option on a future: 1.70118

These numbers are the same as those found in the benchmark examples in Haug (1998).
Having described most of the structure, functionality and behaviour of our benchmark

option class, we could ask ourselves what the added value is of approaching the pricing
problem in this object-oriented way and the benefits we gain by programming it the
way we do. To answer these questions we need to base our answers on objective software
quality characteristics. In our case we base them on the ISO 9126 standard, which consists
of six independent measures:

• Functionality: Is the software suitable for certain customers and applications?
• Reliability: How robust is the software?
• Efficiency: What is the performance of the calculations?
• Portability: Does the software run in various software and hardware environments?

392 Financial Instrument Pricing Using C++

• Maintainability: Can we easily modify, correct and extend the software?
• Usability: Is the software easy to understand and to learn?

These are very important issues that we must address if we wish to produce applications
that satisfy the requirements of this particular business domain, namely financial engi-
neering. The more attention we pay to these quality characteristics the more effective we
shall be as developer and organisation. It is also more cost-effective in the medium to
long term. Remember the old saying: ‘It takes a lot of money to make bad products!’?
We now discuss each of the above quality characteristics, with particular emphasis on the
software solution in this article.

A1.7.1 Functionality

The option class implements the generalised Black–Scholes option pricing formula for a
number of common asset types. Both call and put options are supported and the class has
functionality for each of the major ‘greeks’. We have tested the code with a number of
examples and we conclude that the answers agree with the literature.

It is well known that plain vanilla options are used as ‘building blocks’ for more exotic
and complicated financial instruments. To this end, we wish to realise this feature in the
software as well. For example, chooser options give the holder the right to choose whether
the option is to be a put or a call at some time (Haug, 1998). The payoff in this case
is the larger of the call price and put price. Our software can handle this situation; all
we have to do is ‘toggle’ the option object. Other uses of plain vanilla options in other
instruments can be found in Tavella and Randall (2000).

A1.7.2 Reliability

All source code is written in C++ and is compiled into machine-readable code. Run-time
errors are reduced to a minimum because all data types and assignments are checked at
compile time rather than at run-time. Furthermore, no VARIANT or void* types are used
so that there is no danger of mixing inconsistent data types in the code.

A1.7.3 Efficiency

C++ is a highly efficient language. All source code is compiled and the resulting exe-
cutable files are machine-readable. Thus, C++ code runs almost as fast as (and sometimes
faster than) C code. Compared with languages such as Java, C# and Visual Basic we see
C++ as the language of choice for financial engineering applications, especially in the
code that is responsible for calculations and core processing. As far as efficiency of our
own code is concerned, the Option class uses standard data types and access methods
and we conclude that processing time and the amount of resources needed to perform the
calculations are acceptable.

A1.7.4 Portability

Portability refers to the ability of software to function in different software and hardware
environments. In the present case, since all of the code is written in C++ (an ISO standard)
there will be no problems porting the software from, let’s say, a Windows environment

My C++ Refresher 393

to Linux or Unix. Even the Standard Template Library (STL) is now part of the C++
language and its ability to function with different compilers is also assured. One of our
objectives with the Option class is to produce displays of option prices and their greeks
using applications such as Excel, GDI+ (Graphics Device Interface) and OpenGL. To this
end, we must ensure that our software does not use any of the code from these libraries
otherwise it will be less portable than desired. In order to ensure portability and at the
same time have the ability to display in the various output media we must resort to the
use of the so-called design patterns (see Gamma et al., 1995).

A1.7.5 Maintainability

The code that we have written is easy to modify. For example, we can easily define new
property types as member data and new member functions to suite new needs.

A1.7.6 Last but not least, Usability

Usability refers to the ability to understand the code and learn how it works. Usability is
one of our objectives in general. Code that is not easy to understand leads to more errors,
more maintenance costs and degraded programmer productivity. Our advice is to use
standard libraries, use C++ template class whenever possible and when the time comes
apply the proven design patterns (see Gamma et al., 1995) that promote flexible designs
in C++.

Appendix II

Dates and Other Temporal Types

A2.1 SUMMARY
In financial engineering applications is it vital to model time-dependent data structures. In
none of the chapters in this book did we model any such structures. In this appendix we
model data structures for dates, times, timestamps and their extensions. The full source
code is to be found on the accompanying CD.

A2.2 THE DATE CLASS
The class DatasimDate is an encapsulation of dates. A date consists of a day, month
and year. Internally, these three values are mapped to the equivalent Julian format (a
single number).

We support the following date types:

STD, // d[d]-mon-yy[yy]
EUROPEAN, // d[d]-m[m]-yy[yy]
ANSI, // yy[yy]-m[m]-d[d]
AMERICAN // m[m]-d[d]-yy[yy]

What do we wish to do with dates? We have created the following functionality:

• Creating dates (using different specifiers)
• Comparing dates (<, >, ==, != etc.)
• Adding days/months/years to a date
• Subtracting days/months/years from a date
• Converting dates to an appropriate string format
• Printing dates.

The main constructors are:

// Constructors
DatasimDate(); // Default constructor = Date today
DatasimDate(const DatasimDate& d2); // Copy constructor
DatasimDate(const julTy& days); // Date from Julian days
DatasimDate(int days); // Date from Julian days
DatasimDate(int day, int month, int year); // Day, month, year

Date comparison operators are:

// Comparison functions
bool operator==(const DatasimDate& date2);
bool operator!=(const DatasimDate& date2);
bool operator>(const DatasimDate& date2);
bool operator<(const DatasimDate& date2);
bool operator>=(const DatasimDate& date2);
bool operator<=(const DatasimDate& date2);

Dates and Other Temporal Types 395

Adding and subtracting goes as follows:

DatasimDate operator-(int days);
DatasimDate operator-(const julTy& days);
DatasimDate operator++();
DatasimDate operator--();
DatasimDate operator+=(const julTy& days);
DatasimDate operator+=(int days);
DatasimDate operator-=(const julTy& days);
DatasimDate operator-=(int days);
DatasimDate add_months(long months);
DatasimDate add_years(long years);
DatasimDate sub_months(long months);
DatasimDate sub_years(long years);
DatasimDate add_period(julTy days,

julTy months = 0, const julTy years = 0);
DatasimDate sub_period(julTy days,

julTy months = 0, julTy years = 0);

We also have two functions for finding the number of days between two dates:

long difference (const DatasimDate& DatasimDate_2);
long operator - (const DatasimDate& d2);

Finally, we have conversion and output utilities:

// Conversion and output functions
string toString(string formatString = 0);

In this case the format string has the following form:

%D insert day (1..31) in 1 digit if possible, otherwise 2 digits
%DD insert day (1..31) in 2 digits, first digit may be 0
%M insert month (1..12) in 1 digit if possible, otherwise 2
%MM insert month (1..12) in 2 digits, first digit may be 0
%YY insert year number in 2 digits (year in century)
%YYYY insert full year number in 4 digits
any other character will be copied to the output string.
for example:
date d("31-1-1977");
char* str = d.toString("[%D]-[%MM]-[%YY]");

will result str to be:
"[31]-[01]-[77]"

void print();
friend ostream& operator << (ostream& os, const DATE& dat);

A2.3 THE TIME CLASS
We also provide a DatasimTime class that represents the time (number of seconds)
since midnight. The interface is similar to that of DatasimDate.

A2.4 EXTENSIONS
We can use the above classes directly when creating new classes and containers that need
temporal types. Furthermore, we can use them in different ways, for example:

396 Financial Instrument Pricing Using C++

• In combination with STL
• We can apply design patterns to them.

In the first case we envisage sets, lists and maps of dates with the corresponding algo-
rithms while we see many opportunities for creational, structural and behavioural patterns,
especially in applications that model interest rates, fixed income and the like. A discussion
of these topics is outside the scope of this book.

A2.5 A SIMPLE EXAMPLE
We finish with an example to show how to generate an array of dates. The source code is:

DatasimDate d1(1, 1, 92);
cout << "First DatasimDate: " << d1 << endl;
DatasimDate d2(1, 3, 92);
cout << "Second DatasimDate: " << d2 << endl;
DatasimDate tod; // today
cout << "Today is: " << tod << endl;

int diff = d2.difference(d1);
cout << "Difference in days is: " << diff << endl;

// Looping over numbers
DatasimDate fixed(1, 1, 94);
DatasimDate current(1, 1, 94);

int interval = 30;

for (int j = 0; j < 12; j++)
{

current = fixed - (j*interval);
cout << current << endl;

}

return 0;

}

The output from this file is:

First DatasimDate: 1/1/92
Second DatasimDate: 1/3/92
Today is: 4/1/2004
Difference in days is: 60
1/1/94
2/12/93
2/11/93
3/10/93
3/9/93
4/8/93
5/7/93
5/6/93
6/5/93
6/4/93
7/3/93
5/2/93

Remark: I ran this program on January 4, 2004.

References

Aho, A., Kernighan, B. and Weinberger, P. (1988) The AWK Programming Language. Addison-Wesley, Read-
ing, MA.

Alexander, C. (1979) The Timeless Way of Building. Oxford University Press.
Alexander, C., Ishikawa, S. and Silverstein, M. (1977) A Pattern Language. Oxford University Press.
Alexandrescu, I. (2002) Modern C++ Design. Addison-Wesley, Reading, MA.
Ayres, F. (1965) Theory and Problems of Modern Algebra. Schaum’s Outline Series. McGraw-Hill, New York.
Babushka, I., Banerjee, U. and Osborn, J. E. (2002) Survey of meshless and generalised finite element methods:

A unified approach. Working Paper.
Barraquand, J. and Pudet, T. (1996) Pricing of American path-dependent contingent claims. Mathematical

Finance, 6 (No. 1, January), 17–51.
Bhansali, V. (1998) Pricing and Managing Exotic and Hybrid Options. McGraw-Hill, Irwin Library Series,

New York.
Bobisud, L. (1968) Second-order linear parabolic equations with a small parameter. Arch. Rational Mech. Anal.,

27.
Breymann, U. (1998) Designing Components with the C++ STL. Addison-Wesley, Harlow, England.
Bronson, R. (1989) Theory and Problems of Matrix Operations. Schaum’s Outline Series. McGraw-Hill, New

York.
Buschmann, F. et al. (1996) Pattern-Oriented Software Architecture: A System of Patterns. John Wiley & Sons,

Chichester, UK (POSA 1996).
Ceponkus, A. and Hoodbhoy, F. (1999) Applied XML. John Wiley & Sons, New York.
Cooney, M. (1999) Benchmarking numerical solutions of European options to the Black–Scholes partial differ-

ential equation. MSc Thesis, Trinity College, Dublin, Ireland.
Cox, J. C. and Rubinstein, M. (1985) Options Markets. Prentice Hall, Englewood Cliffs, NJ.
Crank, J. and Nicolson, P. (1947) A practical method for numerical evaluation of solutions of partial differential

equations of the heat-conduction type. Proc. Cambridge Philos. Soc., 43, 50–67; re-published in: John Crank
80th birthday special issue, Adv. Comput. Math., 6 (1997), 207–226.

Cryer, C. (1979) Successive overrelaxation methods for solving linear complementarity problems arising from
free boundary value problems. Paper presented at a seminar held in Pavia (Italy) September–October, Rome.

Dahlquist, G. (1974) Numerical Methods. Prentice-Hall, Englewood Cliffs, NJ.
Dautray, R. and Lions, J. L. (1993) Mathematical Analysis and Numerical Methods for Science and Technology,

Volume 6. Springer-Verlag, Berlin.
de Allen, D. and Southwell, R. (1955) Relaxation methods applied to determining the motion, in two dimen-

sions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl. Math., 129–145.
Doolan, E. P. et al. (1980) Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole

Press, Dublin, Ireland.
Douglas, J. and Rachford, H. H. (1955) On the numerical solution of heat conduction equations in two and

three dimensions. Trans. Am. Math. Soc., 82, 421–439.
Duff, I., Erisman, A. and Reid, J. (1990) Direct Methods for Sparse Matrices. Clarendon Press, Oxford.
Duffy, D. (1977) Finite elements for mixed initial boundary value problems for hyperbolic systems of dissipative

type. MSc Thesis, Trinity College, Dublin, Ireland.
Duffy, D. (1980) Uniformly convergent difference schemes for problems with a small parameter in the leading

derivative. PhD Thesis, Trinity College, Dublin, Ireland.
Duffy, D. (1995) From Chaos to Classes: Software Development in C++. McGraw-Hill, London, UK.
Duffy, D. (2004a) Domain Architecture: Models and Architectures for UML Applications. John Wiley & Sons,

Chichester, UK.
Duffy, D. (2004b) Numerical Methods for Instrument Pricing. John Wiley & Sons, Chichester, UK.

398 References

Emel’yanov, K. V. (1975) A difference method for solving the third boundary value problem for a differential
equation with a small parameter in its leading derivative. Zh. Vychisl. Mat. mat. Fiz., 15 (6), 1466–1481.

Emel’yanov, K. V. (1978) A difference scheme for an ordinary differential equation with a small parameter.
Zh. Vychisl. Mat. mat. Fiz., 18 (5), 1146–1153.

Farrell, P. et al. (2000) Robust Computational Techniques for Boundary Layers. Chapman and Hall/CRC Bota
Raton.

FpML (2002) FpML Architecture Working Group Technical Note: Migration to XML Schema (see
http://www.fpml.org/spec/XMLSchemaRec).

FpML (2003) FpML Version 4.0 (see www.fpml.org).
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995) Design Patterns, Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA (GOF 1995).
Godunov, S. and Riabenki, V. S. (1987) Difference Schemes: An Introduction to the Underlying Theory. North-

Holland, Amsterdam.
Haug, E. (1998) The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York.
Hochstadt, H. (1964) Differential Equations. Dover Publications Inc., New York.
Hsu, H. (1997) Probability, Random Variables and Random Processes. Schaum’s Outline Series. McGraw-Hill,

New York.
Hull, J. (2000) Options, Futures and other Derivative Securities. Prentice-Hall, Englewood Cliffs, NJ.
Hunter, J. (1964) Number Theory. Oliver & Boyd, Edinburgh.
Il’in, A. M. (1969) Differencing scheme for a differential equation with a small parameter affecting the highest

derivative. Mat. Zametki, 6, 237–248.
Isaacson, E. and Keller, H. (1966) Analysis of Numerical Methods. John Wiley & Sons, New York.
Jäckel, P. (2002) Monte Carlo Methods in Finance. John Wiley & Sons, Chichester, UK.
Jackson, M. (1975) Principles of Program Design. Academic Press, London.
Keller, H. (1968) Numerical Methods for Boundary-Value Problems. Blaisdell Publishing Company, Waltham,

MA.
Keller, H. (1971) A new difference scheme for parabolic problems. In B. Hubbard (ed.), Numerical Solution

of Partial Differential Equations–II. Synspade.
Kitchenham, B. and Pfleeger, S. L. (1996) Software quality: The elusive target. IEEE Software, January.
Kloeden, P., Platen, E. and Schurz, H. (1994) Numerical Solution of SDE through Computer Experiments.

Springer, Berlin.
Levin, A. (2000) A two-factor model for default risk. Working Paper.
Lofton, T. (1997) Getting Started in Futures. John Wiley & Sons Inc., New York.
Marchuk, G. I. and Shaidurov, V. V. (1983) Difference Methods and their Extrapolations. Springer-Verlag,

New York.
Meyer, P. L. (1970) Introductory Probability and Statistical Applications. Addison-Wesley, Reading, MA.
Mirani, R. (2002) Application of Duffy’s finite difference method to barrier options. Working Paper, Datasim

BV.
Morton, K. (1996) Numerical Solution of Convection-Diffusion Equations. Chapman & Hall, London, UK.
Mun, J. (2002) Real Options Analysis. John Wiley & Sons, New Jersey.
Musser, D. R. and Saini, A. (1996) STL Tutorial and Reference Guide. Addison-Wesley, Reading, MA.
Peaceman, D. (1977) Numerical Reservoir Simulation. Elsevier.
Pilipović, D. (1998) Energy Risk. McGraw-Hill, New York.
Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. (1980) Numerical Recipes. Cambridge University

Press.
Richtmyer, R. D. and Morton, K. W. (1967) Difference Methods for Initial-Value Problems. Interscience Pub-

lishers (John Wiley & Sons), New York.
Rumbaugh, J. (1999) Unified Modeling Language Reference Manual. Addison-Wesley, Reading, MA.
Samarski, A. A. (1976) Some questions from the general theory of difference schemes. Trans. Amer. Math.

Soc., 105 (2).
Schuss, Z. (1980) Theory and Applications of Stochastic Differential Equations. John Wiley & Sons, New York.
Seydel, R. (2003) Tools for Computational Finance. Springer, Berlin.
Shephard, G. C. (1966) Vector Spaces of Finite Dimension. Oliver & Boyd, Edinburgh.
Skonnard, A. and Gudgin, M. (2002) Essential XML Quick Reference. Addison Wesley, Boston.
Smith, G. D. (1978) Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford

University Press.
Spiegel, M. (1959) Theory and Problems of Vector Analysis. Schaum’s Outline Series. McGraw-Hill, New York.
Spiegel, M. (1992) Theory and Problems of Statistics. Schaum’s Outline Series. McGraw-Hill, New York.
Steele, J. (2001) Stochastic Calculus and Financial Applications. Springer, New York.
Stoyan, G. (1979) Monotone difference schemes for diffusion–convection problems. ZAMM, 59, 361–372.
Strang, G. and Fix, G. (1973) An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, NJ.
Stroustrup, B. (1997) The C++ Programming Language (3rd edition). Addison-Wesley, Reading, MA.
Sun, Y. (1999) High order methods for evaluating convertible bonds. PhD Thesis, University of North Carolina.

References 399

Tavella, D. and Randall, C. (2000) Pricing Financial Instruments: The Finite Difference Method. John Wiley
& Sons, New York.

Thomas, J. W. (1998) Numerical Partial Differential Equations, Volume I: Finite Difference Methods. Springer,
New York.

Topper, J. (1998) Finite Element Modeling of Exotic Options. Internal Report, University of Hannover. ISSN
(0949)–(9962).

van Deventer, D. R. and Imai, K. (1997) Financial Risk Analytics. McGraw-Hill, Chicago.
Varga, R. S. (1962) Matrix Iterative Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ.
Wilmott, P. (1998) Derivatives. John Wiley & Sons, Chichester, UK.
Wilmott, P., Dewynne, J. and Howison, S. (1993) Option Pricing. Oxford Financial Press, UK.
Yanenko, N. N. (1971) The Method of Fractional Steps. Springer-Verlag, Berlin.

Index

3D surface diagrams, Excel 348
abstract classes, concepts 286, 325–7, 371–3,

376–8
Abstract Factory pattern, concepts 262–3, 272,

275–9
AbstractProductFactory class 276–9
Access 49
accuracy requirements, software quality 79
adaptor containers, background 21, 42–3, 45–6
add-ins

automation add-ins 358–73
COM add-ins 357–8, 367–73
concepts 356–73
Excel 356–73
types 357–8, 367–73
XLA 357
XLL 357

AddMenuItem function, COM add-ins 372–3
AddPropertySet 350–5
ADI see Alternating Direction Implicit
aggregate classes, concepts 52–7, 374–82
aggregation relationships

see also Whole–Part . . .
concepts 282–8, 374–5

Alexander, C. 261, 281, 296
algorithms 3–4, 6, 20–35, 43–4, 79, 234–6,

376–8
see also mutating . . .; non-mutating . . .

Alternating Direction Implicit 234–6
concepts 3–4, 6, 20–35, 43–4, 79, 234–6,

376–8
examples 33–5, 43–4, 376–8
Standard Template Library 20–35, 43–4
useful algorithms 43–4

Alternating Direction Implicit (ADI) 5–6, 94,
168, 225–44

Asian options 242–3
Black–Scholes models 228, 237–44
boundary conditions 232–9
C++ 234–6
concepts 5–6, 94, 168, 225–44
critique 228, 230, 236, 241
design issues 234–6
heat equations 226–36
historical background 227–8, 241

multidimensional partial differential equations
225–44

solution 234–6
American options 93–4, 102, 168, 171, 239,

343
see also options
concepts 93–4, 168, 171, 326–7, 343
definition 343

ANSI standards 64
appendices 383–96
application hierarchy, Bridge pattern 290–4
application level, layering concepts 4, 65–6
applications 1–4, 78–90, 212–24, 247–308

see also software
categories 3–4, 78–90
conversion activities 247–52, 347–55
design patterns 1–2, 5, 21, 59–60, 64,

103–5, 112–16, 212, 217, 247–8,
259–308

flexibility levels 3, 103–5, 109, 111–12,
190, 218, 248–60, 261–3, 296, 298,
302

presentation activities 247–52, 297, 347–55,
375, 380–2

registration activities 247–9, 258–9, 347–8,
352–5, 368–9

arithmetic averages, Asian options 237–9
arrays

see also vectors
associative arrays 63, 74–6, 356
boundary errors 80, 89, 97–9, 116
concepts 4, 9, 21, 24–7, 33–5, 63–90,

101–2, 114–16, 155–63, 218–19,
250–60, 396

creation 66–72, 250–60
dates 396
definition 66–8
examples 9, 25–7, 33–5, 66–72, 75–6,

101–2, 114–16, 218–24, 250–60, 396
Excel 252–8, 346–73
indexing preferences 66, 74, 114
libraries 63–77
max/min index values 67–76, 97–9, 142,

169–71, 367
printing functions 38–40, 69–70, 75–6,

250–60, 347–55, 380–2

402 Index

arrays (continued)
size constraints 66
standards 64
work arrays 218–19

ASCII files 212–13, 220, 223–4, 261–2, 315
Asian options 225, 237–9, 242–3, 296
assembly parts, Whole–Part patterns 287,

375–82
asset-or-nothing options 189–90
assignment operator (=) 15, 264, 386–7
association relationships, concepts 283–6
associative arrays/matrices, concepts 63, 74–6,

356
associative containers, concepts 21, 27–30,

40–3
asymmetric capped power call options 210–11,

221
asymmetric plain vanilla power call options

210–11
AT&T labs 383
ATL wizard 358–73
atomic functions, concepts 112–15, 155–63,

215–24
AtomicDFunction class 112–15, 155–63,

215–24
attribute lists and value types, Extensible Markup

Language 318–20, 330–45
attributes

Document Object Model 335–45
Extensible Markup Language 314–27,

330–45
options 9, 29–30, 36, 47–60, 111, 266–70,

284, 339–40, 342, 344–5, 383–93
automation add-ins, Excel 358–73
averages 78, 85, 121–2, 237–9
AWK language 74

Babushka, I. 178
backward sweep, LU decomposition 95–102,

162
Balayage method 98
banded matrices 36, 63, 66, 69, 93
barrier options 13–14, 178–80, 195–6,

210–24, 327, 342–5
see also exotic . . .

base classes, concepts 286, 325–7, 371–3,
376–8

Basic Linear Algebra Subprograms (BLAS),
concepts 78

basket options 225, 240–1, 326–7
bear markets 13, 16
bear spreads 374–8, 381
behavioural patterns 5, 260, 296–307, 338–45,

396
see also extension . . .; notification . . .;

variational . . .
concepts 5, 260, 296–307
examples 299–307, 338–45

Bermudan options 326–7
Bernoulli distribution 124–6

see also binomial . . .
beta 95–7
Bhansali, V. 225

bidirectional iterators, background 22, 30–3
binary associations, concepts 283–5
binary function, function objects 23, 106–11
binary options 179–80, 189–90, 327
binary searches 27, 33–5
binomial distribution 124–6

see also Bernoulli . . .
binomial method 1, 2–3, 36, 38, 124–6, 178,

182, 244, 383
black boxes 64, 91, 175–6, 235, 247, 262–3,

289
Black–Scholes models 2–5, 64, 78, 91–4, 102,

105, 131, 137–8, 143, 155, 158–61, 167,
175–244, 355

see also partial differential equations
Alternating Direction Implicit 228, 237–44
concepts 2–5, 64, 78, 91–4, 102, 105, 131,

137–8, 143, 158–61, 167, 175–202, 228,
235, 237–44, 355

equations 186–7, 235
exponentially fitted schemes 102, 137–8,

160, 179–80, 197, 199, 203–24, 241
finite difference method 182–202, 237–44
heat equations 190–1, 228
terminal conditions 188–9, 192–202, 240

BLAS see Basic Linear Algebra Subprograms
block SOR, iterative methods 167
block tridiagonal matrices, concepts 37–8, 93,

99–102, 164–7, 227–43
bonds 1, 285

see also fixed-income applications
booleans 14–15, 16, 51, 96, 106–8
Borland 20
bottom straddle, concepts 375–6
boundary conditions 97–9, 155, 156–7,

159–60, 161–2, 176, 182–91, 195–9, 206,
226–36, 239–40

boundary errors 80, 89, 97–9, 116
boundary layer, concepts 197
boundary value problems, concepts 4–5, 97–9,

155–63, 170–9, 182–91, 195–201,
212–24, 232–9, 355

Box method see Crank–Nicolson scheme
Box–Muller method 148–50
Bridge pattern, concepts 290–4
Bronson, R. 80–3
Brownian motion 109, 151
building blocks, concepts 3–4, 33, 36–46, 78
bull markets 13
bull spreads 282–3, 374–82
Buschmann, F. 2, 247, 261, 281, 286–7,

306–7, 375
butterfly spread 374–8, 381
BVPSolver class 162–3

C# 180, 279, 286, 296, 327, 335, 343, 347–8
C++

see also individual topics
advantages 2, 103–4, 180, 311, 343–4, 383
complexity problems 297
concepts 1–6, 9, 103–28, 180, 212–24,

261–79, 311, 334–45, 350, 383–93
display example 247–60, 375

Index 403

Document Object Model 334–45
Excel interfaces 224, 247–60, 279, 296,

305, 346–73, 380–2, 393
expertise development 5–6
Extensible Markup Language 302–5, 311,

328–30, 334–48
generic programming 9–19, 36, 112
interface concepts 224, 247–60, 262–3, 311,

334–73
iterative solutions 168–71, 219–20
main features 9, 383–93
overview 1–6, 180, 383
self-test 383–4
walk-through example 212–24

C 64, 103
CAD see Computer Aided Design
calculate function 113
call options 51–9, 210–11, 221, 290, 313,

342–5, 374–82
callable bonds 224
candlestick charts 13–14
canonical distribution classes 262
caps 324–7
CASE tools 290
cash flows 3, 36, 241, 272, 284
CD, source code 1, 6, 52, 54, 83, 121, 153,

162–3, 170, 190, 202, 211, 219, 224, 236,
298–9, 302, 307, 342, 383, 394

cdf see cumulative distribution function
cell data, Excel 252–60, 346–73, 380–2
centred divided differences

see also Crank–Nicolson . . .
concepts 157–9, 162, 179, 190–1, 192–204,

208, 222–4, 226–7, 234–9, 241–4, 355
Ceponkus, A. 321–2
CFL see Courant–Friedrichs–Lewy condition
char pointers 19
CharacterData interface, Document Object Model

335
characteristic direction, concepts 239
charts, Excel 250–8, 346–55, 380–2
chi-squared distribution 119

see also Gamma . . .
child elements, Extensible Markup Language

313–27, 331–45
Choice specifier, Extensible Markup Language

316–17, 330–1
chooser options

see also exotic . . .
concepts 57

Circle class 299, 333–4
classes 1–2, 3–4, 9–60, 63–77, 103–16,

117–28, 212–24, 247–95, 383–93
see also function . . .; template . . .
Abstract Factory pattern 262–3, 272, 275–9
aggregate classes 52–7, 374–82
assembly parts 287, 375–82
Bridge pattern 290–4
concepts 1–6, 9–19, 63–77, 104, 111–16,

261–80, 383–93
creational patterns 5, 260, 261–80, 350–5
date class 394–6
Factory pattern 262–3, 272–5

foundation classes 3–4, 6, 63
object links 9, 103–16, 261–80, 383–93
option trading strategies 374–82
overview 1–2, 3–4, 261–3
Singleton pattern 251–2, 262–70
statistical distributions 117–28
structural patterns 5, 260, 281–95
time class 36, 395

client code, concepts 89–90, 261–2, 290–4,
386–93

CMyExcelFunctions class 360–73
COC see cost of carry
code

see also software
background 1–11, 19–20, 313–19, 328–45
CD 1, 6, 52, 83, 121, 153, 162–3, 170, 190,

202, 211, 219, 224, 236, 298–9, 302, 307,
342, 383, 394

client code 89–90, 261–2, 290–4, 386–93
interpretation/compilation contrasts 357, 392
optimisation issues 6, 87, 213–14, 296
syntax 19–20, 313–19, 328–45

code files, template classes 11–16
cognitive distance, concepts 235
cognitive overload 36
collection members, Whole–Part patterns 287
COM see Component Object Model
combinations, concepts 374–8
Command pattern, concepts 106, 215, 298
CommandBarButton object 369–73
CommandBarButtonEvents COM class 371–3
comment lines, Extensible Markup Language

314–15
comparison functions 34, 45, 87, 108
compatibility problems, heat equations 187–8,

198
compilation/interpretation contrasts, code 357,

392
complex/simple data types, XML Schema

330–4
complexity problems 290, 297
Component Object Model (COM) 335–8,

346–55, 356–73
components, Financial products Markup

Language 324–5
Composite pattern, concepts 288–9, 374–5
composite vectors, concepts 101
composition techniques, concepts 57–9
composition type, aggregation relationships

287–8, 374–5
compound options, concepts 283
computational finance, concepts 1, 175–81
Computer Aided Design (CAD) 271–2
COMUtils class 366–7, 368–73
concrete classes, definition 286
conditionally stable explicit finite difference

schemes, concepts 186–7, 227, 229
conjugate gradient method, iterative solutions

93, 164, 167
const type, examples 25–33, 38–9, 51–9, 67,

72–5, 85–7, 113, 118, 123–6, 140–1,
214–17, 220–4, 250, 256, 292, 299–300,
339–40, 382

404 Index

constructors 11–15, 24, 50–4, 66–9, 118–19,
123, 169, 215–17, 261–4, 270–5, 303,
342, 349, 385–93

container contents, Whole–Part patterns 287
containers

see also adaptor . . .; associative . . .; sequence
. . .

concepts 20–35, 36–46, 66, 81–4, 338–9,
395–6

recursive classes 36–7
Standard Template Library 20–35, 43–6
useful algorithms 43–4

contingent premium options 189–90
continuous functions, mapping types 110,

140–3
continuous probability distributions, concepts

63, 117–28, 146–7, 277–9
continuous sample space, concepts 145, 177–8,

205–8, 238–9
continuous-state processes, random processes

150–1
continuous-time processes, random processes

150–1
convection-dominated problems, concepts

203–11, 228, 243
convection–diffusion equations

see also Black–Scholes models
concepts 4, 5, 102, 160, 180, 182–3, 195–9,

203–11, 217–18, 225–44
convergence issues 136–8, 166–70, 207–9
conversion activities, applications 247–52,

347–55
convertible bonds 225, 239
Cooney, M. 203
copy concepts 15, 21–3, 41–3, 50–1, 68–9,

270–2
core processes, activities 1, 80–4, 351–4
cost of carry (COC) 52–7, 111, 268–9,

339–40, 385–93
CoUninitialise function 337, 338
Courant, R. 180, 210
Courant–Friedrichs–Lewy condition (CFL) 210
covariance 88
Crank–Nicolson scheme

concepts 2–5, 102, 134–40, 179–80,
185–6, 189, 191–9, 203, 208, 211, 226–7,
243

critique 195–9, 211
failings 2, 4, 102, 138, 189, 195, 203, 208,

211
output examples 211
spurious oscillation problems 102, 136, 138,

160–1, 189, 195–201, 203
theta scheme 185

CreateChart function 250–8, 349–50, 380–2
CreateElement function 336, 338
CreateInstance function 336, 337–8
creational patterns

see also Abstract Factory . . .; Prototype . . .;
Factory . . .; Singleton . . .

concepts 5, 260, 261–80, 340, 350, 396
cross-derivative terms, approximations 231–2,

237–44

Crout’s method 93
Cryer, C.W. 94, 164, 167
cumulative distribution function (cdf), concepts

17–18, 117–24, 146–7, 247–60, 351–5
currency

binary associations 284
FX resetable cross-currency swaps

324
curse of dimensionality, concepts 225–6
curve-fitting operations 78

Dahlquist, G. 136, 166
Data Definition Language (DDL) 315
data structures 3, 9, 30, 36–46, 63–77,

210–11, 282–95, 328–9, 343, 394–6
see also arrays; matrices; vectors

databases 49, 53, 59, 261–2, 297, 355
Datasim 162, 343, 355, 383–4, 388, 394–6
date class, concepts 394–6
date manipulations 3
date-and-time types, XML Schema 328–9
Dautray, R. 209
DDL see Data Definition Language
debug facilitation, software quality 3, 11, 82–3
decision support systems 3
decision tables 76
Decorator pattern 76
default virtual functions

see also polymorphism
concepts 117–19, 128, 272

delegation mechanism, concepts 5, 21, 57–9,
112

delta 2, 5, 52–7, 111, 138, 160–1, 180, 189,
198, 201, 203, 210–24, 268–9, 305–6,
333, 378–82

concepts 378–82
hedging 378–9

Deming, W.E. 282
Demming, R. 356–73
deployment issues 311–82
derivatives

see also futures; options; swaps
approximations 160–1, 195–7, 231–4,

237–44
concepts 283–4, 324–7, 342–5, 374–82

derived classes, concepts 286
design patterns 1–2, 5, 21, 59–60, 64, 103–5,

112–16, 212, 217, 247–8, 259–308, 396
see also behavioural . . .; creational . . .;

structural . . .
concepts 1–2, 5, 21, 59–60, 106, 212, 215,

217, 247–8, 259–308
historical background 261–3

destructors 13–15, 51–4, 169, 263–70, 303,
385–93

DFunction class 215–17
diagonal matrices, concepts 37–8
diagonally-dominant matrices, concepts 101–2
diagrammatic output, Excel 253–4, 348–55,

380–2
dialog boxes 343, 347–8, 364
difference operations, sets 40–3

Index 405

differential equations 1–2, 4–6, 111, 131–71,
180, 201, 301–2

see also ordinary . . .; partial . . .; stochastic . . .
digital options see binary . . .
direct solutions, numeric linear algebra 91,

93–4, 164, 168, 177
Dirichlet boundary conditions 97–9, 156–7,

159, 161–2, 176, 182–6, 195–9, 226–36,
239–40, 243

discontinuous payoff functions 2, 182, 187–9,
197–8

discount curves 36
discrete functions, mapping types 110, 140–3
discrete maximum principle, concepts 206–8
discrete probability distributions, concepts 63,

117–28, 146–7, 277–9
discrete sample space, concepts 145, 177–8,

205–8, 238–9
discrete-state processes, random processes

150–1
discrete-time processes, random processes

150–1
discretisation uses, finite difference method

133–7, 140–4, 167–8, 177–9, 182,
190–3, 196, 205–8, 212–26, 242–3

disjoint sets 40–3
dispersion measures see measures of dispersion
displays

see also printing . . .
C++ example 247–60, 375, 380–2
design patterns 247–8, 259–60
Excel 247–60, 346–55, 375, 380–2

divided differences, concepts 133–4, 157–9,
162, 179, 190–1, 192–204, 208, 222–4,
226–7, 234–9, 241–4, 355

dividends 220–4, 344–5
DllRegisterServer function 369
DLLs 3, 336, 337, 357, 369
DllUnRegisterServer function 369
document interface, Document Object Model

335–45
Document Object Model (DOM), concepts

303–5, 328, 334–45
Document Type Definition (DTD)

see also Extensible Markup Language
advantages 315, 320, 334
concepts 311, 315–27, 328, 331, 334, 345
entities 319
examples 315–20, 325–7, 331
limitations 320, 328, 334, 345
multiplicity option 317, 331–2
syntax 315–19, 328, 331
uses 315, 320, 328
validation issues 319–20
XML schema 334

documentation needs, software 2, 64, 265–6,
272–6, 279, 285, 297, 338–9, 356

documents, Extensible Markup Language
312–13, 314–15, 328–45

DOM see Document Object Model
domain concepts 109–11, 145–7, 237–9
Doolan, E.P. 204
double barrier call options 210–11

double dispatch mechanism 341
double sweep method, Godunov 97–9, 162,

192, 212–24, 229–30, 234–6, 242, 290
doubles, examples 9–11, 26–33, 44, 50–9,

67–76, 86–9, 97, 104, 110–16, 120–2,
126, 141–50, 214–60, 268–70, 274–5,
292–4, 304–5, 329–30, 339, 344–5,
351–4, 361–7, 376–82, 386–93

DoubleSweep class 212–24
Douglas, J. 228–9
down-and-in put options 343–5
down-and-out put options 343–5
drand48 function 148
drift 180, 208–9, 220–4
DTD see Document Type Definition
Duffy, D. 1, 6, 102, 133, 137–8, 155, 160, 180,

197, 199–201, 204–6, 209, 218, 239, 241,
243, 248, 258, 281, 285, 292, 297, 356–73

Duffy, I. 168
dynamic associative arrays

see also maps
concepts 29–30

efficiency characteristics, software quality 3,
49, 65, 79–80, 213–14, 219–20, 296, 356,
391–2

eigenvalue analysis 78, 83–4, 102
element types, Extensible Markup Language

315–17, 330–1
elementary events, concepts 145–7
elements

Document Object Model 335–45
Extensible Markup Language 312–27,

328–45
XML Schema 329–34

elliptic PDEs 177
embedded data structures 30, 67, 113
Emel’yanov, K.V. 161
encapsulation concepts 47–8, 103–5, 112–14,

117, 215–18, 297, 301–5, 356, 383–6,
394–6

entities
Extensible Markup Language 319, 328–45
function objects 106, 112–16

EntityThing class 338–45
EntityVisitor class 302–3, 340–5
equalities 50–1, 78, 84, 87, 102, 108, 164,

196–7, 207–8
equity derivatives 324–7

see also derivatives
ergodic processes, random processes 151
Euclidean norm 81–3, 97
Euler difference schemes, concepts 134–7, 139,

142–4, 152–4, 179–80, 182–91, 192–4,
257–8

European options 9–10, 29–30, 51–60, 189,
198, 266–70, 274–5, 313, 339–45, 377–8,
384–93

see also options
attributes 9, 29–30, 51–60, 266–70
definition 343
examples 9–10, 29–30, 51–60, 266–70,

274–5, 313, 339–45, 377–8, 384–93

406 Index

European options (continued)
executive options 57–8
Extensible Markup Language 313, 326–7,

339–45
Financial products Markup Language 326–7
maps 29–30
payoff functions 189, 198, 343, 377–82
template classes 9–10, 266–70

events, concepts 145–7, 370–3
Excel 5, 49, 59, 65, 74–6, 162, 224, 247–60,

270, 279, 296–7, 305, 346–73, 380–2,
393

add-ins 356–73
advanced topics 356–82
application life-cycle 247–52, 348–9
automation add-ins 358–73
basic data 247–9, 347–55
C++ interfaces 224, 247–60, 279, 296, 305,

346–73, 380–2, 393
cell data 252–60, 346–73, 380–2
charts 250–8, 346–55, 380–2
concepts 247–60, 279, 296–7, 305, 346–73,

380–2
converted data 247–52, 347–55
core processes 351–5
data sources 247–52, 347–55
design issues 355–73
diagrammatic output 253–4, 348–55,

380–2
display examples 247–60, 346–55, 375,

380–2
documentation shortfalls 356
event sinks 370–3
examples 247–60, 349–73, 380–2
Excel data sources 354–5
Extensible Markup Language 347–8, 352,

373
financial engineering 346–73
finite difference method 252–3, 255–8, 279,

382
future trends 373
initial value problems 255–8
matrices 252–8, 346–55
presentation activities 247–52, 347–55, 375,

380–2
property sets 258–60, 350–5
ranges 346–7, 364–7
registration activities 247–9, 347–8, 352–5,

368–9
Singleton pattern 251–2, 269–70
startup processes 348–9
technical details 348–55
toggle options 349
Tools/Add-ins menu 357–8, 361, 369, 372
UML model 247–8, 346–7
vectors 247–60, 348–55, 366–7, 380–2
workbooks 346–57, 373
worksheets 346–55, 358, 362–7
XP 358, 364

ExcelDriver class 250–60, 269–70, 348–55,
380–2

ExcelRangeToVector function 367
exception handling 79–80, 84, 88–90

executive options
see also exotic . . .
concepts 57–9, 274–5

exercise date, option definitions 343
exercise price, definition 343
exotic options

see also barrier . . .; chooser . . .; executive . . .;
forward start . . .

concepts 13–14, 47, 57–60, 189–91,
210–11, 343–5, 378–9

definitions 343
examples 57–9, 187–90, 210–24, 272,

343–5
exponentially fitted schemes 210–24,

242–3, 378
payoff functions 189–91, 210–11, 343–5
types 57, 178

expected values, concepts 117–28
experiments, concepts 145–7
expiry date, option definitions 343
explicit Euler difference scheme, concepts

134–7, 139, 142–4, 152–4, 179–80,
182–91, 226–7, 257–8

explicit finite difference schemes
Black–Scholes models 182–91, 242–3,

257–8
concepts 4–5, 134–7, 139, 142–4, 152–4,

179, 182–91, 226–36, 242–3, 257–8
implementation 190
theta scheme 185

explicit time marching, exponentially fitted
schemes 209–10

explicit upwind schemes, concepts 210, 242–3
exponential distribution 119, 123–4

see also Gamma . . .
exponentially fitted schemes

advantages 208
Black–Scholes models 102, 137–8, 160,

179–80, 197, 199, 203–24, 241–3
concepts 160, 179–80, 203–24, 241–3, 378
exotic options 210–24, 242–3, 378
explicit time marching 209–10
parabolic problems 205–8, 212–24
two-point boundary value problems 160,

179–80, 203–11
walk-through example 212–24
zero volatilities 208–9

Extensible Markup Language (XML)
see also Document Type Definition
advanced topics 328–45
advantages 311–12
attributes 314–27, 330–45
background 5, 59, 65, 224, 261–2, 279, 296,

302–5, 311–45
barrier options 342–5
C++ 302–5, 311, 328–30, 334–48
comment lines 314–15
concepts 311–45
Document Object Model 303–5, 328,

334–45
documents 312–13, 314–15, 328–45
elements 312–27, 328–45
examples 313–27, 329–45

Index 407

Excel 347–8, 352, 373
files 312–13
financial engineering 313, 324–7, 333–4,

338–45
Financial products Markup Language 5, 320,

324–7, 334, 343
historical background 312
Internet 312, 320–7
limitations 320
namespaces 321–4, 329–30
options 313, 324–7, 338–45
overview 5, 296, 302–5, 311–15
parser 335–8
programming aspects 328–45
property sets 338–45, 350
quotes 314–15
readers 303–5, 338–45
royalties 311
Schema 328–34, 373
structure 312–15
syntax 313–19, 328–45
validation issues 319–20, 331–4
Visitor pattern 302–5, 328, 338–45
writers 303–5, 338–45

Extensible Stylesheet Language Transformation
(XSLT), concepts 320–3

extension behavioural patterns
see also Visitor . . .
concepts 298, 301–5, 328, 338–45

extension potential, concepts 248
extrapolated Euler scheme 180
extrapolation concepts 78, 139–40, 153–4,

158, 180, 201
extremum operations, vectors 78

Façade pattern, concepts 289–90
factorials 126
Factory pattern, concepts 262–3, 272–9
Farrell, P. 102, 158, 196, 206
fault-tolerance properties 79–80
FDM see finite difference method
FEM see finite element method
FIFO see First In First Out
files, Extensible Markup Language 312–13
filled diamonds, composition relationships

287–8
FILO see First In Last Out
financial derivatives see derivatives
financial engineering 1–6, 35–46, 64–5,

108–9, 164, 175–81, 237–44, 313, 324–7,
333–73, 383

Abstract Factory pattern 279
aggregation relationships 283, 374–5
behavioural patterns 296–7, 299–307
Bridge pattern 290
Composite pattern 289
design patterns 259–308
Excel 346–73
Extensible Markup Language 313, 324–7,

333–4, 338–45
Factory pattern 274–5
function objects 108–9

overview 1–2, 35, 36–46, 64–5, 108–9,
164, 175–81, 383

Property pattern 6, 47–60
Prototype pattern 271–2
Singleton pattern 269–70
Standard Template Library 35, 36–46,

108–9
two-factor models 237–44

financial instruments
see also derivatives
overview 1–6, 35, 46

financial models, activities 1
Financial products Markup Language (FpML)

5, 320, 324–7, 334, 343, 350
concepts 5, 320, 324–7, 334, 343, 350
XML Schemas 334

find concepts, non-mutating algorithms 21–3
finite difference method (FDM) 1–3, 4–5, 38,

64, 78, 91, 93, 102, 116, 131–71,
175–244, 255–8, 279, 290

see also explicit . . .; implicit . . .
Abstract Factory pattern 279
accuracy improvements 139–40
background 1–3, 4–5, 38, 64, 78, 91, 93,

102, 131–54, 155–63, 175–244, 255–8,
279, 290

Black–Scholes models 182–202, 237–44
C++ steps 140–4, 162–3, 180, 212–24,

252–3, 255–8
common schemes 134–5, 152–4, 179
concepts 1–3, 4–5, 38, 64, 78, 91, 93, 102,

131–54, 155–63, 175–81, 182–202, 244,
279, 290

convection-dominated problems 203–11,
228, 243

critique 244
discretisation uses 133–7, 140–4, 167–8,

177–9, 182, 190–3, 196, 205–8, 212–26,
242–3

Excel 252–3, 255–8, 279, 382
extrapolation techniques 139–40, 153–4,

158, 180, 201
initial conditions 177–8, 187–90, 193, 198,

255–8
mesh points 133–4, 137, 158, 162, 177–9,

183–6, 193–201, 203–24, 226–36
multidimensional diffusion equations

225–44
one-factor problems 2, 4–5, 38, 91, 94,

152–4, 179–224, 244
overview 1–3, 4–5, 38, 91, 131–44, 244
predictor–corrector method 138–9, 142–3,

153, 191, 232, 257–8
reading material 180
special schemes 137–8, 160, 179–80,

203–24
stability issues 136–7, 198–9, 203–11, 227,

229, 237, 244
stochastic differential equations 145, 151–4,

239
theoretical issues 136–7, 175–81
two-factor problems 2, 4–5, 38, 91, 94, 105,

179–80, 195, 225–44

408 Index

finite difference method (FDM) (continued)
two-point boundary value problems 155–63,

170–1, 182–91, 203–11
walk-through example 212–24

finite element method (FEM), concepts 92–3,
176, 177–8, 206–7, 244, 290

finite volume approximation methods, concepts
178, 241

First In First Out (FIFO) 45
First In Last Out (FILO) 45
first-class objects, concepts 103, 105, 112
first-order systems, block tridiagonal matrices

99–100
FIX 5
Fix, G. 191, 240
fixed-income applications 241

see also bonds; interest-rate products
flexibility levels, applications 3, 103–5, 109,

111–12, 190, 218, 248–60, 261–3, 296,
298, 302

flexible attributes, options 36
floats, examples 10–11
Fokker–Planck equation 195
Fortran 66, 78, 126
forward iterators 21–2, 30–3
forward start options

see also exotic . . .
concepts 57, 326–7

forward sweep, LU decomposition 95–102
foundation classes, concepts 3–4, 6, 63
Fourier, J.B.J. 1, 2–3, 180
Fourier transform methods 1, 2–3, 180
fractional step methods see splitting methods
Frobenius norm 82–4
full matrices, concepts 37–8, 39–40, 63, 66,

69, 92–3, 290
full signature, concepts 117–18
fully implicit scheme

see also implicit Euler . . .
concepts 192–4, 226–7, 242–3

function classes, creation 111–16, 215–24,
247–52, 272

function objects (functors)
see also binary . . .; generator predicate; unary

. . .
concepts 21, 23, 103, 106–11, 298
examples 106–11

function pointers, concepts 103–6, 109, 140–1,
217, 270, 275–9, 348–55

function templates
concepts 9, 11–12, 16–19, 78–90, 106–16
examples 16–19, 78–90, 111–16

function types, concepts 109–11, 214–15
functionality characteristics, software quality 3,

49, 296, 340–1, 391–2
functions 9, 11–12, 16–19, 78–90, 103–16,

212–24, 249–60, 364–7
arrays 114–16
C++ modelling 103–16, 212–24, 249–60
mappings 109–11, 140–3, 175–6
options pricing 111, 212–24, 272,

383–93
random variables 145–54

relations 109–11
types 109–11, 214–15

functors see function objects
futures 283–5

see also derivatives
fuzzy sets 109
FX resetable cross-currency swaps 324

gamma 52–7, 95–7, 111, 119, 160, 180, 189,
198, 211–24, 261–3, 268–9

Gamma distribution, concepts 119, 122–4, 265
Gamma, E. 2, 5, 47, 49, 60, 76, 103, 106, 109,

116, 215, 218, 247, 261–3, 272–4, 281,
288–90, 297–8, 302, 314, 328, 339, 341,
348, 376, 393

Gauss, C.F. 180
Gaussian distribution

concepts 17–18, 119, 121–2, 147, 151,
238–9, 247–60, 269, 351–5

examples 121–2, 247–60, 269, 351–5
Gaussian elimination, full matrices 93
Gauss–Seidel method, iterative solutions 93,

164, 166, 168–9
GDI 297, 393
generalisation relationships (gen/spec), concepts

286
generalised Wiener process, concepts 152
generator predicate, function objects 21, 23,

106–11
generic design patterns 1–2
generic programming, concepts 9–19, 20, 36,

112
geometric averages, Asian options 237–9
geometric Brownian motion, concepts 152
geometric distribution

see also Pascal . . .
concepts 124, 126–7

geometric-mean function, concepts 85
get functions 48–9, 66, 73, 113
GetPropertySet 350–5
ghost points, boundary conditions 155, 159–60,

197–9
‘glorified pointers’ 21–2
GNU compiler 20
gnuplot package 224
Godunov’s double sweep method, concepts

97–9, 162, 192, 212–24, 229–30, 234–6,
242, 290

GOF 5, 262, 281, 297, 302, 307, 339
gold-plating 162
Graphical User Interfaces (GUI) 289, 297, 352
Greeks, overview 5
Group specifier, Extensible Markup Language

316–17, 330–1
Gudgin, M. 328
GUI see Graphical User Interfaces

half-products, concepts 3–4
harmonic-mean function, concepts 85
Haug, E. 42, 49, 57, 121, 210–11, 249, 274,

283–4, 343, 385, 391–2
header files 11–16, 112–13, 169, 384, 386–8
heap, concepts 262–3

Index 409

heat equations
see also one-dimensional . . .;

three-dimensional . . .; two-dimensional . . .
concepts 4–6, 179, 182–91, 226–36
examples 183–7, 226–36
historical background 182–3

hedging applications 203, 305–7, 333, 374–82
high-flexibility level, applications 3
historical volatility, concepts 88
Hochstadt, H. 132
holistic views 175
Hoodbhoy, F. 321–2
Hsu, H. 147, 150
HTML 320–3
Hull, J. 2, 88, 122, 342, 374–5, 377–8, 381–2
hyper-geometric distribution, concepts 124
hyperbolic PDEs 177, 188, 197, 204, 210–11,

243

IBM 20
IBVPs see initial boundary value problems
identifiers, Extensible Markup Language

318–19, 330–2
IDispatch interface, automation add-ins 361,

368–9
IdispEventImpl base class 371–3
IDTExtensibility2 interface, COM add-ins

367–70
Il’in, A.M. 204
implementation hierarchy, Bridge pattern

290–4
implicit Euler difference scheme, concepts

134–40, 153–4, 179–80, 182–91, 192–4,
226–7, 257–8

implicit finite difference schemes
see also Crank–Nicolson . . .; fully . . .; Keller

box . . .
concepts 4–5, 134–40, 153–4, 179,

182–91, 192–202, 206, 209, 226–36, 242,
257–8

types 192–202, 209, 226–7
implicit upwind schemes, concepts 209, 242–3
IMSL 64
IMyExcelFunctions interface 364–5, 368
in barrier options, concepts 343–5
independent increments, random processes 151,

153
independent processes, random processes

150–1
indexing operator 25–7, 29, 66, 74, 81–4,

114–16, 169–71
inequalities 87, 102, 108, 164, 168, 171,

196–7, 207–8
information hiding principle, concepts 82, 117,

175–6, 220, 334–5
inheritors 5, 60, 103–5, 117, 124, 262, 271, 286
inhomogeneous forcing term, concepts 132
initial boundary value problems (IBVPs),

concepts 177–8, 183–6, 195–201,
205–8, 212–24, 228, 355

initial value problems (IVPs) 131–44, 151–5,
176, 179–80, 187–90, 195–201, 205–8,
212–24, 228, 255–8, 382

C++ steps 140–4, 212–24, 255–8, 382
concepts 131–44, 255–8
definition 132
examples 132–44, 212–24, 255–8, 382
Excel 255–8
non-linear scalar problems 138–9, 143, 153
predictor–corrector methods 138–9, 142–3,

153, 257–8
scalar linear problems 132–8, 140–4,

151–4, 255–8, 382
inner product, concepts 43–4, 66, 72, 81–4
input iterators 21–2
input mechanisms, applications 247–52
instantiated template classes

see also template classes
concepts 9–13, 15–16, 19, 26–7, 114, 117,

212–24, 248, 263–5, 277–9
instrument life cycle, concepts 1, 175–81
integers, concepts 9–10
integral calculus 2, 4, 100
integration constants, two-point boundary value

problems 156–7
integration factors 132
integration operations, function templates 17,

111
interest rates 3, 131, 152, 220–4, 239–40,

268–9, 284, 339–45, 385–93
caps 324–7
convertible bonds 239
curves 3
floors 324–7
swaps 284–5, 324–7
swaptions 324–7
term structure 152, 241

interest-rate modelling problems 131, 231–2
interest-rate products 1, 152, 224, 241
interfaces

Abstract Factory pattern 262–3, 275–9
concepts 50–1, 105, 118–24, 224, 247–60,

262–5, 279–88, 296, 302–5, 311, 328–30,
334–73

Excel 224, 247–60, 279, 296–7, 305,
346–73, 380–2, 393

Extensible Markup Language 5, 59, 65, 224,
261–2, 279, 296, 302–5, 311, 328–30,
334–48

Factory pattern 262–3, 272–5
Whole–Part patterns 287–8

Internet 312, 320–7
interoperability requirements

Excel 259, 350–73
libraries 65
SimplePropertySet class 259, 350–5

interpolation operations, function templates 17,
111

interpretation/compilation contrasts, code 357,
392

intersection operations, sets 40–3
inverse, matrices 83–4, 92, 102, 134, 169, 179,

207
iostream library 38–9, 56, 247–52, 256–8,

260, 348, 354

410 Index

ISO 9126 quality characteristics 3, 80, 180,
391–2

ISO standards 3, 64, 80, 180, 312, 391–2
iterative solutions, concepts 91, 93–4, 164–71,

177, 219–20, 290
Iterator pattern, concepts 297–301
iterators, concepts 20–35, 42–3, 54, 66,

297–301
Ito’s lemma 241
IVPs see initial value problems

Jäckel, P. 33
Jackson, M. 214
Jacobi method, iterative solutions 93, 164–5,

169
Java 180, 279, 286, 296, 311, 327, 335
JavaScript 335
Journal of Object Oriented Programming (JOOP)

287
jump rates, executive options 57–9, 274–5
jump-diffusion processes 125, 198
‘junk’ functions 48

Keller Box scheme, concepts 91, 161, 180,
199–201, 378

keys, containers 21, 27–30
knockin options 327, 343–5
knockout options 327, 343–5
Knuth algorithms 23
kurtosis functions 78, 86–7

Laplace, P.S. 180
lattice methods 1, 38, 182

see also binomial method
layering concepts, software 3–4, 65–6
LCPs see Linear Complementarity Problems
learnability requirements, software quality 80
Levin, A. 241
libraries 1–10, 38–9, 56, 64–77, 79–90, 117,

128, 247–52, 256–8, 311, 335–8, 346–55,
356–73

see also Standard Template Library
iostream library 38–9, 56, 247–52, 256–8,

348, 354
layering concepts 3–4, 65–6
overview 1–2

line diagrams, Excel 253–4, 348, 380–2
Linear Complementarity Problems (LCPs)

see also Projected SOR method
concepts 164, 168

linear congruential generators
see also random number . . .
concepts 148

linear systems of equations 63, 73, 91–102,
164–71, 178, 192–202, 218–24, 227,
234–6

see also numeric linear algebra
linear TPBVPs, concepts 156–7
linearity boundary conditions, concepts 155,

157, 159–60, 176, 195–9, 232–4
Linux 20, 65, 148, 224
Lions, J.L. 209

lists, concepts 3–4, 9, 21, 24–7, 37, 52–7,
348–55

locally one-dimensional methods see splitting
methods

lognormal distribution, concepts 119, 122, 238
long positions, definition 343
low-flexibility level, applications 3
lower triangular matrices

see also LU decomposition
concepts 37–8, 91, 93–102, 165

LU decomposition, concepts 63, 91, 93–102,
158, 162, 164–5, 168, 192, 229, 234–6,
242, 290

M-matrices, concepts 102
maintainability characteristics, software quality

3, 11, 49, 65, 87, 219–20, 297, 392, 393
many-to-many relationships, concepts 283–4
Maple 1, 64
mappings, functions 109–11, 140–3, 175–6
maps, background 21, 27, 29–30
Marchuk, G.I. 140
Markov chains 134, 150–1
mathematical algorithms, C++ code 79, 99,

103–16
MathML 320
Matlab 1
matrices 3–4, 6, 37–40, 46, 63–102, 158, 162,

164, 252–8, 290, 346–55
see also LU decomposition; numeric linear

algebra
associative matrices 63, 74–6, 356
background 3–4, 6, 37–40, 46, 63–102,

252–8, 290
concepts 17, 27, 37–40, 46, 63–90, 91–102,

178, 218–24, 252–8, 290
creation 66–72
definition 68–9
descriptive detail 68–9
details 66–72
diagonally-dominant matrices 101–2
direct solutions 91, 93–4, 164, 168, 177
examples 37–40, 66–76, 80, 82–4, 94–102,

254–8, 346–55
Excel 252–8, 346–73
internal structure 37–40
inverse 83–4, 92, 102, 134, 169, 179, 207
iterative solutions 91, 93–4, 164–71, 177,

219–20, 290
libraries 63–77
M-matrices, concepts 102
max/min index values 68–76, 97–9, 142,

169–71, 367
memory issues 92–3
multiplication 73–4
non-zero elements 37–8, 92–3
norms 78, 80, 82–4, 97
output mechanisms 38–40, 247–52
positive-definite matrices 101–2
printing functions 38–40, 69–72, 75–6, 78,

247–60, 347–55, 380–2
properties 78–90
solution conditions 101–2

Index 411

sparse matrices 36–8, 65, 66, 92–4, 164–8,
290

specialised operations 78–90
standards 64
structure types 37–8, 65, 91–102, 164–8,

290
vectors 73–4, 83–4, 92–3
zero elements 37–8, 92–3

matrix algebra 2, 4, 33, 37–8, 66, 78, 91–102,
164–71, 178, 192–202, 218–24, 227

matrix inequalities, American options 102, 168,
171

matrix solvers 92
maturity, option definitions 343
max, non-mutating algorithms 21–3
mean, concepts 78, 85, 121–2, 239
mean-deviation function, concepts 86
measures of central tendency, concepts 85–6
measures of dispersion, concepts 78, 86–7
mechanisms, concepts 3–4, 10–11, 17, 38–40,

247–52
Mediator pattern, concepts 297–8, 305–7
medium-flexibility level, applications 3
memory issues, matrices 92–3
merge, mutating algorithms 21–3, 33–5
mesh points, finite difference method 133–4,

137, 158, 162, 177–9, 183–6, 193–201,
203–24, 226–36

meshless approximation methods, concepts
178–9

message-passing metaphor, concepts 390–1
meta-class aspects, template classes 11, 19
method of lines (MOL), concepts 144, 179,

190–1
Meyer, P.L. 117, 123
MFC graphics library 311
Microsoft 5, 20, 49, 59, 65, 74, 76, 148–50,

162, 296–7, 303, 335–8, 346, 357, 364,
367

MidpointRule class 291–4
Milstein scheme, concepts 153–4
min, non-mutating algorithms 21–3
min function template 16–17
Mirani, R. 210
MISCFUN function 126
Model-View-Controller pattern (MVC), concepts

306–7
modelling, overview 1–6, 103–16, 188–9, 201
modifiers, definition 385
MOL see method of lines
moments, skewness and kurtosis functions,

concepts 78, 86–7
Monte Carlo simulation methods 1, 2–3, 33,

211, 290, 296, 383
Morton, K. 176–8, 180, 187, 195, 196, 199,

203, 206
multi-asset options 225
multi-factor problems, finite difference method

2, 4–5, 38, 91, 137–8, 143, 167–8, 225,
237–44, 355

multi-step method, finite difference method 134
multidimensional interest rate models 225
multidimensional PDEs 225–44

multimaps, associative containers 21, 27–30
multiplicity option, Extensible Markup Language

317, 331–4
multisets, associative containers 21, 27–30
mutating algorithms, background 21–3
MVC see Model-View-Controller pattern
MyAtlExcelAddin project 358–71
MyConfigurator class 276–9
MyExcelFunctions class 359–67
MyPI function, automation add-ins 361–3

name-and-string types, XML Schema 329
namespaces, Extensible Markup Language

321–4, 329–30
negative inverse, matrices 102
nested elements, Extensible Markup Language

312–27, 331, 339
nested objects

see also Composite pattern
concepts 288–9

nested vectors, concepts 101, 223–4
nesting classes, concepts 36–7, 114
Neumann boundary conditions, concepts

156–7, 159, 176, 197–9, 206, 232–4, 240
Newton’s methods 138–9, 180
Newton–Cotes technique 290
nodes, Document Object Model 334–45
noise, stochastic differential equations 145
non-dimensional form, heat equations 183
non-linear scalar problems, initial value problems

138–9, 143, 153
non-linearities 2, 138–9, 143, 153, 155–7, 178,

201
non-mutating algorithms (non-modifying

algorithms), background 21–3
non-zero elements, matrices 37–8, 92–3
normal distribution see Gaussian . . .
normal processes, random processes 151
norms, concepts 78, 80–4, 97
notification behavioural patterns, concepts 298,

305–7
numeric linear algebra

block tridiagonal matrices 37–8, 93,
99–102, 164–7, 227–43

concepts 63, 78, 83–4, 91–102, 164–71,
177, 219–20, 290

direct solutions 91, 93–4, 164, 168, 177
Godunov’s double sweep method 97–9, 162,

192, 212–24, 229–30, 234–6, 242,
290

LU decomposition 63, 91, 93–102, 158,
162, 164–5, 192, 219–20, 229, 234–6,
242

numeric types, XML Schema 328–9
numerical methods, background 1, 36–7, 43–4,

63–77, 78–90, 131–44, 177–81,
192–202, 218–24, 227–8, 237–44,
290–4, 301–2, 343–4

NumericMatrix class, concepts 63, 69, 72–4,
82–3, 155–63, 168–70, 234–6, 348

NumIntegrator class 291–4

412 Index

object-oriented methods 1–2, 36, 47–8, 64,
103, 112, 117, 144, 208, 212–24,
255–308, 334–5, 383–6, 390

see also encapsulation . . .; information hiding
. . .; inheritors . . .; polymorphism . . .;
run-time switching

concepts 1–2, 47–8, 103, 112, 117, 144,
208, 261–3, 279–80, 286, 289, 334–5,
383–6, 390

incorrect methods 286
overview 1–2, 47–8, 117, 261–3, 279–80,

383–6
objects 5, 9–10, 103–17, 255–308, 346–56,

383–93
see also design patterns
behavioural patterns 5, 260, 296–307
classes 9, 103–16, 261–80, 383–93
concepts 5, 9–10, 103–17, 255–308,

346–55
creational patterns 5, 260, 261–80, 350
structural patterns 5, 260, 281–95
template classes 9, 103–16, 263–80

Observer pattern, concepts 298, 305–7
ODEs see ordinary differential equations
oil industry 3
on-demand loading, COM add-ins 358
OnConnection event, Com add-ins 357–8,

369–71
OnDisconnection event, Com add-ins 357–8,

369–73
one-dimensional data structures

see also arrays; vectors
concepts 63

one-dimensional heat equations, concepts 4–5,
179, 182–91, 226

one-factor Black–Scholes models 2–3, 4–5,
38, 78, 91, 94, 137–8, 143, 175–81,
186–91, 192–202, 244, 355

one-factor problems, finite difference method 2,
4–5, 38, 91, 94, 152–4, 179–224, 244

one-step method, finite difference method
134–7

one-to-many relationships, concepts 284, 298,
306–7

OpenGL 49, 297, 393
operability requirements, software quality 65,

80
operations research 78
operators, types 15–17, 27–8, 32, 50–1, 67–8,

78
optimisation issues 6, 87, 213–14, 296
options 1–9, 29–36, 47–60, 111, 168, 171,

189–201, 210–24, 239–43, 266–70,
282–5, 313, 324–7, 338–45, 374–93

see also American . . .; call . . .; European . . .;
put . . .

attributes 9, 29–30, 36, 47–60, 111,
266–70, 284, 339–40, 342, 344–5,
383–93

background reading 2
combinations 374–8
concepts 55–6, 282–7, 342–5, 374–82
definitions 342–3

delta 2, 5, 52–7, 111, 138, 160–1, 189, 198,
201, 210–24, 268–9, 305–6, 378–82

Extensible Markup Language 313, 324–7,
338–45

Financial products Markup Language
324–7, 343, 350

payoff functions 2, 182–5, 187–90, 210–11,
272, 343–5, 375–82

pricing examples 51–9, 111, 138, 175–81,
182, 210–24, 272, 290, 296, 305–6, 311,
383–93

Property pattern 47–60, 338–9, 350
sensitivities 47, 52–7, 111, 211–24, 268–9,

290, 383–93
trading strategies 374–82
two underlying assets 189, 239–40
vector-valued functions 111
walk-through example 212–24

options on options
see also exotic . . .
concepts 57

OptionStrategy class 376–8
Oracle 49, 297
ordinary differential equations (ODEs) 1–2, 4,

6, 13, 105, 131–71, 177–8, 190–1, 205–8,
355

method of lines 144, 179, 190–1
overview 1–2, 4, 6
stochastic differential equations 145, 152–4

oscillation issues 102, 136–8, 158, 160–1,
188–9, 191, 195–201, 203–5, 208, 237,
244

OTC see over-the-counter derivatives
out barrier options, concepts 343–5
outcomes, experiments 145–7
output iterators 21–2
output mechanisms 38–40, 247–52

see also displays; printing . . .
over-engineered systems, software 64, 161–2
over-the-counter derivatives (OTC) 324
overloaded operator 49–51, 69–72, 75, 251,

388
overview 1–6
OWL graphics library 311

parabolic PDEs, concepts 177–81, 182–91,
195–9, 205–11, 212–44

ParabolicFDM class 212–24
ParabolicPDE class 212–24
parameter entities, Extensible Markup Language

319
parameter sets, random processes 150–1
parametrised factory methods 274–5
parent elements, Extensible Markup Language

313–27, 331–45
parent–child relationships, concepts 282–3,

313–27, 331–45
parser, Extensible Markup Language 335–8
partial differential equations (PDEs) 1–2, 4, 13,

78, 91, 93, 100–1, 159, 167–8, 175–81,
187–202, 212–44, 279

see also Black–Scholes models; heat . . .
Alternating Direction Implicit 225–44

Index 413

block tridiagonal matrices 100, 227–343
concepts 1–5, 175–91, 214–41, 279
function classes 217–18
historical background 176, 180, 182–3
numerical approximations 177–9, 237–44
robust schemes 180, 203–5
splitting methods 225–44
types 176–7, 179, 182–3, 187–9

partial integral differential equations (PIDEs),
concepts 177

partial summation functions, examples 43–4
Pascal distribution

see also geometric . . .
concepts 124, 126–7

pattern concepts, XML Stylesheet Language
322–4

patterned matrices 36, 63, 66, 69, 92–3
payoff, option definitions 343
payoff functions

concepts 2, 182–5, 187–202, 210–11, 272,
343–5, 375–82

exotic options 187–91, 210–11, 343–5
options theory 2, 182–5, 188–90, 210–11,

272, 343–5, 374–82
spreads 374–82

payoffGraph function 376–8
PDEs see partial differential equations
pdf see probability distribution function
Peaceman, D. 227–9, 237, 239
PIDEs see partial integral differential equations
piecewise smooth boundary conditions, concepts

201
plain options

see also options
definitions 342–3

pmf see probability mass function
POC see proof-of-concept tests
Point class 47–8, 299, 332–4, 336–8
Poisson distribution, concepts 123–5, 127, 147
Polar–Marsaglia method 148–50, 153
policy concepts 15
Polyline class 299, 333–4
polymorphism paradigms 103–5, 112, 117–19,

128, 169, 217–19, 263, 270–1, 274–9
pop functions, stacks 45–6
portability characteristics, software quality 3,

49, 65, 219–20, 297, 341, 391–3
portfolios

C++ 374–82
concepts 38, 88, 282, 305–6, 324–7,

374–82
hedging 203, 305–7, 333, 374–82
hierarchical examples 374–5
theory 88, 374–82

PortfolioThing class 376–8
POSA 281, 307
positive-definite matrices, concepts 101–2, 167
positivity results, concepts 132–3, 136
power call options 210–11, 221
predictor–corrector methods, concepts 138–9,

142–3, 153, 191, 232, 257–8
presentation activities, applications 247–52,

297, 347–55, 375, 380–2

pricing, background 1–6, 111, 175–81, 182,
210–24, 272, 290, 296, 305–6, 311,
383–93

printing functions 38–40, 69–70, 75–6, 78,
247–60, 267, 347–55, 380–2

see also displays
priority queues, concepts 21, 45–6
probability, concepts 17–18, 117–28, 145–54
probability distribution function (pdf)

see also continuous . . .; discrete . . .
concepts 17–18, 117–24, 147–54, 249–60,

277–9, 351–5
probability mass function (pmf), concepts

146–7
procedural functions 16
ProductFactory class 272–5
Projected SOR method (PSOR), iterative

solutions 93–4, 101, 164, 168
proof-of-concept tests (POC) 191
property lists, concepts 52–7
Property pattern 6, 47–60, 300–5, 314,

338–45, 350–5, 356
advantages 49–50
concepts 6, 47–60, 314, 338–9, 350
examples 50–60
interfaces 50–1

property sets, concepts 47–60, 84, 86, 115,
258–60, 300–5, 338–45, 350–5

Prototype pattern, concepts 262–3, 266–7,
270–2, 340, 350–1

pseudo-random numbers 23, 147–8
PSOR see Projected SOR method
publishers 298, 306
pure virtual functions

see also polymorphism
concepts 117–19, 128, 263, 270–1, 303,

376–8
push functions, stacks 45–6, 107
put options 56–9, 290, 343–5, 375–8

quadratic form 83–5, 101–2
quadrature techniques 290
quality issues, software 3, 11, 36, 49, 64–5,

79–80, 219–20, 261–308, 340–1, 391–3
quantos 327
‘Quants’ 2

see also financial engineering
queues, concepts 21, 45–6
quotes, Extensible Markup Language 314–15

Rachford, H.H. 228–9
rand function 33, 148
Randall, C. 91, 160, 168, 177, 197, 227, 236,

237, 392
random access iterators, background 22, 25–6,

30–3
random interest rates, convertible bonds 239
random number generators, background 21, 23,

33–5, 106–11, 147–54
random processes, concepts 150–4, 239
random variables, concepts 145–54, 239
ranges

Excel 346–7, 364–7

414 Index

ranges (continued)
mapping concepts 109–11, 140–3
random variables 145–7

Rayleigh quotient 83–4
rbegin, reverse iterators 31–3
readers

Excel 349–55
Extensible Markup Language 303–5,

338–45
real option theory 124
real-time embedded systems, Property pattern

49
real-valued functions, concepts 63, 103,

110–11, 115–16, 214–15, 290–4
realisation concepts, random processes 150–1
rebates 344–5
recipe-type schemes 180
rectangular distribution see uniform . . .
recursion 36–7, 126, 148, 284–5, 324–5
recursive classes

see also unary associations
concepts 36–7, 126, 284–5

refactoring opportunities 293–4
references, Extensible Markup Language

318–19, 330–1
registration activities, applications 247–9,

258–9, 347–8, 352–5, 368–9
relational databases 53, 59, 261–2
relations, functions 109–11
relaxation parameters, iterative solutions 93,

164, 166–8
reliability characteristics, software quality 3, 11,

36, 49, 65, 79–80, 269–70, 391–2
remove 21–3, 54, 372
RemoveMenuItem function, COM add-ins

372–3
rend, reverse iterators 31–3
replace concepts 21–3, 69
repositories, Singleton pattern 265
resource efficiency, concepts 65, 79, 296
response times 79
reusability benefits, template classes 9, 17, 20,

36, 47, 78, 82, 85, 112, 117, 140–1, 155,
190, 234–6, 248–60, 393

reverse iterators 21–2, 30–3
Reynolds number, concepts 197
rho 52–7, 111
Riabenki, V.S. 230
Richardson extrapolation, concepts 139–40,

153–4, 201
Richardson’s Deferred Approach to the Limit

211
Richtmyer, R.D. 180, 187
risk management, Financial products Markup

Language 324–7
Robin boundary conditions, concepts 156–7,

159, 176, 195–9, 232–4
robust schemes 180, 203–5
Rogue Wave 20
role concepts, Unified Modelling Language

283–4, 298
rth-moment functions, concepts 86–7
RTTI see run-time type identification

rules-of-thumb 6
Rumbaugh, J. 265, 285
run-time errors 80, 88–90
run-time switching 112, 117
run-time type identification (RTTI) 59
Runge–Kutta scheme 191

Samarski, A.A. 205
sample points, concepts 145–7
sample space, concepts 145–7, 150–1, 177–8,

205–8, 237–8
scalar functions, concepts 63, 100–1, 103–5,

110–11, 112–15, 144, 382
scalar linear problems, initial value problems

132–8, 140–4, 151–4, 255–8, 382
‘scalar’ LU decomposition algorithm 100–1
ScalarIVP class 140–4, 256–8, 382
ScalarIVPSolver class 141–4, 257–8
scale factors, concepts 122
scale parameter, concepts 120
scatter diagrams, Excel 348, 351–5
Schema, Extensible Markup Language 328–34,

373
Schuss, Z. 152
SDEs see stochastic differential equations
search issues 21–3, 27, 33–5
selectors, definition 385
self-adjoint equations, concepts 199–200
self-awareness issues 48, 59
self-test, C++ 383–4
semi-discretisation concepts 190–1, 205–8
semi-norms, concepts 80–3
sensitivities

see also delta; gamma
options 47, 52–7, 111, 211–24, 268–9, 290,

383–93
separation mechanisms, Bridge pattern 290–4
sequence containers, background 21, 23–7,

33–5, 37, 43–4
Sequence specifier, Extensible Markup Language

316–17, 330
serialisation concepts 59
server code, concepts 89–90
sets

concepts 9, 21, 27–30, 37, 40–3, 48–9,
52–7, 66, 73, 111

examples 27–30, 37, 40–3, 52–7
parameter sets 150–1
property sets 47–60, 84, 86, 115, 258–60,

300–5, 338–45, 350–5
Seydel, R. 1, 150
SGML see Standard Generalised Markup

Language
Shaidurov, V.V. 140
Shape class 299, 333–4
ShapeComposite class 270–1, 333–4
short positions, definition 343
shout options 189
simple data types, XML Schema 330–1
SimplePropertySet class 47–60, 84, 86, 115,

258–9, 266–70, 302–5, 338–45, 350–5
single barrier call options 210–11
Singleton pattern, concepts 251–2, 262–70

Index 415

singular perturbation problems, concepts
137–8, 160, 197

skewness functions 78, 86–7
Skonnard, A. 328
slists, sequence containers 21, 24
Smith, G.D. 198
‘snapshots’, options 55–6
SNOBOL4 language 74
software 1–4, 20, 64–6, 79–80, 175–81,

212–24, 259–308, 356, 391–3
see also applications; code
black boxes 64, 91, 175–6, 235, 247,

262–3, 289
characteristics levels 3–4, 11, 49, 65,

79–80, 87, 219–20, 296–7, 356, 391–3
design patterns 1–2, 5, 21, 59–60, 64,

103–5, 112–16, 212, 217, 247–8,
259–308

documentation needs 2, 64, 265–6, 272–6,
279, 285, 297, 338–9, 356

generic software 9–19, 20, 36, 112
ISO 9126 quality characteristics 3, 80, 180,

391–2
layering concepts 3–4, 65–6
optimisation issues 6, 87, 213–14, 296
over-engineered systems 64, 161–2
quality issues 3, 11, 36, 49, 64–5, 79–80,

219–20, 261–308, 340–1, 356, 391–3
requirements 3–4, 64–5, 79–80, 213–14,

391–3
SOR see Successive Overrelaxation
sort, mutating algorithms 21–3, 33–5
source code see code
space issues, concepts 145–7, 150–1, 177–8,

205–8, 237–8
sparse matrices, concepts 36–8, 65, 66, 92–4,

164–8, 290
special elements, Extensible Markup Language

316–17
specialisations 122–3, 265, 286, 301–2

see also generalisation
spectral and pseudo-spectral approximation

methods, concepts 178
Spiegel, M. 87, 117
spikes, energy prices 124
splitting methods

basics 230–2
concepts 5–6, 94, 168, 225–44
critique 228, 230, 236, 241
historical background 227–8, 241

spreads, concepts 282, 287–8, 374–82
spreadsheets 5, 49, 59, 65, 74, 76, 162, 224
spurious oscillation problems 102, 136–8,

160–1, 188–9, 191, 195–201, 203–5, 208,
237, 244

SQL Server 49, 297
square root 82–4, 152–4
stability issues, finite difference method 136–7,

198–9, 203–11, 227, 229, 237, 244
stacks, concepts 21, 45–6, 262–3
standard difference schemes 158
Standard Generalised Markup Language (SGML)

312

Standard Template Library (STL)
see also algorithms; containers; function

objects; iterators
adaptor 42–3
advantages 20–46, 65, 76
components 20–35
concepts 3–4, 5–6, 9–10, 19, 20–46, 53,

65, 76, 103, 106–11, 393, 396
examples 20, 24–35, 38–46
financial engineering 35, 36–46, 108–9
portability benefits 20, 49, 65
syntax 20
uses 20–46, 76, 103, 106–11, 393

standard-deviation function, concepts 86, 88,
121–2

State pattern 297
states, random processes 150–1
static member functions 251–2, 264, 267,

366–7, 369–73
stationary independent increments, random

processes 151
stationary processes, random processes 150–1
statistics

see also continuous probability . . .; discrete
probability . . .; probability . . .

concepts 4, 6, 17, 36, 78, 85–8, 117–28,
145–7

StatisticsMechanisms package 147
Steele, J. 152
step size, concepts 133–4, 183–5
step structures 189–90
stiff problems, concepts 137–8
STL see Standard Template Library
stochastic differential equations (SDEs) 1–6,

13, 33, 105, 131–71, 239, 355
concepts 1–2, 4, 5–6, 139, 144, 145–54,

239
definition 151–3
finite difference method 145, 151–4, 239
noise 145
ordinary differential equations 145, 152–4
predictor–corrector methods 139, 153,

257–8
theoretical background 151–4

stochastic processes see random . . .
stock indexes 283–4
stock prices 151–2, 186, 212–24
storage classes, arrays 66–8
Stoyan, G. 205
straddles 333, 375–8
Strang, G. 191, 240
strangles 333, 374–8
straps 375
strategies, trading strategies 374–82
Strategy pattern, concepts 218, 297–8
strike price, definition 343
strings, examples 10, 19, 27–30, 41–3, 50,

115, 314–15, 329–30, 339, 344–5
strips 374–8
Stroustrup, B. 383
structural patterns 5, 260, 281–95, 314, 396

see also Bridge . . .; Composite . . .; Façade
. . .; Whole–Part . . .

416 Index

structural patterns (continued)
concepts 5, 260, 281–95, 314, 396
examples 281–95

structured products, Financial products Markup
Language 324–7

stylesheets, Extensible Stylesheet Language
Transformation 320–3

subclasses, concepts 286
subjects 306–7
subscribers 298, 306
subset operations, sets 40–3
Successive Overrelaxation (SOR), iterative

solutions 93, 164, 166–8
suitability requirements, libraries 64
sum-of-reciprocals function, concepts 85, 88–9
sum-of-the-squares function 82, 85
summation examples 43–4
sums 43–4, 66, 72, 78, 85, 88–9
Sun, Y. 239
superclasses, concepts 286
supershare options 189–90
Sutherland, I. 272
swap

function 16–17, 27–8, 41–3
mutating algorithms 22–3

swaps 284–5, 324–7
swaptions 324
symmetric-difference operations, sets 40–3
syntax 19–20, 313–19, 328–45

tags, Extensible Markup Language 312, 320–4,
344

TanhRule class 291–4
Tavella, D. 91, 160, 168, 177, 197, 227, 236,

237, 392
Taylor’s expansion 134
template classes

activation 11–16
code files 11–16
concepts 4–6, 9–35, 47–60, 103, 111–16,

117–28, 140–4, 263–70, 300–4, 338–45,
366–7, 393

definition 11–15
European options 9–10, 266–70
meta-class aspects 11, 19
object links 9, 103–16, 263–80
reusability benefits 9, 17, 20, 36, 47, 78, 82,

85, 112, 117, 140–1, 155, 190, 234–6,
248–60, 393

shorthand notation 114–15
templates 4, 5–6, 9–60, 103–5, 117, 124, 262,

322–4
see also function templates; template classes
inheritors 5, 60, 103–5, 117, 124, 262
types 11–15
XML Stylesheet Language 322–4

temporal data types 3, 36, 210–11, 328–9, 343,
394–6

term structure of interest rates 152, 241
terminal conditions, Black–Scholes models

188–9, 192–202, 240
testability characteristics, software quality 3,

11, 82–3

text interface, Document Object Model 335
theta 52–7, 111, 185
Thomas, J.W. 159, 187, 199, 233–6, 243
three-dimensional heat equations, concepts

228–9, 231–2, 235
three-dimensional matrices, concepts 38, 228
time class 36, 395
time efficiency, concepts 65, 296
time-dependent volatilities 210–11
Tools for Computational Finance (Seydel) 1
Tools/Add-ins menu, Excel 357–8, 361, 369,

372
Tools/Customise menu, Excel 357–8
top-down approaches 235–6
Topper, J. 210–11, 222, 239–41
TPBVPs see two-point boundary value problems
trades, concepts 325–7
trading strategies, C++ 374–82
traditional centred-difference schemes, two-point

boundary value problems 157–9, 162,
179–80, 203–4, 208, 241–3

trapezoidal difference scheme, concepts 134–5,
139, 142–3

tree data structures 36
triangular matrices, concepts 37–8, 91
tridiagonal matrices, concepts 36, 37–8, 66,

93–102, 155–63, 164, 184–5, 219,
227–43

trinomial method, concepts 36, 178, 182,
186–87, 383

try, throw and catch blocks, exception handling
89–90

two underlying assets, options 189, 239–40
two-dimensional data structures

see also matrices
concepts 63

two-dimensional heat equations
concepts 4–5, 179, 226–36
examples 226–36

two-factor Black–Scholes models 2–3, 4–5,
38, 78, 91, 94, 105, 137–8, 143, 175–81,
195, 228, 237–44, 355

two-factor problems, finite difference method 2,
4–5, 38, 91, 94, 105, 179–80, 195, 225–44

two-point boundary value problems (TPBVPs)
approximations 158–63, 195–7
Black–Scholes models 158–9, 182–91
concepts 4, 5, 97–9, 155–63, 170–1,

176–80, 182–91, 203–11
derivatives approximations 160–1, 195–7
description 155–7
design issues 161–3
exponentially fitted schemes 160, 179–80,

203–11
extrapolation 158
finite difference method 155–63, 182–91,

203–22
traditional centred-difference schemes

157–9, 162, 179–80, 203–4, 208, 241–3
TwoVarDFunction class 112–14, 215–24

UI see User Interface
UML see Unified Modelling Language

Index 417

unary associations, concepts 284–5
unary function, function objects 23, 106–11
understandability requirements, software quality

80, 87
Unified Modelling Language (UML) 2, 52, 57,

64–9, 162–3, 175–6, 212–13, 220,
247–8, 265–6, 272–4, 281–97, 302, 321,
325–6, 332–3, 338, 346–7, 375

uniform distribution, concepts 119–21, 127,
147, 261–3

Uniform Resource Locators (URLs) 321–2, 329
uniformly convergent difference schemes,

concepts 138, 204–5, 207–8
uniformly stable schemes, concepts 187, 204–5
union operations, sets 40–3
univariate functions see scalar functions
up-and-in call options 343–5
up-and-in put options 343–5
up-and-out call options 343–5
up-and-out put options 343–5
upper triangular matrices

see also LU decomposition
concepts 93–102, 165

upwind schemes, concepts 209–10, 239, 242–3
URLs see Uniform Resource Locators
usability characteristics, software quality 3, 11,

36, 49, 64, 80, 87, 296–7, 356, 392, 393
User Interface (UI) 311, 343
user-defined complex/simple data types, XML

Schema 330–4
utility functions, printing 38–40, 69–70, 75–6,

78

vanilla options
see also options
definitions 342–3

Varga, R.S. 102, 165–6, 207
variance 86, 88, 117–28, 239

function concepts 86, 88, 117–28
of return 88

VARIANT, automation add-ins 364–7
variational behavioural patterns, concepts

297–301
Vasicek model 152
VBA see Visual Basic for Applications
VBScript 335
vector functions, concepts 103, 110–11,

115–16, 143–4
vector space, concepts 72–3, 109–11
vector-valued functions, concepts 103, 110–11,

116
vectors

see also arrays
boundary errors 80, 89, 97–9, 116
concepts 3–6, 9, 21, 24–7, 33–40, 43–4,

46, 63–6, 72–4, 78–102, 103, 110–11,
131, 155–63, 212–24, 247–60, 347–55,
366–7, 376–82

definition 9, 63, 72
examples 9, 25–7, 33–5, 37, 43–4, 72–4,

78, 80–4, 94–102, 212–24, 247–60,
348–55, 366–7, 376–82

Excel 247–60, 348–55, 366–7, 380–2

indexing operator 25–7, 74, 81–4, 114–16,
169–71

inequalities 87, 102, 108, 164, 168, 171,
207–8

matrices 73–4, 83–4, 92–3
nested vectors 101, 223–4
norms 78, 80–4, 97
printing functions 38–40, 72, 78, 247–60,

347–55, 380–2
size flexibility 66
useful algorithms 43–4

vega 52–7, 111
virtual constructors

see also Factory pattern
concepts 272–5

virtual functions
see also polymorphism
concepts 117–19, 128, 169, 217–19, 263,

270–1, 274–9, 292–3, 303, 351, 376–8
Visitor pattern, concepts 47, 294, 297, 298,

301–5, 328, 338–45
Visual Basic 64, 272, 327, 335, 356–8
Visual Basic for Applications (VBA) 356–8
Visual C++ 367
Visual Studio 357, 358, 359
void types 14–17, 31–9, 51, 58–9, 69, 75–6,

96–7, 104–5, 141–4, 169–70, 217–19,
248–52, 256, 265, 267, 292, 300–4,
336–7, 341–2, 350–4, 370, 373

volatility
see also historical . . .
concepts 2, 88, 111, 177, 180, 196–7,

208–11, 220–4, 268–9, 284, 385–93
von Neumann, J. 156–7, 159, 176, 180, 197–9,

206, 227
VRML 297

W3C see World Wide Web Consortium
weakly stable difference scheme, concepts 197,

208–9, 239
Weibull distribution 119
weighted-average-mean function, concepts 85
white boxes 289
Whole–Part patterns

see also aggregation relationships
concepts 282–3, 286–8, 375

wide-sense stationary processes, random
processes 150–1

Wiener process, concepts 151–3, 290
Wilmott, P. 2, 91, 93, 157, 164, 168, 182, 191,

378
Windows 20, 65, 148–50, 335
Word 297
work arrays, concepts 218–19
workbooks, Excel 346–57, 373
worksheets, Excel 346–55, 358, 362–7
workspace containers, efficiency enhancers 79
World Wide Web Consortium (W3C) 311–12,

328
writers

Excel 349–55
Extensible Markup Language 303–5,

338–45

418 Index

XLA, add-ins 357
XLL, add-ins 357
XML see Extensible Markup Language
XML data types 329
XML Stylesheet Language (XSL), concepts

320–4
XMLReader class 303–5, 340–5
XMLWriter class 303–5, 340–5
XSL see XML Stylesheet Language

XSLT see Extensible Stylesheet Language
Transformation

Yanenko, N.N. 228, 231–2

zero
divides 80, 89
matrix elements 37–8, 92–3
volatilities 197, 208–9

	Financial Instrument Pricing Using C++
	Contents
	1 Executive Overview of this Book
	1.1 What is this book?
	1.2 What’s special about this book?
	1.3 Who is this book for?
	1.4 Software requirements
	1.5 The structure of this book
	1.6 Pedagogical approach
	1.7 What this book is not
	1.8 Source code on the CD

	PART I TEMPLATE PROGRAMMING IN C++
	2 A Gentle Introduction to Templates in C++
	2.1 Introduction and objectives
	2.2 Motivation and background
	2.3 Defining a template
	2.3.1 An example

	2.4 Template instantiation
	2.5 Function templates
	2.5.1 An example

	2.6 Default values and typedefs
	2.7 Guidelines when implementing templates
	2.8 Conclusions and summary

	3 An Introduction to the Standard Template Library
	3.1 Introduction and objectives
	3.1.1 Why use STL?

	3.2 A Bird’s-eye view of STL
	3.3 Sequence containers
	3.3.1 Programming lists
	3.3.2 Vectors and arrays in STL

	3.4 Associative containers
	3.4.1 Sets in STL
	3.4.2 Maps in STL

	3.5 Iterators in STL
	3.5.1 What kinds of iterators?

	3.6 Algorithms
	3.7 Using STL for financial instruments
	3.8 Conclusions and summary

	4 STL for Financial Engineering Applications
	4.1 Introduction and objectives
	4.2 Clever data structures
	4.2.1 A simple output mechanism

	4.3 Set theory and STL
	4.4 Useful algorithms
	4.5 STL adaptor containers
	4.6 Conclusions and summary

	5 The Property Pattern in Financial Engineering
	5.1 Introduction and objectives
	5.2 The Property pattern
	5.2.1 Requirements for a Property pattern

	5.3 An example
	5.4 Extending the Property pattern: property sets and property lists
	5.4.1 An example

	5.5 Properties and exotic options
	5.5.1 Example: Executive options

	5.6 Conclusions and summary

	PART II BUILDING BLOCK CLASSES
	6 Arrays, Vectors and Matrices
	6.1 Introduction and objectives
	6.2 Motivation and background
	6.3 A layered approach
	6.4 The Array and Matrix classes in detail
	6.4.1 Simple print functions
	6.4.2 Array example
	6.4.3 Matrix example

	6.5 The Vector and NumericMatrix classes in detail
	6.5.1 Vector example
	6.5.2 NumericMatrix example

	6.6 Associative arrays and matrices
	6.7 Conclusions and summary

	7 Arrays and Matrix Properties
	7.1 Introduction and objectives
	7.2 An overview of the functionality
	7.3 Software requirements
	7.3.1 Accuracy
	7.3.2 Efficiency
	7.3.3 Reliability
	7.3.4 Understandability

	7.4 The core processes
	7.4.1 Interactions between matrices and vectors
	7.4.2 Some examples

	7.5 Other function categories
	7.5.1 Measures of central tendency
	7.5.2 Measures of dispersion
	7.5.3 Moments, skewness, kurtosis
	7.5.4 Inequalities

	7.6 Using the functions
	7.6.1 Calculating historical volatility
	7.6.2 Variance of return of a portfolio

	7.7 An introduction to exception handling
	7.7.1 Try, throw and catch: A bit like tennis

	7.8 Conclusions and summary

	8 Numerical Linear Algebra
	8.1 Introduction and objectives
	8.2 An introduction to numerical linear algebra
	8.2.1 Direct methods
	8.2.2 Iterative methods

	8.3 Tridiagonal systems
	8.3.1 LU decomposition
	8.3.2 Godunov’s Double Sweep method
	8.3.3 Designing and implementing tridiagonal schemes

	8.4 Block tridiagonal systems
	8.5 What requirements should our matrix satisfy?
	8.5.1 Positive-definite matrices and diagonal dominance
	8.5.2 M-Matrices

	8.6 Conclusions and summary

	9 Modelling Functions in C++
	9.1 Introduction and objectives
	9.2 Function pointers in C++
	9.3 Function objects in STL
	9.3.1 Comparison functions
	9.3.2 STL and financial engineering

	9.4 Some function types
	9.4.1 Applications in numerical analysis and financial engineering
	9.4.2 An example: Functions in option pricing

	9.5 Creating your own function classes
	9.6 Arrays of functions
	9.7 Vector functions
	9.8 Real-valued functions
	9.9 Vector-valued functions
	9.10 Conclusions and summary

	10 C++ Classes for Statistical Distributions
	10.1 Introduction and objectives
	10.2 Discrete and continuous probability distribution functions
	10.3 Continuous distributions
	10.3.1 Uniform (rectangular) distribution
	10.3.2 Normal distribution
	10.3.3 Lognormal distribution
	10.3.4 Gamma distribution and its specialisations

	10.4 Discrete distributions
	10.4.1 Poisson distribution
	10.4.2 Binomial and Bernoulli distributions
	10.4.3 Pascal and geometric distributions

	10.5 Tests
	10.5.1 Continuous distributions
	10.5.2 Discrete distributions

	10.6 Conclusions and summary

	PART III ORDINARY AND STOCHASTIC DIFFERENTIAL EQUATIONS
	11 Numerical Solution of Initial Value Problems: Fundamentals
	11.1 Introduction and objectives
	11.2 A model problem
	11.2.1 Qualitative properties of the solution

	11.3 Discretisation
	11.4 Common schemes
	11.5 Some theoretical issues
	11.6 Fitting: Special schemes for difficult problems
	11.7 Non-linear scalar problems and predictor–corrector methods
	11.8 Extrapolation techniques
	11.9 C++ design and implementation
	11.10 Generalisations
	11.11 Conclusions and summary

	12 Stochastic Processes and Stochastic Differential Equations
	12.1 Introduction and objectives
	12.2 Random variables and random processes
	12.2.1 Random variables
	12.2.2 Generating random variables
	12.2.3 Random (stochastic) processes

	12.3 An introduction to stochastic differential equations
	12.4 Some finite difference schemes
	12.4.1 Improving the accuracy: Richardson extrapolation

	12.5 Which scheme to use?
	12.6 Systems of SDEs
	12.7 Conclusions and summary

	13 Two-Point Boundary Value Problems
	13.1 Introduction and objectives
	13.2 Description of problem
	13.3 (Traditional) centred-difference schemes
	13.3.1 Does the discrete system have a solution?
	13.3.2 Extrapolation

	13.4 Approximation of the boundary conditions
	13.4.1 Linearity boundary condition

	13.5 Exponentially fitted schemes and convection–diffusion
	13.6 Approximating the derivatives
	13.7 Design issues
	13.8 Conclusions and summary

	14 Matrix Iterative Methods
	14.1 Introduction and objectives
	14.2 Iterative methods
	14.3 The Jacobi method
	14.4 Gauss–Seidel method
	14.5 Successive overrelaxation (SOR)
	14.6 Other methods
	14.6.1 The conjugate gradient method
	14.6.2 Block SOR
	14.6.3 Solving sparse systems of equations

	14.7 The linear complementarity problem
	14.8 Implementation
	14.9 Conclusions and summary

	PART IV PROGRAMMING THE BLACK–SCHOLES ENVIRONMENT
	15 An Overview of Computational Finance
	15.1 Introduction and objectives
	15.2 The development life cycle
	15.3 Partial differential equations
	15.4 Numerical approximation of PDEs
	15.5 The class of finite difference schemes
	15.6 Special schemes for special problems
	15.7 Implementation issues and the choice of programming language
	15.8 Origins and application areas
	15.9 Conclusions and summary

	16 Finite Difference Schemes for Black–Scholes
	16.1 Introduction and objectives
	16.2 Model problem: The one-dimensional heat equation
	16.3 The Black–Scholes equation
	16.4 Initial conditions and exotic options payoffs
	16.4.1 Payoff functions in options modelling

	16.5 Implementation
	16.6 Method of lines: A whirlwind introduction
	16.7 Conclusions and summary

	17 Implicit Finite Difference Schemes for Black–Scholes
	17.1 Introduction and objectives
	17.2 Fully implicit method
	17.3 An introduction to the Crank–Nicolson method
	17.4 A critique of Crank–Nicolson
	17.4.1 How are derivatives approximated?
	17.4.2 Boundary conditions
	17.4.3 Initial conditions
	17.4.4 Proving stability

	17.5 Is there hope? the Keller scheme
	17.5.1 The advantages of the Box scheme

	17.6 Conclusions and summary

	18 Special Schemes for Plain and Exotic Options
	18.1 Introduction and objectives
	18.2 Motivating exponentially fitted schemes
	18.2.1 A new class of robust difference schemes

	18.3 Exponentially fitted schemes for parabolic problems
	18.3.1 The fitted scheme in more detail: Main results

	18.4 What happens when the volatility goes to zero?
	18.4.1 Graceful degradation

	18.5 Exponential fitting with explicit time
	18.5.1 An explicit time-marching scheme

	18.6 Exponential fitting and exotic options
	18.7 Some final remarks

	19 My First Finite Difference Solver
	19.1 Introduction and objectives
	19.2 Modelling partial differential equations in C++
	19.2.1 Function classes in C++
	19.2.2 Function classes for partial differential equations

	19.3 Finite difference schemes as C++ classes, Part I
	19.4 Finite difference schemes as C++ classes, Part II
	19.5 Initialisation issues
	19.5.1 Functions and parameters
	19.5.2 The main program

	19.6 Interfacing with Excel
	19.7 Conclusions and summary

	20 An Introduction to ADI and Splitting Schemes
	20.1 Introduction and objectives
	20.2 A model problem
	20.3 Motivation and history
	20.4 Basic ADI scheme for the heat equation
	20.4.1 Three-dimensional heat equation

	20.5 Basic splitting scheme for the heat equation
	20.5.1 Three-dimensional heat equation

	20.6 Approximating cross-derivatives
	20.7 Handling boundary conditions
	20.8 Algorithms and design issues
	20.9 Conclusions and summary

	21 Numerical Approximation of Two-Factor Derivative Models
	21.1 Introduction and objectives
	21.2 Two-factor models in financial engineering
	21.2.1 Asian options
	21.2.2 Convertible bonds with random interest rates
	21.2.3 Options with two underlying assets
	21.2.4 Basket options
	21.2.5 Fixed-income applications

	21.3 Finite difference approximations
	21.4 ADI schemes for Asian options
	21.4.1 Upwinding

	21.5 Splitting schemes
	21.6 Conclusions and summary

	PART V DESIGN PATTERNS
	22 A C++ Application for Displaying Numeric Data
	22.1 Introduction and objectives
	22.2 Input mechanisms
	22.3 Conversion and processing mechanisms
	22.4 Output and display mechanisms
	22.4.1 Ensuring that Excel is started only once

	22.5 Putting it all together
	22.6 Output
	22.7 Other functionality
	22.7.1 Accessing cell data
	22.7.2 Cell data for functions
	22.7.3 Using Excel with finite difference schemes

	22.8 Using Excel and property sets
	22.9 Extensions and the road to design patterns
	22.10 Conclusions and summary

	23 Object Creational Patterns
	23.1 Introduction and objectives
	23.2 The Singleton pattern
	23.2.1 The templated Singleton solution
	23.2.2 An extended example
	23.2.3 Applications to financial engineering

	23.3 The Prototype pattern
	23.3.1 The Prototype pattern: Solution
	23.3.2 Applications to financial engineering

	23.4 Factory Method pattern (virtual constructor)
	23.4.1 An extended example

	23.5 Abstract Factory pattern
	23.5.1 The abstract factory: solution
	23.5.2 An extended example

	23.6 Applications to financial engineering
	23.7 Conclusions and summary

	24 Object Structural Patterns
	24.1 Introduction and objectives
	24.2 Kinds of structural relationships between classes
	24.2.1 Aggregation
	24.2.2 Association
	24.2.3 Generalisation/specialisation

	24.3 Whole–Part pattern
	24.4 The Composite pattern
	24.5 The Façade pattern
	24.6 The Bridge pattern
	24.6.1 An example of the Bridge pattern

	24.7 Conclusions and summary

	25 Object Behavioural Patterns
	25.1 Introduction and objectives
	25.2 Kinds of behavioural patterns
	25.3 Iterator pattern
	25.3.1 Iterating in composites
	25.3.2 Iterating in property sets

	25.4 The Visitor pattern
	25.4.1 Visitors and the Extensible Markup Language (XML)

	25.5 Notification patterns
	25.6 Conclusions and summary

	PART VI DESIGN AND DEPLOYMENT ISSUES
	26 An Introduction to the Extensible Markup Language
	26.1 Introduction and objectives
	26.1.1 What’s the big deal with XML?

	26.2 A short history of XML
	26.3 The XML structure
	26.3.1 XML files
	26.3.2 XML syntax
	26.3.3 Attributes in XML

	26.4 Document Type Definition
	26.4.1 DTD syntax
	26.4.2 Validation issues
	26.4.3 Limitations of DTDs

	26.5 Extensible Stylesheet Language Transformation (XSLT)
	26.5.1 Namespaces in XML
	26.5.2 Main concepts in XSL

	26.6 An application of XML: Financial products Markup Language
	26.6.1 Product architecture overview
	26.6.2 Example: Equity derivative options product architecture

	26.7 Conclusions and summary

	27 Advanced XML and Programming Interface
	27.1 Introduction and objectives
	27.2 XML Schema
	27.2.1 Element declaration
	27.2.2 User-defined simple and complex types
	27.2.3 Multiplicity issues
	27.2.4 An example
	27.2.5 Comparing DTDs and the XML Schema
	27.2.6 XML Schemas and FpML

	27.3 Accessing XML data: The Document Object Model
	27.3.1 DOM in a programming environment

	27.4 DOM and C++: The essentials
	27.5 DOM, entities and property sets
	27.5.1 XML readers and writers
	27.5.2 Examples and applications

	27.6 XML structures for plain and barrier options
	27.7 Conclusions and summary

	28 Interfacing C++ and Excel
	28.1 Introduction and objectives
	28.2 Object model in Excel: An overview
	28.3 Under the bonnet: Technical details of C++ interfacing to Excel
	28.3.1 Startup
	28.3.2 Creating charts and cell values
	28.3.3 Interoperability with the SimplePropertySet

	28.4 Implementing the core process
	28.4.1 Registration: Getting basic input
	28.4.2 Calculations
	28.4.3 Displaying the results of the calculations
	28.4.4 The application (main program)

	28.5 Extensions
	28.6 Application areas
	28.7 Conclusions and summary

	29 Advanced Excel Interfacing
	29.1 Introduction and objectives
	29.2 Status report and new requirements
	29.3 A gentle introduction to Excel add-ins
	29.3.1 What kinds of add-ins are there?

	29.4 Automation add-in in detail
	29.4.1 Functions with two parameters
	29.4.2 Functions that accept a range
	29.4.3 Using the Vector template class

	29.5 Creating a COM add-in
	29.6 Future trends
	29.7 Conclusions and summary

	30 An Extended Application: Option Strategies and Portfolios
	30.1 Introduction and objectives
	30.2 Spreads
	30.3 Combinations: Straddles and strangles
	30.4 Designing and implementing spreads
	30.5 Delta hedging
	30.6 An example
	30.7 Tips and guidelines

	Appendices
	A1 My C++ refresher
	A2 Dates and other temporal types

	References
	Index

