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Statistics, Econometrics and Forecasting

Based on two lectures presented as part of the Stone Lectures in

Economics series, Arnold Zellner describes the structural econo-

metric time series analysis (SEMTSA) approach to statistical and

econometric modeling. Developed by Zellner and Franz Palm, the

SEMTSA approach produces an understanding of the relationship

of univariate and multivariate time series forecasting models and

dynamic time series structural econometric models. As scientists

and decision-makers in industry and government worldwide adopt

the Bayesian approach to scientific inference, decision-making and

forecasting, Zellner offers an in-depth analysis and appreciation of

this important paradigm shift. Finally, Zellner discusses the alter-

native approaches to model building and looks at how the use and

development of the SEMTSA approach has led to the production

of a Marshallian macroeconomic model that will prove valuable to

many. Written by one of the foremost practitioners of econometrics,

this book will have wide academic and professional appeal.

arnold zellner is H. G. B. Alexander Distinguished Service

Professor Emeritus of Economics and Statistics at the University of

Chicago, and Adjunct Professor at the University of California at

Berkeley. He is one of the most important figures in the develop-

ment of econometrics, in particular the use of Bayesian techniques.

Professor Zellner was President of the American Statistical Associ-

ation in 1991, and the first-elected President of the International

Society for Bayesian Analysis in 1993. He is an elected Fellow of

leading professional organizations. He is co-founder of the Jour-

nal of Econometrics, and remains an active researcher in modeling,

statistics and forecasting.





National Institute of Economic and Social Research

The National Institute of Economic and Social Research is an inde-

pendent educational charity, founded in 1938. It conducts research

on a wide variety of topics, but has a particular interest in economic

modelling, investment and productivity, labour market issues and

vocational education and training. All research projects are designed

to contribute to the public debate on the issues they address. The

Institute has its own research staff based in central London, and

works in co-operation with universities, industry and other bodies.

It is independent of the UK government and receives no core funding

from public or private sources.

The Institute aims to promote, through quantitative research,

a deeper understanding of the interaction of economic and social

forces that affect people’s lives, in order that they may be improved.

Its main function is to produce research suitable for publication

through academic channels, and hence findings from the Institute’s

work are published widely in academic journals and elsewhere.

They often find an outlet in the Institute’s own quarterly Economic

Review which is available on subscription or individually. Discus-

sion Papers dealing with work in progress, and Occasional Papers on

specific topics, are also issued from time to time. Results from major

pieces of research often lead to books, published through commer-

cial publishers. In addition, the NIESR holds conferences each year,

which provide an opportunity to hear about research findings and

debate them with interested organisations and individuals.

National Institute of Economic and Social Research

2 Dean Trench Street, London SW1P 3HE

Tel: 020 7654 1920 Fax: 020 7654 1900



The Bank of England Centre for
Central Banking Studies

The Bank of England’s Centre for Central Banking Studies was

founded in 1991. Its main aims then were twofold. First, to pro-

vide training for staff in the central banks of countries emerging

from many decades of communist government; and second, to cre-

ate a formal mechanism for enhancing training contact and advice

with and for the forty-five or so (mainly Commonwealth) central

banks in the old sterling area with which the Bank of England had

long-standing links. Since then, the CCBS has widened its range of

contacts and activities considerably. It has now accumulated a stock

of over ten thousand alumni. Over 120 of the world’s central banks,

some occasionally and others on a large and regular basis, are now

involved in its seminars, courses, technical assistance programmes,

conferences and research workshops and projects each year. Many of

these take place in London. There is also a growing number of CCBS

events overseas, many embracing several countries in the region,

run in collaboration with foreign central banks or multi-country

institutions. In all it does, the CCBS emphasises the importance of

learning from the diverse experiences of all countries, and providing

a forum where ideas and experiences are shared.

Subjects range from traditional central bank concerns such as

note issue, monetary operations, reserves management, payments

systems, human resources, and accounting and audit, to econo-

metrics, forecasting for monetary policy, exchange rates, capital

movements, inflation, financial markets, derivatives, policy

communication, financial stability and corporate governance.



Econometrics now plays a vital role in helping to inform monetary

policy makers about key relationships in their economy, and to im-

prove and sharpen predictions (and pinpoint areas of uncertainty)

about the likely consequences, over time, of the policy decisions

they take. Speakers at CCBS functions are drawn from experts in

the CCBS itself, other parts of the Bank of England, other cen-

tral banks, the UK private sector, and the academic community,

both in Britain and abroad. An increasing number of the CCBS

conferences – devoted to economic and econometric issues – are

now open to, and attended by, academics and practitioners outside

central banks.

Richard Stone was a highly creative and prolific econometrician

and applied economist; he left his distinguished mark in count-

less areas of the subject, and not least on those techniques and

concepts encountered, debated and deployed daily by professional

economists in the world’s central banks. The CCBS (and, indeed,

the Bank of England more generally) were delighted to accept the

invitation to participate with Cambridge University Press and the

National Institute of Economic and Social Research in helping to

host the Stone Lectures. These are a very fitting monument to

Sir Richard’s achievements, and correspond closely to the CCBS’s

objective of sharing and helping to disseminate the best of important

new thinking on financial, economic and, above all, econometric

issues to the world-wide community – and, thereby, contribute to

a better understanding of how to preserve and enhance monetary

and financial stability.

Peter Sinclair

Director of the CCBS, 2000–2002, and Professor of Economics,

University of Birmingham
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Preface

It was indeed a great honor and pleasure to present the first Sir Richard

Stone Lectures in London in May 2001. My thanks go to the National

Institute for Economic and Social Research (NIESR) and the Cam-

bridge University Press (CUP) for instituting the Stone Lectures and

inviting me to be the first speaker in this series. I appreciate very

much the opportunity to express my thoughts on the outstanding

contributions of Sir Richard Stone and on statistics, econometrics

and forecasting.

As explained to me by Martin Weale, director of the NIESR, and my

editor at CUP, the first 2001 Stone Lecture was to be presented at the

Bank of England with many “non-technical” attendees in the audience.

Thus, in the first Lecture I decided to treat some broad, basic issues

involved in Stone’s, and others’, work in statistics, econometrics and

forecasting, since these are important for both non-technical and tech-

nical individuals and often are not well treated in standard textbooks.

Indeed, it may be advisable to consider introducing good courses in

the philosophy of science in the curricula of departments and schools

of statistics, economics and econometrics, as is already the case in the

programs of some departments of physics and other sciences. Issues

such as (1) “What is science?” (2) “What is causality?” and (3) “What

definition of probability is most useful in scientific work?” can be

considered, along with many others, and thereby help to eliminate

xiii
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confusion that sometimes lasts a lifetime. And, of course, such courses

can educate students to do productive, innovative research rather than

humdrum, conventional or – worse – pointless research. In this con-

nection, close study of Stone’s approach to research and the results

yielded by it, which had a profound impact on many research efforts,

including my own, from my doctoral dissertation research onward,

would be most fruitful.

Another important topic treated in my first lecture is a basic

paradigm shift that is taking place in statistics, econometrics and fore-

casting. About 200 years after Thomas Bayes, a British Presbyterian

minister and Fellow of the Royal Society, introduced Bayes’ Theorem

in a 1763 paper, it appears that scientists and decision-makers in indus-

try and government worldwide are adopting the Bayesian approach

to scientific inference, decision-making and forecasting, as developed

over the years by Laplace, Edgeworth, Jeffreys, de Finetti, Savage, Good,

Box and many others. For appreciation of this paradigm shift in the

non-technical literature, see, e.g., “Banks tap ideas from 18th-century

minister” in the International Herald Tribune, August 21–22, 1999,

and “In praise of Bayes” in The Economist, September 30, 2000, for

some current thoughts about and applications of Bayesian analysis.

For additional evidence, see material in J. Berger’s and others’ papers

in the December 2000 issue of the Journal of the American Statisti-

cal Association on a review of the current state of Bayesian analysis

and computing in Statistics and related fields, and material on the

homepage of the International Society for Bayesian Analysis (ISBA)

website (http://www.Bayesian.org). Further, a number of explicit,

basic Bayes / non-Bayes issues are discussed in detail in my lecture,

with the conclusion that “It pays to go Bayes.”

Finally, some simple examples are included in the first lecture to

demonstrate operational aspects of the general principles and proce-

dures. That simple, intuitive solutions to central problems, including

some educational management problems as well as golf club selec-

tion problems, are available may come as a surprise to many. Indeed,
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given that higher education is managed by many who have never taken

courses in management, i.e. personnel management, financial man-

agement, inventory management, etc., it may be that some of these

examples can serve as subject matter for such courses and possibly

help to improve the performance of higher education.

In the second lecture, presented at the NIESR, I was advised that

the audience would be more academic and technically sophisticated.

Thus, I go into more mathematical detail in describing the structural

econometric, time series analysis approach to statistical and econo-

metric modeling that Franz Palm and I developed, which has been

applied to a variety of problems over the years by us and many col-

leagues. A CUP volume on SEMTSA and its applications, edited by

Franz Palm and me, has been prepared for publication.

The SEMTSA approach produces an understanding of the relation-

ship between univariate and multivariate time series forecasting mod-

els and dynamic, time series structural econometric models. For many

years, this relationship was not understood and the situation appeared

somewhat confused. Some believed that univariate statistical time se-

ries forecasting models, e.g. Box-Jenkins’ autoregressive, integrated

moving average (ARIMA) and transfer function models, and multi-

variate econometric structural models were distinct and seemingly

unrelated. As shown in the second lecture, these models are closely re-

lated, and use of the relationships involves very important procedures

for model formulation and checking that have been applied over the

years. That is, when there is little information about the form of a

structural econometric model, in the SEMTSA approach, univariate

dynamic forecasting equations for individual variables are developed

and checked in forecasting – not only point forecasting but also turn-

ing point forecasting studies. When equations are found that perform

satisfactorily in forecasting, work is then undertaken to formulate a

dynamic multi-equation economic model that implies the forms of

the individual variables’ univariate forecasting equations. Then the
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multivariate time series structural model can be implemented and its

properties and forecasting performance evaluated.

And, of course, given a current statistical or econometric multi-

variate time series model – say, a vector autoregression (VAR) or a

dynamic structural macroeconometric model – in the SEMTSA ap-

proach the univariate processes for individual variables are derived

analytically from the general model and their forms, e.g. lag structures

etc., are checked using data. Many times, as shown in empirical studies,

such derived relations for individual variables, which are often very

complicated, are at variance with the forms of equations empirically

derived from data. Recognition of such discrepancies between theoret-

ically implied equations and empirically determined equations often

leads to improvements in theoretical formulations and forecasting

performance.

Some examples of such work are provided in the second lecture in

connection with work to forecast the output growth rates of industri-

alized countries and turning points in them. Bayesian point, turning

point and forecast combining techniques, which have been developed

and applied with some success, are described. In addition, the sequen-

tial SEMTSA approach has led to the consideration of disaggregation

and forecasting performance, a topic not extensively treated in the

literature. The results of some forecasting experiments involving dis-

aggregation and of work to formulate a disaggregated model of an

economy, namely a Marshallian macroeconomic model (MMM), are

described. The MMM involves modeling sectors of economies using

relatively simple Marshallian sector demand, supply and entry equa-

tions to model interacting sectors of an economy – say, agriculture,

mining, services, etc. The results of some recent forecasting experi-

ments using data for the U.S. economy indicates that it pays to disag-

gregate in this case when using the MMM.

Throughout the two lectures there is an emphasis on the value of

“sophisticatedly simple” models, in contrast to the grossly complicated

models of economies that many have built in the past. Some of these
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past models have hundreds of non-linear stochastic difference equa-

tions and variables and thus it is difficult to determine whether they

have unique or multiple solutions and what their dynamic properties

are. Further, these complicated models have not been very successful

in point and turning point forecasting. Thus, as recognized by workers

worldwide, including researchers at the Bank of England (see, e.g., the

article by Paul Fisher and John Whitley, “Macroeconomic models at

the Bank of England,” in the 2000 volume edited by Sean Holly and

Martin Weale, Econometric Modelling: Techniques and Applications),

there is a great need for sophisticatedly simple models that explain the

past well and perform satisfactorily in forecasting and helping to make

policy decisions. In a recent CUP monograph, Simplicity, Inference and

Modeling, edited by H. A. Kuezenkamp, M. McAleer and me, many

issues, including defining and measuring the simplicity of models and

simplicity versus complexity in modeling, are discussed extensively by

leading workers. Keeping it sophisticatedly simple (KISS) seems to be

appreciated and valued by many, including economists awarded Nobel

Prizes, whose responses to a survey on simplicity versus complexity

are summarized in the above monograph.

Again, I thank the sponsors of the Sir Richard Stone Lectures for

giving me an opportunity to share my ideas with you. Thanks also go

to Martin Weale and to the staff of CUP for arranging my wife’s and my

enjoyable visits to Cambridge, London and York and for a splendid

dinner in my honor, at which I met Sir Richard Stone’s charming

wife and learned much from our discussions. In all respects it was a

wonderful experience, memories of which we shall treasure always.

Last, but not least, thanks to Barbara Birthwright, my secretary, for

her valuable assistance in preparing this manuscript for publication.





lecture 1
Bank of England

MAY 8, 2001

1.1 Introduction

There can be no doubt but that Sir Richard Stone is a true economic

scientist, one of those who contributed importantly to the transition

of economics from being an art to being a science. Significantly, he

emphasized and practiced “measurement with theory,” not “measure-

ment without theory” nor “theory without measurement.” In doing

so, he set an excellent example for many others who followed his lead.

His careful and thorough measurement procedures and use of sophis-

ticatedly simple theoretical economic models and impressive statistical

techniques in analyses of important problems brought him worldwide

recognition, as recognized by many, including Angus Deaton1 in the

following words:

Sir Richard Stone, knighted in 1978, and Nobel Laureate in Eco-

nomics in 1984, is the outstanding figure in post-war British applied

economics . . . Under Keynes’ stimulus, the Cambridge Depart-

ment of Applied Economics was founded and Richard Stone was

appointed its first director with an indefinite tenure in the position.

Stone brought enormous distinction and worldwide recognition

to the department . . . He was president of the Econometric So-

ciety in 1955 and president of the Royal Economic Society from

1978–90.

1
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Further, in an article, “The life and work of John Richard Nicholas

Stone 1913–1991,” that appeared in the Economic Journal, M. H.

Pesaran and G. C. Harcourt (2000, p. 146) wrote:

Sir Richard Stone . . . was one of the pioneers of national income

and social accounts, and one of the few economists of his generation

to have faced the challenge of economics as a science by combining

theory and measurement within a cohesive framework. Awarded

the Nobel Prize for his ‘fundamental contributions to the develop-

ment of national accounts’, he made equally significant contribu-

tions to the empirical analysis of consumer behaviour. His work

on the ‘Growth Project’ was instrumental in the development of

econometric methodology for the construction and analysis of large

disaggregated macroeconometric models.

Also, they presented the following excerpt from Stone’s research

proposal for the now famous Department of Applied Economics at

Cambridge with Stone as its first director in 1945 (pp. 149–150):

The ultimate aim of applied economics is to increase human welfare

by the investigation and analysis of economic problems of the real

world. It is the view of the Department that this can best be achieved

by the synthesis of three types of study which now tend to be pursued

in isolation. The Department will concentrate simultaneously on

the work of observations, i.e. the discovery and preparation of data;

the theoretical appraisal of problems, i.e. the framing of hypotheses

in a form suitable for quantitative testing; and the development of

statistical methods appropriate to the special problems of economic

information. The special character of the Department’s approach

to problems of the real world will lie in this attempt at systematic

synthesis.

From what has been presented above, it is clear that Stone had a

deep appreciation of methodological issues and an approach that was

very productive. Note that Pearson, Jeffreys, Fisher, I2 and many others

are in broad agreement with Stone’s position and have emphasized the
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“unity of science” principle, namely that any area of study (e.g., eco-

nomics, physics, business, psychology, sports, etc.) can be a science if

scientific methods are employed in learning from data and experience

to explain the past, predict and make wise decisions – fundamental ob-

jectives of science. To achieve these objectives, scientists use methods

that will now briefly be reviewed.

It has been recognized that scientists generally employ the process

of induction, which involves (a) measurement and description and

(b) use of generalizations or theories to explain, predict and make de-

cisions. This view of induction is much broader than that of Mach’s,

which involves equating induction to empirical measurement. In

doing so, Mach missed the very important activities of explanation,

prediction and decision-making that are involved in the above, broader

definition of induction. Similarly, attempts by others to equate sci-

ence, particularly economic science, to deduction is a fundamental

mistake since in deduction just limiting statements of proof, disproof

or ignorance are possible. Scientists need and use statements reflecting

degrees of confidence in propositions or generalizations that cannot

be analyzed using only deductive methods. For example, it is impos-

sible to prove deductively that the sun will rise tomorrow. This point

is very important with respect to those who, in contrast to Stone and

many others, hold the view that economics is a purely deductive sci-

ence. Deduction, including mathematical proof, plays a role but the

broader process of induction is needed in science. Later I shall discuss

how probabilities to represent degrees of confidence in propositions

or theories can be utilized in the process of learning from data and

making decisions. Finally, there is the area of “reduction,” in which

work is undertaken to produce generalizations or theories that explain

the past, predict well and are useful in making decisions; this will be

discussed below.

A key element in the inductive process is measurement and de-

scription, as Stone, Jeffreys, Fisher and others have recognized. As

widely appreciated, it is important to measure well important variables
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such as unemployment, output, prices, income, saving, etc. for a va-

riety of purposes. Fortunately, much progress over the years has been

made in improving the quality of measurements, e.g. quality-corrected

price indices, consistent national income and product accounts, etc.

However, many other improvements can be made, e.g. in the mea-

surement of the output of government and education sectors and

of personal saving. Such measurements are important inputs to those

who study economies’ past performance and attempt to forecast future

outcomes – that is, professional and amateur forecasters. Also, these

measurements are important inputs to those engaged in the process of

“reduction” – that is, creation of theories to explain past data and help

to predict as yet unobserved data. For example, the famous Kuznets

research finding that the US savings rate was relatively constant over

the first half of the twentieth century in spite of huge increases in real

income was a surprising empirical result, in sharp contradiction to the

Keynesian prediction that the savings rate would rise.3 Several, includ-

ing Friedman, Modigliani, Tobin and others, created new theories to

explain the surprising empirically observed constancy of the savings

rate. Further, as Hadamard4 reported in his study of creative work in

mathematics, new breakthroughs in mathematics and other fields are

often produced after observing “unusual facts.” In view of this connec-

tion between productive reductive activity and unusual facts, in past

work I have described5 a number of ways to produce unusual facts:

e.g., study unusual historical periods – say, periods of hyperinflation

or great depression; study unusual groups, e.g. very poor producers

and consumers; push current theories to extremes and empirically

check their predictions, etc. Also, my advice to empirical workers in

economics is: produce unusual facts that need explanation and ugly

facts (which Thomas Huxley emphasized as being important, namely

facts that sharply contradict current theories), instead of humdrum,

boring facts.

Above, I mentioned that forecasters are vitally interested in in-

ductive measurement problems and require good data with which
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to develop effective statistical forecasting procedures and models. For

many years, forecasting models, e.g. the univariate autoregressive mov-

ing average (ARMA) forecasting models of Box and Jenkins and the

multivariate ARMA models of Quenouille,6 which include a vector

autoregressive (VAR) model as a special case, were considered to be

distinct from the structural econometric models (SEMs) constructed

by economists such as Tinbergen, Klein, Stone and many others. In

a 1974 paper,7 Palm and I not only demonstrated the relationship

between univariate and multivariate ARMA models and structural

econometric models but also illustrated how that relationship can be

exploited to produce improved SEMs in the structural econometric,

time series analysis approach. This combination of forecasting and

structural modeling approaches has been very fruitful and will be

illustrated below.

In addition, I, along with many others, have emphasized the impor-

tance of sophisticated simplicity in modeling. Note that, in industry,

there is the expression KISS: that is, “Keep It Simple, Stupid.” Since

some simple models are stupid, I decided to reinterpret KISS to mean:

“Keep It Sophisticatedly Simple.” Indeed, there are many sophisti-

catedly simple models that work reasonably well in many sciences,

e.g. s = 1/2g t2, F = ma, PV = RT, E = mc 2, the laws of demand

and supply, etc. Over the years I have challenged many audiences to

tell me about one complicated model that works well in explanation

and prediction and have not heard of a single one. Certainly, large-

scale econometric models, VARs and other complex models have not

worked very well in explanation and prediction in economics. For ev-

idence on these points, see, e.g., McNees, Zarnowitz, Fair, and Fisher

and Whitley.8

Further, after years of application, the “general to specific” approach

that involves starting with a complicated large model, often a linear

VAR, and testing downward to obtain a good model has not as yet

been successful. There are many, many general models and if one

chooses the wrong one, as is usually the case, results are doomed to be
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unsatisfactory. Starting simply and complicating if necessary is an ap-

proach that has worked well in many sciences and is favored by Jeffreys,

Friedman, Tobin and many others. For further consideration of these

issues of simplicity versus complexity and methods of measuring the

simplicity of economic models, see the papers in the recent Cambridge

University Press monograph, Simplicity, Inference and Modeling.9

With this said about some key philosophical issues involved in statis-

tics, econometrics and forecasting, we now come to the fundamental

Bayes/non-Bayes statistical/econometric methodological controver-

sies that have been raging since the publication of Bayes’ 1763 paper.10

These controversies are focused on the issues of (1) how to learn

from data effectively, (2) how to estimate effects and test for their

presence or absence, (3) how to use data to make good forecasts and

decisions, and (4) how to produce models or laws that work well in

explanation, prediction and decision-making. Many leading workers

worldwide, including Laplace, Edgeworth, Jeffreys, Fisher, Neyman,

Pearson, de Finetti, Savage, Box, Lindley, Good and many others, have

been involved in these controversies, which are still ongoing. What

is at issue in such debates and discussions is, fundamentally: “how

do we operationally perform scientific inference – that is, induction

and reduction – that involves effective learning from data, making

wise decisions, and producing good models or laws that are help-

ful in explanation, prediction and decision-making?” It is my view

that the Bayesian approach is emerging as the principal paradigm for

use in science and decision-making. For recent information on the

explosive upward movement in the volume of Bayesian publications

with many references, some to free downloadable Bayesian computer

software, including the University of Cambridge’s famous “BUGS”

program, see Berger’s December 2000 Journal of the American Sta-

tistical Association article and material and references on the home-

pages of the International Society for Bayesian Analysis website,

http://www.Bayesian.org, and of the Section on Bayesian Statistical

Science (SBSS) of the American Statistical Association (ASA) website,
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http://www.amstat.org. Also, the annual SBSS/ISBA proceedings vol-

umes contain many valuable articles in which Bayesian methods are

developed and applied to forecasting, financial portfolio and other

problems. Then, too, the recent proceedings volume for the ISBA

2000 world meeting, which was published in 2001 by Eurostat (the

statistical office of the European Communities),11 includes Bayesian

papers dealing with many basic theoretical and applied problems.

1.2 Overview of the Bayesian approach

Basic to the Bayesian approach is the Bayesian learning model, Bayes’

theorem, which has been applied successfully to a wide range of

problems encountered in statistics, econometrics, forecasting and

other areas. Generally we utilize the Bayesian model to learn about

values of parameters – say, appearing in forecasting or demand

equations – as follows: in step 1, our initial or “prior” information,

denoted by I, regarding possible values of the parameters in the vec-

tor θ ′ = (θ1, θ2, . . . , θm) is summarized in a prior probability density

function, denoted by π(θ | I). In step 2, we represent the informa-

tion in our current data, y, by use of a likelihood function, denoted by

L(θ | y, I). In step 3, we combine our prior information and our sample

information, using Bayes’ theorem, to obtain a posterior distribution

for the parameters, as follows:

g (θ | y, I ) = cπ(θ | I )L (θ | y, I ) (1.1)

where c, the factor of proportionality, is a normalizing constant such

that
∫

g (θ | y, I ) dθ = 1. It is the case that g in equation (1.1) contains

all the information, prior and sample, and thus (1.1) is a 100 percent ef-

ficient information processing procedure, as I have shown in the recent

literature12 regarding a new information theoretic derivation of (1.1).

What was done was to consider the problem as an engineer might do,

namely to consider measures of the input information and of the out-

put information and to find a proper output density, g, that minimizes
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the difference between the output information and the input infor-

mation. Using conventional information measures, surprisingly, the

solution to this problem is given in equation (1.1), Bayes’ theorem. See

discussion of this result by Jaynes, Hill, Kullback, Bernardo and Smith

after my first paper on this topic.13 In particular, Jaynes remarked

that this demonstration was the first to show a direct connection be-

tween information theory (or entropy theory) and Bayes’ theorem,

and that there was much more work that could be done to produce

other, perhaps more general, learning rules. In my response to Jaynes

and others, and in my later work, some such extensions have been

derived to provide a variety of static and dynamic learning models,

which are generalized versions of Bayes’ theorem reflecting additional

conditions and constraints.

In addition to the above information theoretic derivation of Bayes’

theorem, a traditional probability theory proof of Bayes’ theorem

is available to justify (1.1). That is, from the joint probability den-

sity function (pdf), p(y, θ) for the observations, y, and the param-

eter vector, θ , we have, given our prior information I, p(θ, y | I ) =
π(θ | I ) f (y | θ, I ) = h(y | I )g (θ | y, I ) from the product rule of

probability, where f(y | θ , I) is the pdf for the observations given the

parameters and prior information and h(y | I) is the marginal density

of the observations. Then on solving for g(θ | y, I), we have:

g (θ | y, I ) = π(θ | I )L (θ | y, I )/h(y | I ) (1.2)

with the likelihood function defined by L (θ | y, I ) ≡ f (y | θ, I ) and

1/h(y | I) is the factor of proportionality c in equation (1.1). Note

that the derivation of (1.2) via probability theory relies on the prod-

uct rule of probability; see Jeffreys14 for a penetrating discussion of

the assumptions needed for proof of the product rule of probability,

which he points out may not be satisfied in all circumstances, and his

admission that he was not able to derive an alternative proof under

weaker conditions, which led him to introduce the product rule not

as a theorem but as an axiom in his theory of probability. Thus it is
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interesting to note, as pointed out above, that Bayes’ theorem or learn-

ing model, and generalizations of it, can also be derived as solutions

to optimization problems.

Having the posterior density in (1.2), it is well known that it can

be employed to calculate the probability that a parameter’s value

lies between a and b, two given numbers, and to construct poste-

rior confidence intervals and regions for a parameter or set of pa-

rameters. Also, an optimal estimate for parameters is obtained by

choosing such an estimate to minimize the posterior expectation of

a given loss function. For example, for a quadratic loss function, it

is well known that the optimal estimate for θ is the posterior mean,

θ∗ = E θ | D = ∫
θg (θ | D) dθ , where D= (y, I); for an absolute error

loss function, it is the median; and, for a zero-one loss function, it is

the modal value. Optimal estimates have been derived for many other

loss functions, including “two-part” loss functions,15 e.g. with one part

emphasizing goodness of fit, as in least squares, and the other precision

of estimation. It has also been recognized in many problems, including

medical, real estate assessment, policy and forecasting, that asymmetry

of loss functions is of great practical importance. For example, in fore-

casting it is often the case that over-forecasting by a certain amount can

be much more serious than an under-forecast of the same magnitude.

The same is true in the medical area. There are now many papers in the

literature dealing with the solution of problems involving asymmetric

loss functions.16 That estimates and predictions that are optimal rel-

ative to asymmetric loss functions can be easily computed and often

differ substantially from those that are optimal relative to symmet-

ric loss functions is most noteworthy. In non-Bayesian approaches

to inference, it is not as direct to derive estimates, predictions and

forecasts that are optimal relative to asymmetric and many other loss

functions.

Further, analytically and empirically, it has been established that op-

timal Bayesian estimates have rather good sampling properties – that

is, good average performance in repeated trials, as when a procedure is
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built into a computer program and used over and over again on sim-

ilar problems. Of course, if we are concerned about just one decision,

the criterion of performance in repeated samples may not be very rel-

evant, just as in visiting a restaurant on a particular evening. Many

times we are just concerned with the performance of the restaurant

on one evening, not on average. However, in some contexts average

performance – say, in ranking restaurants, or wines, or statistical pro-

cedures – is relevant, and it is fortunate that Bayesian procedures have

good average performance or risk properties, as shown analytically

and in Monte Carlo experiments. For some recent striking examples

of the outstanding performance of Bayesian estimators vis-à-vis non-

Bayesian estimators in the case of estimating the parameters of the

widely used Nerlove agricultural supply model, see papers by Diebold

and Lamb, and Shen and Perloff, and – for other models – Tsurumi,

Park, Gao and Lahiri, and Zellner.17 In these studies, the sampling

performance of various Bayesian estimation procedures was shown to

be better than that of leading non-Bayesian estimation procedures, in-

cluding maximum likelihood, Fuller’s modified maximum likelihood,

two-stage least squares, ordinary least squares, etc.

Further, Bayesian methods have been utilized to produce Stein-

like shrinkage estimates and forecasts that have rather good sampling

and forecasting properties; see, e.g., Berger, Jorion, Min and Zellner,

Quintana, Putnam and their colleagues, Zellner, Hong and Min,

Zellner and Vandaele18 and references cited in these works. Quintana

and Putnam talk about “shrinking forecasts to stretch returns” in con-

nection with their work in forecasting returns to form financial port-

folios using Bayesian optimization procedures. It is indeed the case

that improved estimation and forecasting techniques are not only of

theoretical interest but are having an impact on practical applications

in financial portfolio formation, forecasting and other areas.

Now, suppose that we partition the vector of parameters in the

posterior density in equation (1.2) as follows, θ = (θ1, θ2), and that

we are interested in learning about the value of θ1 and regard the
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parameters in θ2 to be “nuisance” parameters. How do we get rid of

the nuisance parameters? The answer is very simple; we just integrate

them out of the joint posterior density – a standard procedure in the

calculus that can be performed analytically or numerically. That is,

the marginal density for θ1 is simply given by integrating θ2 out of the

joint density to obtain the marginal density for θ1 as follows:

g (θ1 | D) =
∫

g (θ1, θ2 | D) dθ2

=
∫

g (θ1|θ2, D)g (θ2 | D) dθ2 (1.3)

where, in the second line of (1.3), g(θ1 | θ2, D) is the conditional

density for θ1 given θ2 and the data, D, and g(θ2 | D) is the marginal

density of θ2 given the data.

Thus integration, analytical or numerical, as shown in (1.3), is a very

useful way to get rid of nuisance parameters. Note, from the second line

of (1.3), the integration can be viewed as an averaging of conditional

densities for θ1 given θ2 to obtain the marginal density. This is quite

different from substituting an estimate of θ2 in the conditional density

g(θ1 | θ2, D) in an effort to deal with the nuisance parameter problem.

Such a “solution” has often been found to be a poor one in small

sample situations. Also, the conditional posterior density can provide

much information regarding the sensitivity of inferences about θ1 to

values assigned to θ2. For illustrations of such uses of conditional

posterior densities, see, e.g., books by Box and Tiao, Poirier, Zellner

and others.19

Thus, in contrast to difficulties in the treatment of nuisance param-

eters experienced in other approaches to statistics and econometrics,

it is straightforward to get rid of nuisance parameters in the Bayesian

approach: just integrate them out of the joint density and use the

marginal density to make inferences about parameters of interest, e.g.

to compute a mean of the marginal density as an optimal point estimate

vis-à-vis a quadratic loss function or to compute posterior intervals
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or regions for parameters of interest. Further, from the second line of

equation (1.3), as noted above, it has been recognized in the literature

that the integration can be viewed mathematically as an averaging

of the conditional densities for θ1 given θ2 with the marginal den-

sity for θ2 used as the weight function. Also, the conditional density,

g(θ1 | θ2, D), has been employed in many investigations to determine

how sensitive inferences about parameters of interest are to what is

assumed about the values of the nuisance parameters. That is, poste-

rior densities and moments of parameters of interest can be computed

from the conditional density for various assumed values of nuisance

parameters to study the nature of the dependence of results on what

is assumed about the values of nuisance parameters. And, of course,

Bayesian posterior odds (to be discussed below) can be employed

to investigate various hypotheses regarding the alternative values of

the nuisance parameters, e.g. that an autocorrelation parameter is

equal to zero, versus the hypotheses that it has a negative or a positive

value.

In summary, we have an operational learning model given in (1.1)

that has been derived in various ways and applied successfully in solv-

ing many problems. To provide illustrative specific analyses of some

concrete problems, suppose our data are five observed heads in five

tosses of a coin. What can we say about the probability of a head ap-

pearing on the next flip? Generally, if we assume that the coin is fair and

tossed fairly and thus the probability on any toss, including the next,

is 1/2, this is a problem in “direct” probability; that is, we know the

probability and, given this information, predict the outcomes. How-

ever, when we don’t have this information regarding whether the coin

is fair and tossed fairly we cannot safely assume that the probability is

1/2 but, rather, have to use the information in the outcomes or data –

five heads in five tosses – to infer or guess the value of this probability,

which can range from zero to one, and this is a problem in what is

usually referred to as “inverse inference.” That is, we go from the in-

formation in the data back to infer or guess the value of θ , in contrast
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to a problem in “direct” probability, where we assume a known value

of θ and use it to predict outcomes.

Let θ = the value of the probability of a head on a single fair toss

that has an unknown value in the interval zero to one (note that the

information that a head has appeared is information that the prob-

ability is not exactly equal to zero; the case of a “two-tailed” coin).

Also, we shall assume that θ is constant from trial to trial and that

the trials are independent. With these assumptions, the probability of

observing five heads in five independent trials – the data – is just θ5,

the product of the probabilities for the five independent events, which

is the likelihood function for this problem. Further suppose that we

have little information about the value of θ and follow Laplace and

others by representing our “diffuse” or “ignorance” prior by a uniform

prior20 – that is, π(θ) = 1 for 0 < 0 < 1. Then our posterior density

is: g(θ | D) = cπ (θ)L(θ | D) = 6θ 5, where c = 6 is the normaliz-

ing constant and the density has a mode or highest value at θ = 1,

an optimal estimate vis-à-vis a “zero-one” loss function21 and mean

Eθ = 6/7, an optimal point estimate relative to the squared error loss

function, L (θ, θ̂) = (θ − θ̂)2, and a special case of Laplace’s “rule of

succession,” namely that (n + 1)/(n + 2) = the posterior mean, given

n heads in n trials.

Having the complete, exact posterior density for θ permits us not

only to obtain optimal point estimates relative to various loss func-

tions but also to compute the probability that θ lies between any two

values – say, a and b, the original problem posed by Bayes. For example,

Pr(0.5 < θ < 1 | D) = 6
∫ 1

1/2 θ5 dθ = 1 − 1/64 = 63/64, a rather high

value. Also, if we use the posterior mean = 6/7 as our estimate, the

probability of a head appearing on the next toss is 6/7 – quite different

from 1/2, the value associated with a fairly tossed, fair coin. These and

many other valuable probability statements can be made, based on the

given prior density and the information in the likelihood function.22

A similar set-up can be employed in connection with five indepen-

dent tests of the validity of a theory, with θ being the probability that
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the theory is valid, or in connection with five male births in five trials,

as is the case with my wife and me, with θ being the probability of a

male birth on a given trial, and ask: “What is the probability that the

next birth will be a male child?” Using the above results, the expected

value of θ , 6/7, is a best estimate relative to a quadratic loss function,

given the prior and sample information described above. On the other

hand, if our loss function is a “zero-one” loss function, our optimal

point estimate is the modal value of the posterior density, which in

this case is one.

We treated the above two problems as pure estimation problems.

If we want to consider alternative assumptions – say, hypothesis 1,

with prior probability P1, reflecting our degree of confidence in this

hypothesis, and hypothesis 2, with prior probability P2 – our prior

odds relating to the two hypotheses work out as P1/P2 – say, e.g., one

to one. Then, given the observed data, we compute a Bayes factor

relating to the two hypotheses that incorporates the information in

the data, say, five heads in five tosses. Then we have the general result

that the posterior odds relating to the two hypotheses, denoted by

K12, is given by K12 = Prior Odds × Bayes Factor, where the Bayes

factor is given by Pr{r = 5 | n = 5, θ = 1}/Pr{r = 5 | n = 5,

θ = 1/2}. Applying this to the above coin flipping problem or

male/female birth problem, we can compute the odds on the hypothe-

ses H1: θ = 1 versus H2: θ = 1/2, given the model and data – five heads

in five tosses or five male births in five trials. If we begin one to one on

the two hypotheses, after processing the data by use of Bayes’ theorem

we end up with posterior odds of thirty-two to one in favor of θ =
1 versus θ = 1/2. Also, if we compute the odds on θ = 1/2 versus θ

uniformly distributed, zero to one, with prior odds one to one, the

posterior odds are six to one on θ = 1 versus θ uniformly distributed

zero to one. These posterior odds can be employed to choose optimally

between or among alternative hypotheses and/or to average estimates

and predictions over alternative hypotheses or models – a very im-

portant capability in inference, prediction and forecasting, as will be

illustrated later.
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Or suppose forecasters have made seven incorrect long-run growth

forecasts; what is the probability that their next forecast will be

incorrect? In connection with this last problem, note that (1) in the

1890s, forecasters were generally very pessimistic about the long-run

prospects of the US economy because of the ending of the western

frontier expansion; (2) in the Great Depression of the 1930s, many

forecasted the end of US capitalism; (3) the forecasts after World War II

were generally that the US economy would fall back into the depression

of the 1930s; (4) in the 1950s, many forecasted that the Soviet Union,

with Sputnik and a growth rate supposedly twice the US rate, would

dominate the United States; (5) in the 1960s, many forecasted that the

United States would go down in a flaming racial war; (6) in the 1970s,

forecasters generally concluded that high energy and resource prices

and shortages would prevent continued US economic growth; and

(7) growth forecasters pointed to global warming in the 1980s as hav-

ing a major negative impact on growth. With a record of seven incorrect

forecasts in seven trials, what is the probability of an incorrect forecast

on the next trial?

1.3 Some canonical problems

Before getting into discussion of additional technical Bayes/non-Bayes

issues, I shall consider a few canonical, applied problems that will, I

believe, introduce some deep issues quite painlessly, and hopefully

provide illumination. First, we have the fundamental problem of golf

club selection, which most of us solve heuristically. E.g., in playing a

185-yard hole with a green surrounded by water, do we use a two-iron

in an effort to hit the green in one shot, or do we “play it safe” by using

a seven-iron to lay up and then chip to the green in an effort to make

a reasonable score by lowering the probability of our ball going into

the water?23 To make this decision problem amenable to quantitative

analysis, it occurred to me several years ago on a visit to South Africa,

where there are many excellent golfers, that it would be helpful to

construct table 1.1.
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In this table, the possible outcomes for each club selection have

been indicated and the p’s and q’s are the probabilities associated

with outcomes. For example, if a two-iron is the club selected, the

probability of scoring a hole in one – a score of one – is p1, while, if a

seven-iron is used, the probability of scoring a one is q1. For the average

golfer, it is undoubtedly the case that both of these probabilities are

very small in value, with the latter being smaller and quite close to zero.

Given the assessed or guessed values of the probabilities, it is direct to

compute the expected scores associated with the choices of a two-iron

and a seven-iron, denoted by E S2 and E S7 in the table. Further, if the

golfer’s loss function is monotonically increasing in expected score,

he/she will choose the club with the associated lower expected score,

e.g. the two-iron if E S2 < E S7. For other loss functions, an optimal

choice can be made by choosing the club with an associated lower

expected loss. Good luck!

While many variants of the above problem can be analyzed, for

present purposes it is relevant to say a few words about the p’s and the

q’s, the probabilities in table 1.1. What are they? How are their values

determined? And are they useful?

As regards the p’s and q’s in table 1.1, I consider them to be quan-

titative measures of degrees of belief in propositions, e.g. the belief

that, if I select a two-iron, my score will be three – say, p3 = 0.2. This

is a value that reflects my background information regarding past

performance, current conditions and other factors, i.e. a “degree of

confidence” concept of probability is being employed here, which is

used extensively in science. Clearly, it is not a “long-run frequency”

probability à la Venn and others since, in the present case, and many

others, it is difficult to perform an infinite number (or even a very large

number) of repetitions of the “experiment” under identical conditions

because players age and repetitions are rarely “exactly the same.” And

the relevance of a “hypothetical” experiment in the present context

is questionable. Further, it is difficult to interpret the probabilities

in table 1.1 as “axiomatic probabilities.” Here there are six possible



18 Statistics, Econometrics and Forecasting

outcomes associated with each club selection and it is unclear how the

axiomatic definition can be employed to produce useful probabilities.

On an “equally probable” assumption, all the p’s would equal 1/6.

Would that the probability of a hole in one were equal to 1/6!

Thus, I and many others find the “degree of confidence” concept

of probability useful and operational in the present problem and

in the general problems encountered in scientific investigations and

decision-making. It should also be noted that information on scores

in previous rounds of play can be formally combined with our judg-

mental information using Bayesian methods. For a very useful and

penetrating discussion of alternative definitions of probability, see

Jeffreys,24 and note that most statistics and econometrics textbooks

do not treat this definitional problem very well, if at all. Thus, many

statisticians and econometricians make probability statements that

they find hard to interpret satisfactorily. To illustrate, a graduate stu-

dent once asked me, “Do I have to imagine that God runs the US

economy through a historical period over and over again to make

probability statements using time series data, as my undergraduate

instructor stated?”

Some other problems that are very important and illustrate well

the usefulness of the “degree of confidence” concept of probability are

“selection” problems. For example, many years ago I asked a dean how

he decided how many offers of admission, N, to make to his school

each year. He answered that, if he wanted 200 students in his entering

class, he would make 400 offers of admission – a “rule of thumb” that

he claimed “worked well.”

Note that, for a given N, it is direct to compute the expected number

and the expected total outlay. If each probability were equal to 1/2,

then the dean’s “rule of thumb” would apply – that is, Ne = (1/2)N.

However, additional information regarding individual candidates is

usually available, which can be used to assign “more realistic” values

to the probabilities and thus more realistic estimates of the expected

number enrolling and the expected outlays on fellowship awards. Also,
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Table 1.2 Candidates for admission, awards, probabilities of

acceptance, and expected enrollment and outlays

Fellowship Probability of Expected

Candidate award acceptance outlay

1 A1 P1 P1 A1

2 A2 P2 P2 A2
. . . .
. . . .
. . . .
. . . .

N AN PN PN AN

Expected values Ne =
N∑
1

Pi Ae =
N∑
1

Pi Ai

in a paper by Marsh and me,25 it is explained how to obtain the optimal

number of offers to make so as to have the number accepting close

to a target number – say, N∗ – using symmetric and asymmetric loss

functions.26 Also, past data and statistical models – e.g. logit or probit

models – can be employed to obtain more informative probabilities

for solving this and other problems. And, most important, actual en-

rollments can be compared to forecasted enrollments year by year to

determine the quality of the procedure and possibly improve it.

The above problem is similar to those involved in planning parties,

meetings, seating on airplanes, hotel room reservations, etc. See refer-

ences in our paper.27 Here, as in the earlier golf problem, the “degree of

confidence” concept of probability is very useful and easy to interpret.

As an “exercise,” try to interpret the probabilities in table 1.2 in terms

of long-run frequencies or axiomatically.

Another important problem that lends itself well to Bayesian so-

lution is the optimal portfolio problem. We have m assets each with

their own future return and we wish to form an optimal portfolio.

Let yi f denote the return on the i’th asset in the future period f and

assume that yi f = xi f
′ β i + ui f is the relation between the return, some

input variables, xi f , and an error term with β i a vector of parameters
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with unknown values. The return on the portfolio in period f is

Rf = w 1y1f + w 2y2f + · · · + w m ymf , where wi is the investment

in the i’th asset. Given a utility function for returns, U (R f ), and a

predictive density for Rf, it is possible to maximize expected utility

E U (R f ) = ∫
U (R f ) f (R f | D) d R f , where D denotes past data and

prior information with respect to the values of the w i’s, subject to

the condition that they add up to initial wealth, i.e. Wo = ∑
wi . The

solution to this problem is the optimal portfolio w∗ = (w∗
1 , w∗

2 , . . . ,

w∗
m).

Note that the optimal values of the w’s above are just functions of the

data and past prior information. In early work on the portfolio prob-

lem by Markowitz and others,28 the “optimal” w’s were derived using

the sampling density of the y’s that depends on nuisance parameters,

e.g. the regression coefficients, error term variances and covariances,

etc. Substituting estimates of the values of these nuisance parameters

in the expressions for the “optimal” w’s led to poor approximations to

the optimizing values, as shown in the work of Brown and others.29

By integrating out the nuisance parameters to derive the predictive

density, denoted by f (R f | D) = ∫
h(R f | θ, D)g (θ | D) dθ , where

h is the sampling density for Rf given the nuisance parameters θ and

D, the past data and prior information, and g is the posterior density

for θ . Here the ability to integrate out nuisance parameters is not only

useful but also profitable. For further material on Bayesian portfolio

analysis and applications, including multi-period problems employ-

ing models with time-varying parameters and multivariate shrinkage

estimation techniques that are employed on Wall Street and elsewhere,

see articles by Putnam, Quintana and others in the annual Proceedings

Volumes of the Bayesian Statistical Science Section of the American

Statistical Association.30

There are many other decision and control problems, including

those that have been put forward by Tinbergen and many others,

concerned with policy issues that have been solved as simply as

those above using the Bayesian approach, whereas only approximate
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non-Bayesian solutions are available.31 In the simplest versions of these

problems, we have a target value of a variable, Y∗, an assumed per-

cent rate of growth of GDP, a policy control variable – say, the rate of

growth of money, M – and a relation connecting Y to M, Y = Mv + u,

where v is a positive parameter and u is an error term. If we use

squared error loss, L = c(Y − Y ∗)2, where c is a positive con-

stant, we can evaluate expected loss and find the minimizing value

of M. That is, E L = c E (v M + u − Y ∗)2 = c(M2 E v2 − 2MY ∗ E v +
Y ∗2 + E u2). On minimizing this last expression with respect to

M, the optimal value is M∗ = (E v/E v2)Y ∗ = (Y ∗/E v)[1/(1 +
var v)/(E v)2)]. It is seen that the optimal setting for M is equal to

the target value for Y, Y∗, divided by the mean of v, Y ∗/E v , times

a factor 1/[1 + var v/(E v)2] that reflects the spread of the posterior

distribution of the parameter v . Note that the above solution is usually

obtained using a posterior distribution for v based on past data and

prior information. If no past data are available, the solution can also

be obtained using just a prior density. In contrast, a non-Bayesian,

“certainty equivalence” solution to the problem involves minimizing

the expectation of the above loss function given the value of the param-

eter v , to obtain Mce = Y ∗/v , and then inserting an estimate of v –

say, a least squares estimate – to obtain an “operational” solution,

M̂ce = Y ∗/v̂ . Note that assuming v = v̂ takes no account of the pre-

cision with which the parameter has been estimated, the estimation

risk, and thus, as shown in the literature, the certainty equivalence

solution is sub-optimal relative to the Bayesian solution.32

More complicated policy problems have been analyzed in the

Bayesian literature. One that is very important, as Tinbergen recog-

nized, is the choice of the social welfare function or social loss function,

assumed to be quadratic in the simple example considered in the pre-

vious paragraph. Now, it may be asked, “Is the 4 percent target rate of

growth an accurate target?” Perhaps it is too high or too low. Similarly,

if there are costs associated with changing the money supply variable,

they have to be evaluated to formulate the social loss function. As
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with the target growth rate, such costs of change can be overstated

or understated – another example of loss function misspecification.

A very important question is, “What are the effects of such possible

errors in formulating social loss or welfare functions?” In an article

written for a Tinbergen festschrift volume, I used Bayesian methods to

analyze such problems and found that (1) overstating costs of change

and overstating the target growth rate, Y∗ above, can be exactly off-

setting errors, whereas, on the other hand, (2) underestimating the

cost of changing M and overstating the target growth rate Y∗ were

found to be reinforcing errors. That is, with an erroneously low cost

of changing the policy variable M, it was changed too much in an ef-

fort to reach a mistakenly high target value Y∗. Whether the errors in

(1) or in (2) are made more frequently by politicians on the right or

on the left is a key problem deserving more analysis.

1.4 Bayes – non-Bayes issues

Having considered briefly some canonical problems, let us now turn

to take up some of the basic issues involved in the Bayes – non-Bayes

controversy about how to conduct our primary activities of learning

from data and making decisions. This controversy has raged for more

than two centuries since the publication of Bayes’ paper in 1763 and

is currently being resolved in what Kuhn would call a paradigm shift

in statistics, econometrics, forecasting and other fields. In table 1.3 is

a summary listing of questions relating to a number of central issues

and Bayesian and non-Bayesian responses that I consider reasonably

accurate and put forward for your consideration.

In what follows, I shall review the questions and answers in table 1.3

with discussions that I hope you will find helpful. To be perfectly frank,

I have indicated my personal conclusion at the bottom of the table.

Hopefully, these considerations will be helpful in clarifying issues and

providing further information. We shall start with issue 1 and proceed

one by one to consider others on the list.
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Table 1.3 Bayes – non-Bayes issues

Answers

Issues Bayes non-Bayes

1 Uses a formal learning model? Yes No

2 Axiomatic support? Yes ?

3 Probabilities associated with hypotheses Yes No

4 Probability defined as a degree of confidence in

a proposition?

Yes No

5 Uses Pr{a < β < b given data}? Yes No

6 Uses Pr{c < y f < d given data}? Yes No

7 Minimization of Bayes risk? Yes No

8 Uses prior distributions? Yes ?

9 Uses subjective prior information? Yes Yes

10 Integrates out nuisance parameters? Yes No

11 Good asymptotic results? Yes Yes

12 Exact, good finite sample results? Yes Sometimes

Personal conclusion? It pays to go Bayes!

Issue 1. Learning model?

In answer to the first question in table 1.3, Bayesians use Bayes’ theo-

rem as a formal model in learning from data in a reproducible fashion.

Non-Bayesians do not use a formal learning model and thus they learn

informally from their data. The Bayesian learning model has been ap-

plied in analyses of all kinds of problems in statistics, econometrics and

other areas and been shown to produce reliable, useful results. Further,

various rationalizations of the Bayesian learning model using proba-

bility theory and information theory have appeared in the literature.

For example, as noted above, using information theory, I33 have shown

that Bayes’ theorem can be derived as the solution to an optimization

problem, namely minimization of the difference between measures of

the output information and the input information with respect to the
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form of the output or post data density for the parameters. Also, it is

a 100 percent efficient information processing rule. However, this is

not to say that the traditional Bayesian learning model cannot be im-

proved and extended. Indeed, various extensions and modifications

of Bayes’ rule have appeared in work by Dempster, Diaconis, Hill,

Just, me and others.34 One might say that Bayes’ rule is the “Model

T” learning model that works quite well. However, past and current

research is directed at extending and improving it to permit a wider

range of learning problems to be solved satisfactorily or optimally, e.g.

learning under conditions of ignorance or without a prior density,

as R. A. Fisher wished to do in his fiducial approach,35 and dynamic

learning problems involving costs associated with changing beliefs and

acquiring new information.

Issue 2. Axiom systems?

As regards issue 2 in table 1.3, there are quite a few axiom systems

underlying the Bayesian approach, e.g. those of Jeffreys, Savage, de

Finetti and others. While they differ in certain important respects and

certainly are not “perfect,” they do exist and give evidence of much

hard thought regarding fundamental considerations. As regards axiom

systems for non-Bayesian approaches, I do not know of any. It appears

that non-Bayesians approach inference in an artful way.

Issues 3 and 4. Probabilities associated with hypotheses to
express degrees of confidence?

With respect to issues 3 and 4 in table 1.3, Bayesians along with many

others associate probabilities with hypotheses or propositions to rep-

resent degrees of confidence in such propositions. For example, it is

considered useful and meaningful for a forecaster to state that the

probability that the economy will turn down in the next quarter is

equal to 0.3 – a value that reflects his or her available information. Or
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a forecaster may state the odds of two to one on the Bank of England’s

macroeconomic model versus a competing hypothesized model to re-

flect relative degrees of confidence in the alternative models. Many

regard the failure of other definitions of probability to accommodate

probabilities associated with hypotheses as a major defect of such def-

initions, e.g. the long-run frequency, axiomatic, hypothetical infinite

population, etc. definitions. In the Bayesian approach, such probabili-

ties and odds are not only used but are formally updated, using Bayes’

theorem, as new information becomes available. For example, in fore-

casting, the probabilities of hypothesized, alternative movements – e.g.

downturn or no downturn, in the rate of growth of real GDP for next

year – have been utilized to determine optimal turning point forecasts;

see, e.g., my paper with C. Min with applications to forecasting turning

points in eighteen countries’ annual growth rates (a response to Milton

Friedman), and references to the earlier literature cited therein.36 In

contrast, the probability concepts employed by non-Bayesians do not

permit them to associate probabilities with hypotheses, e.g. the prob-

ability associated with the hypothesis that economic activity will turn

down next quarter, even though they often do so in practice.

Thus, in testing hypotheses, non-Bayesians cannot formally con-

sider or evaluate the probabilities or odds on alternative hypotheses

or models – a very severe limitation on the learning process. In this

connection, it should be appreciated that “likelihoods” or “likelihood

ratios” are not “probabilities” or “ratios of probabilities,” as is well

known, even though some practitioners confuse these concepts. It is

indeed interesting to note that bookmakers and insurance companies

have no difficulty in using odds and probabilities. For some pioneer-

ing early uses of Bayesian analysis in the insurance industry, see the

review paper by R. Miller.37 And, for an account of the use of Bayesian

analysis to understand how Lloyds of London issued a policy to insure

the Cutty Sark company for risk associated with its public offer of £1

million for the capture of the Loch Ness monster, see the amusing

paper by Karl Borch.38
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Thus, being able to assign and update probabilities associated with

hypotheses and models in the Bayesian approach is very useful not

only in learning from data but also in choosing between or among

alternative hypotheses and models. Further, these probabilities have

been employed to average or combine alternative models and their

forecasts. See the article by Min and me39 for formulation and ap-

plications of optimal Bayesian model and forecast combining tech-

niques, which are compared to various non-Bayesian forecast com-

bining techniques due to Bates, Granger and others, where it was found

that Bayesian methods performed somewhat better than non-Bayesian

methods.40

Last, it should be appreciated that Bayesian methods for analyzing

and choosing between or among alternative hypotheses when “Knigh-

tian uncertainty” or “ignorance” is present have been considered in

the literature, and this is, I believe, fertile ground for much addi-

tional research. For example, with “ignorant” participants in financial

markets, how does their performance compare to markets with “fully

informed, rational” participants? Behavioral financial economists and

others are asking questions such as these but have not as yet, to my

knowledge, produced a reliable model that explains variation in past

data, predicts well and is useful in forming portfolios that yield good

or average rates of return.

Issue 5. Probability interval for a parameter

Next, we consider item 5 in table 1.3, namely the simple probability

statement that the value of a parameter, denoted by θ , lies between

two given values, a and b. For example, this might be the probability

that the marginal propensity to consume (MPC) lies between 0.60 and

0.80 given our past data and information. Bayesians easily interpret

and compute such probabilities. However, non-Bayesians do not or

cannot. For example, if 0.60 to 0.80 is a 95 percent non-Bayesian con-

fidence interval for the MPC, it is incorrect to say that the probability
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is 0.95 that the value of the MPC lies between 0.60 and 0.80. Rather,

one should say that 0.60 to 0.80 is the realized value of a random

interval that, if computed over and over again, has a probability of

0.95 of covering the true MPC. Also, when it comes to using sample

data to estimate population characteristics – e.g. a national unem-

ployment rate, or the percentage of the voting population favoring a

particular candidate – many times an estimate (say, 45.2 percent in

favor of a particular candidate) is accompanied by a statement such

as: “The margin of error is 3.1 percentage points” – a statement and

number, 3.1, that many have difficulty understanding. A statement

such as: “To the best of our knowledge, the probability is 0.90 that the

percentage of the voting population favoring candidate A is between

42 and 48 percent” is a much more informative and easily understood

statement.

Thus, there is a fundamental difference in the interpretation of

Bayesian and frequentist, non-Bayesian intervals, even when they nu-

merically coincide. In the special cases in which the intervals are nu-

merically the same, then the Bayesian interval often has both a poste-

rior degree of belief interpretation and the non-Bayesian frequentist,

say, 95 percent coverage property. The latter is a useful property in

appraising “operating characteristics” of a procedure whereas the for-

mer is more appropriate for making inferences in a specific situation

with given data. Of practical importance too are the many problems –

e.g. forecasting time series problems – for which exact, finite sample

frequentist intervals are not available and use is made of approximate,

large sample approximate intervals, whereas with the Bayesian ap-

proach exact finite sample intervals can be and have been computed.

Issue 6. Predictive intervals?

The next item, item 6, in table 1.3 relates to interpretations of Bayesian

and non-Bayesian predictive intervals, and involves issues similar to

those considered above in connection with alternative confidence
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intervals. Years ago, I made the statement that very few know how to

interpret non-Bayesian prediction intervals. In response to a challenge

to my statement, I asked a number of colleagues and graduate students

to interpret the following statement: “A 95 percent non-Bayesian pre-

diction interval for next year’s rate of growth of real GDP for the US

economy is, numerically, 1.0 percent to 3.0 percent.” About 70 percent

of the respondents could not satisfactorily interpret this prediction in-

terval. One respondent told me that it means that the probability is

0.95 that next year’s rate of growth will be between 1.0 percent and

3.0 percent. He did not realize that he had given me the standard

Bayesian interpretation of the interval, not the non-Bayesian inter-

pretation, which is as follows. The interval 1.0 percent to 3.0 percent is

the realized value of a random interval that has probability 0.95 of cov-

ering or including next year’s as yet unobserved random growth rate.

Imagine how the President of the United States or the Prime Minister

of the United Kingdom would respond to such a “clarifying” state-

ment, which is more a property of a procedure than a direct measure

of the uncertainty involved in prediction or forecasting.

Predictive densities for one or more future observations are easily

derived in the Bayesian approach and are used to compute predictive

intervals as well as optimal point predictions. That is, given a pre-

dictive loss function, it is direct to derive the optimal forecast that

minimizes expected loss. For example, with a quadratic loss function

the predictive mean is an optimal point prediction, while for an ab-

solute error loss function the median of the predictive density is an

optimal point prediction. For useful asymmetric loss functions, op-

timal point predictions that differ considerably from those that are

optimal relative to symmetric loss functions have been derived and

are easily computed in applications; see, e.g., the pioneering work by

Varian and later papers extending his work.41

Further, the predictive density is very important in solving various

control and decision problems, including economic policy-making

problems, portfolio problems, etc., as noted above. Also, as mentioned
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earlier, the Bayesian approach has been useful in studying how errors

in formulating social welfare or loss functions affect solutions to public

policy and other problems. That many business, medical, engineer-

ing, economic policy and other problems can be readily solved using

Bayesian methods is indeed fortunate and important.

Last, predictive densities are very useful in connection with form-

ing optimal portfolios and managing risk in the financial world.42

Given that the return on a portfolio is a linear combination of in-

dividual asset returns, the predictive density of the portfolio return

has been derived and used to determine optimal portfolio weights,

summing to initial wealth, that maximize the expected utility of the

portfolio return, as mentioned above. In work by Brown, non-normal

return distributions were employed in solving for optimal Bayesian

portfolios.43 Jorion employed Stein shrinkage techniques in his pre-

dictive analyses and derivation of optimal portfolios while Quintana

et al. employed Bayesian state space, time-varying parameter (TVP)

models, “seemingly unrelated regression” (SUR) and “shrinkage” es-

timation and prediction techniques in solving for optimal portfolios

month by month in a sequential, optimal fashion.44 In experimen-

tal calculations, their procedures produced cumulative returns that

compared very favorably with those associated with the Standard &

Poor’s 500 portfolio. A growing number of financial firms on Wall

Street and elsewhere have been using Bayesian predictive densities

and methods for a number of years. Also, various uses of Bayesian

predictive densities and methods at Microsoft have been described by

Heckerman.45

Issue 7. Minimization of Bayes risk?

In item 7 in table 1.3 it is indicated that Bayesians minimize Bayes

risk, when it exists and is finite, in choosing estimators while non-

Bayesians do not. The difference arises because non-Bayesians do

not employ prior densities for parameters that are required to
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define Bayes risk. That is, given a convex loss function, L (θ, θ̂), where

θ is a parameter to be estimated and θ̂ is some estimator, the usual

risk function is r (θ) = ∫
L (θ, θ̂) f (y | θ) dθ , where f (y | θ) is the data

density. Since different estimators have different risk functions that

often cross, one cannot use their associated risks functions to choose

among them. Average risk (AR) or Bayes’ risk (BR) is defined to be

B R = ∫
π(θ)r (θ) dθ , where π(θ) is a prior density and the integral is

assumed to converge. As shown in Bayesian statistics and econometrics

texts, when the integral defining AR converges to a finite value the op-

timal Bayesian estimate (obtained by minimizing posterior expected

loss), viewed as an estimator, minimizes AR and thus is admissible.

That is, given that the Bayesian estimator minimizes AR, there cannot

be another that has uniformly lower risk, r(θ), over the entire pa-

rameter space since it would have lower BR than the estimator, which

minimizes average risk – a contradiction. Thus Bayesians can obtain

optimal estimators that minimize Bayes’ risk in this way, whereas non-

Bayesians cannot since they do not use prior distributions that are

needed to define average or Bayes’ risk.46

Issues 8 and 9. Prior distributions and subjective
prior information?

On the use of prior distributions, issue 8 in table 1.3, it is the case that

Bayesians use prior densities, both “non-informative” and “informa-

tive,” whereas non-Bayesians state that they do not, and this has been

a bone of contention for many years. In recent years, since the intro-

duction of the Bayesian method of moments (BMOM) in the early

1990s, it has become possible to perform inverse inference without

introducing a prior density or a likelihood function in many different,

commonly encountered problems, e.g. location, regression, multivari-

ate regression, time series, dichotomous random variable and other

models.47
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As an example of the BMOM, assume that we have observed times

to failure in n cases and that the observed times satisfy the relation

yi = θ + ui, i = 1, 2, . . . , n, where the yi’s are given observations,

θ is a non-negative parameter with an unknown value and the ui’s

are realized, unobserved error terms. If we sum both sides and divide

by n, we have, for the mean of y, y = θ + u, where u = �ui/n, the

mean of the realized error terms. On taking the subjective expectation

of both sides of this last equation with y having a given known value,

y = E θ + E u. Now, if we assume that there are no outliers, no left-

out variables and that the relation is appropriately formulated, we can

assume that the post data expectation E u = 0 that implies from the

relation above that E θ = y. Thus, we have the value of a post data

mean of the parameter θ obtained without a prior density, likelihood

function or Bayes’ theorem. Note that the above assumption regarding

the mean of the realized error terms appears much weaker than iid,

normal, zero mean, common variance sampling assumptions about

error terms that are usually made to obtain normal likelihood func-

tions. We can also solve for the most spread out, or least informative,

proper density for θ – say, g(θ | y) – with the above given mean y by

choosing it to minimize
∫

g (θ | y) log g (θ | y) dθ ; that is, minimize

the average log height or negative entropy relative to uniform mea-

sure. The solution is the exponential density for θ given the data y;

that is, g ∗(θ | y) = (1/y) exp(−θ/y). Since this density can be em-

ployed to compute Pr{a < θ < b | y}, the famous inverse problem

of Bayes, the procedure to obtain it is called the Bayesian method of

moments. In papers in the literature, the BMOM approach, utilizing

the above and other assumptions regarding properties of the real-

ized and future, as yet unrealized error terms, has been used to make

inverse and predictive inferences in connection with regression, time

series and many other models.48 See also the work of Golan, Judge and

Miller, and of Mittelhammer, Judge and Miller, for a somewhat differ-

ent “generalized maximum entropy” approach for performing inverse
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inference without sampling assumptions and Bayes’ theorem.49 In

recent work, BMOM and traditional Bayesian regression models have

been compared using posterior odds and other model comparison

techniques.50

Note also that non-Bayesians using random effects models and

stochastic volatility models assume that parameters are random

and introduce densities, e.g. normal densities, for random effects

and stochastic processes for volatility parameters. Also, in random

parameter regression and time series state space models, parameters

are considered to be random and forms for their densities are assumed.

These assumed densities for parameters are much like prior densities

in traditional Bayesian analyses and are well known to incorporate

additional, non-sample information in analyses. Good has noted that

this may be a basis for a Bayes / non-Bayes compromise.51 However,

non-Bayesians often remark that their parameter densities are “part of

the model,” not prior densities. While this is a thin distinction, there

can be no doubt but that non-Bayesians are adding prior information

by introducing probability density functions for parameters. Whether

the added information in prior densities is justified or not cannot be

settled deductively but must be settled empirically in terms of model

comparison techniques and predictive performance.

With respect to the aforementioned capability of comparing

BMOM and traditional Bayesian models, the eminent British statisti-

cian George A. Barnard wrote in a private communication in 1997:

And above all any method is welcome which, unlike nonparamet-

rics, remains fully quantifiable without paying obeisance to a model

which one knows is false. And your proposal to compare BMOM

results with a model-based one should achieve the best of both

worlds.

The general point seems to me to be that we should express prior

knowledge, as far as we can, in a prior. Then our model – likelihood-

producing or moment-producing, or whatever – should help us
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process the observed data. Then we should go back to compare what

we thought we knew before with the result of our data processing.

In arriving at our (for the time being) conclusion the weight that we

attach to the three components of our inference will vary from case

to case. BMOM will be specially useful when the latter two stages of

the three should predominate.

It should also be recognized that choice of a functional form for a

relation usually involves a lot of prior information, as many have rec-

ognized. For example, if we choose to employ a Cobb-Douglas pro-

duction function, we should realize that it implies a non-U-shaped

long-run average cost function unless a fixed cost of entry is added to

other costs. Or, if we choose to formulate the demand function for real

money, M, as log M = a − br + . . . , where b is a positive parameter

and r is an interest rate, this relation implies that money demand will

be more elastic at high than at low levels of r, contrary to what Keyne-

sians believe. Perhaps use of 1/r rather than r would satisfy Keynesians.

Also, some have used a log-log relation for the murder rate, m and the

execution rate, x (that is, log m = a − b log x + · · ·) without noting

that with b > 0 such a relation predicts that, as the execution rate,

x, approaches zero, ceteris paribus, the murder rate, m, shoots off to

infinity! Perhaps a semi-logarithmic relation would be more sensible

given that in some states of the United States x = 0. Thus, in these

cases and many more that could be cited, choice of a functional form

for a relation or a density function for error terms involves a good deal

of prior information with respect to what is “reasonable” and what is

not. Note that normal error term densities have very thin tails and con-

stant variances and thus are, as is well known, inappropriate for stock

return data and are often replaced by Student-t or other densities that

can have heavy tails, along with processes for error term variances –

for example ARCH, GARCH and stochastic volatility models of vari-

ous kinds.52 Further, sometimes we know, as in the case of intra-day

stock price changes, that distributions can be skewed and sometimes

bimodal; for such situations, unimodal, symmetric densities are not
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appropriate, and some have employed exponential quartic densities

that can be skewed and/or bimodal. Obviously, such prior informa-

tion about distributions underlying likelihood functions is very im-

portant, and failing to take good account of it can obviously lead to

serious inference errors, poorly fitting relations, bad forecasts and poor

portfolios.

Thus, in summary, non-Bayesians as well as Bayesians use and mis-

use prior information and require use of good model comparison and

predictive checks to determine what prior information and models to

use in practice.

Issue 10. Integrating out nuisance parameters?

On the issue of integrating out nuisance parameters, number 10 in

table 1.3, Bayesians have utilized this option extensively whereas non-

Bayesians have not. As shown above, it is direct for Bayesians to in-

tegrate out nuisance parameters to obtain the marginal densities of

parameters of interest and also to use conditional posterior densities

to explore the sensitivity of inferences about parameters of interest to

what is assumed about the nuisance parameters’ values. In contrast, in

non-Bayesian approaches, this capability of integrating out nuisance

parameters is not available and often nuisance parameters are replaced

by estimates in expressions for optimal estimators, e.g. generalized

least squares (GLS) estimators, which often depend on parameters of

covariance matrices. The resulting, so-called “feasible” GLS estima-

tors are justified asymptotically in terms of consistency and asymp-

totic normality and efficiency. However, the small sample properties

of such “feasible” or “operational” approximately optimal estimators

constitute a key issue. In some cases, as is well known, asymptoti-

cally optimal estimators have rather poor small sample properties. On

the contrary, Bayesian estimates have finite sample and large sample

optimal properties in terms of minimizing expected loss. As regards

Bayesian estimators, as pointed out above, in many cases they are the
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estimators that minimize Bayes’ risk and are admissible when Bayes’

risk is finite. In some cases, particularly when diffuse, improper priors

are employed, there is no assurance that Bayesian estimates that min-

imize expected loss are admissible. However, given the minimal prior

information employed, it is doubtful that other estimators, based on

just the minimal information employed, are uniformly better. In the

classic Stein inadmissibility results, it should be appreciated that he

employed an informative prior density for his means in his Bayesian

derivation of his famous shrinkage estimates.53

Issues 11 and 12. Asymptotic and finite sample properties?

With respect to item 11 in table 1.3, generally Bayesian and non-

Bayesian methods have good asymptotic properties with respect to

models with a fixed number of parameters. Years ago, Jeffreys showed

under rather general conditions that, in large samples, posterior den-

sities assume a normal shape centered at the maximum likelihood es-

timate, with a covariance matrix given by the inverse of the estimated

Fisher information matrix, and interpreted this result as a justification

for the method of maximum likelihood. Later, Heyde and Johnstone,

and Chen, showed that the conditions needed for the asymptotic nor-

mality of maximum likelihood estimators and of Bayesian posterior

densities are identical when observations are stochastically indepen-

dent. However, in the case of stochastically dependent observations,

the conditions required for the asymptotic normality of posterior den-

sities are simpler than those required for the asymptotic normality of

maximum likelihood estimators.54

As regards finite sample situations, non-Bayesian procedures many

times do not have good finite sample properties. This is particularly

true for testing, estimation and prediction procedures for simultane-

ous equations, non-linear, time series, discrete random variable and

many other commonly encountered models. For example, in terms

of the widely employed simultaneous equations model with normal



36 Statistics, Econometrics and Forecasting

error terms, which can be viewed as a linear multivariate regression

model subject to non-linear restrictions (as in the pioneering work

of Anderson and Rubin55), the maximum likelihood estimators put

forward by them have been shown not to possess finite moments in

general and have heavy-tailed densities. As pointed out in later work,

in the canonical form of the model the estimation problem is one of

estimating a ratio of parameters.56 A similar ratio estimation prob-

lem is encountered in the widely used Nerlove agricultural supply

model, where a key parameter, the coefficient of anticipated price, in

the supply function is algebraically linked to the reduced form regres-

sion parameters as follows: α = b1/(1 − b2 − b3), where the b’s are

reduced form coefficients. As mentioned in Diebold and Lamb, when

least squares estimators are substituted for the b’s, the resulting esti-

mator for α has a rather heavy-tailed density, without finite moments

that can be bimodal.57 For other such examples involving failure of

moments to exist and bimodal densities for estimators, see papers by

Nelson and Startz, me, and others.58

In Monte Carlo experiments conducted by Diebold and Lamb and

Shen and Perloff, it is shown that Bayesian and certain BMOM and

generalized maximum entropy (GME) estimators have much better

small sample properties than the widely used “plug-in” estimator

for α described above. Also, see papers by Tsurumi, Park, Gao and

Lahiri, Shen and Perloff, and Zellner for additional Monte Carlo

evidence showing that Bayesian estimators for parameters of simul-

taneous equations models perform better than maximum likelihood,

modified maximum likelihood, two-stage least squares, ordinary least

squares and other estimators. In particular, traditional Bayesian and

BMOM estimates, which are optimal relative to an extended, two-

part, balanced loss function, with one term reflecting goodness of fit

and the second precision of estimation, performed exceptionally well

in the Monte Carlo experiments of Tsurumi, and Gao and Lahiri.59

In addition to providing good point estimates, as mentioned above

in the Bayesian, BMOM or GME approaches, the complete exact
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finite sample post data densities for parameters and predictive densi-

ties for future observations are available, some obtained by employing

“direct” Monte Carlo techniques and others by use of Markov Chain

Monte Carlo (MCMC) techniques. For more on the powerful im-

pact MCMC and related numerical techniques are having on Bayesian

analysis, see review articles and references in the December 2000 issue

of the Journal of the American Statistical Association (JASA) and the

1996 article by Chib and Greenberg. Also, it should be recognized

that, in recent work, Dufour and Khalaf have used related numerical

integration procedures in an effort to improve non-Bayesian, sam-

pling theory approaches to estimation, prediction and other inference

techniques.60

Personal conclusion?

From the above summary overview, and from the many impressive

Bayesian applied analyses that have been performed over the years

in many different fields, I have personally concluded that “It pays to

go Bayes!” This should not be interpreted to mean that no further

progress is possible or needed. Indeed, as reported in Soofi’s JASA

review article,61 there are new developments in information theory

that are very relevant for work in statistics, econometrics and forecast-

ing. For example, as mentioned earlier, a new procedure for producing

optimal information processing rules, including Bayes’ theorem and

variants of it, is available. Briefly, the procedure involves consideration

of input and output information. The problem to be solved is how to

choose an output density for the parameters so as to have the output

information as close as possible to the input information. We want

the output information to be as close as possible to the input infor-

mation to avoid losing information. On minimizing an information

function �(g), with respect to the choice of the form of the output or

post data density for the parameters, denoted by g, the optimal choice

of g is given by g ∗ = π l/h – that is, the solution is in the form of
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Bayes’ theorem. Having a new derivation of the traditional Bayesian

learning model, namely Bayes’ theorem, is important since, as men-

tioned above, earlier derivations of Bayes’ theorem involve certain

assumptions that may not be fulfilled in all circumstances, as Jeffreys

pointed out many years ago. Further, the new informational approach

for generating optimal information processing rules lends itself easily

to produce new learning models and generalizations of the traditional

Bayesian learning model. For example, as I have shown recently, it is

possible to weight the information in the prior density differently from

that in the likelihood function and, when this is done, the optimal so-

lution, denoted by g∗∗, is given by g ∗∗ = cπw1 l w2 , where w 1 and w 2 are

the weights associated with the inputs and c is a normalizing constant.

Further, it is possible to input just a likelihood function and no prior, as

R. A. Fisher wished to do in his fiducial inference approach. When this

is done, the optimal information processing rule is to take the output

density g proportional to the likelihood function. Further, dynamic

versions of the information processing problem have been formulated

in which information output of one period and new data are inputs to

the following period and the dynamic information processing problem

is in the form of a dynamic programming problem. On minimizing

the criterion functional à la Bellman, the optimal sequential solution

was found to be to update period by period by use of the traditional

Bayes’ rule, and, when this is done, output information = input infor-

mation – that is, the process is 100 percent efficient. However, when

costs of changing beliefs are introduced, the solution is not in the form

of Bayes’ theorem but close to the form of empirical learning models

derived in the psychological literature from experimental learning ex-

periments, e.g. the Hogarth and Einhorn belief adjustment model.62

Thus, optimal information processing rules, including Bayes’ theorem

as a special case, are available for general use in scientific induction to

help scientists to learn more effectively from their data.

With these remarks made about methods, I now turn to discuss

some specific aspects of forecasting and its role in econometrics and

statistics.
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1.5 The role of forecasting in econometrics and statistics

It is a fact that not many econometrics textbooks discuss forecasting

and indeed many economists seem to show a strong aversion to the

topic, perhaps because it is “a-theoretical,” “too empirical,” and/or

“too dangerous.” That is, many economists and econometricians con-

centrate their attention on creating causal models that “explain” and

“predict.” For example, using the laws of demand and supply, one

can predict the probable effects of the imposition of a tax on the

price of a product with an associated causal explanation that is rather

dependable. However, in other areas where no dependable causal laws

are available, many use empirical relations, sometimes time series

models, that have little economic or other subject matter justifica-

tion to “forecast” future outcomes, e.g. next year’s rate of growth of

real GDP or a downturn in the economy. Thus, forecasting models,

without subject matter theoretical support from, e.g., the depend-

able laws of demand and supply (whether in economics, meteorology,

geology or other areas), are distinguished from what econometricians,

statisticians and others call “structural” or “causal” models. Ideally, we

would like to have structural or causal models that explain and pre-

dict outcomes very well. However, particularly in the macroeconomics

area, unfortunately, it has been difficult to formulate such dependable

models; for more discussion of this range of issues, see the thoughtful

article by Ray Fair in a conference volume on alternative macroeco-

nomic theories and the evidence supporting them.63 He concluded

that much more testing of alternative theories is needed.

I believe that not many texts emphasize the important role of

forecasting and forecasting models in efforts to build “structural”

or “causal” econometric models that work well in prediction and

explanation. That is, instead of always going from economic theory

and tentative structural models to the data, it is often valuable to go

from the data and simple empirical forecasting models that work well

in practice to efforts to explain theoretically why these empirical, fore-

casting models are successful. In the structural econometric modeling,
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time series analysis approach, which first appeared in the literature in

the early 1970s, this two-way interaction between economic theory

and the data is emphasized.64 It was recognized that we might have a

tentatively formulated structural econometric model. Given the equa-

tions of the model – say, a model of an economy – we solve algebraically

for the equations explaining the variation of individual variables; so-

called “final equations,” or “transfer equations.” Then we check the

forms of these equations against those determined empirically from

the data – that is, forecasting models – and also compare the fore-

casting performance of these tentative SEMs against that of empirical

benchmark models – say, simple random walk models or univariate

statistical time series models. In many past studies, it has been found

that the forecasts of simple univariate time series benchmark models

are better than those of complicated SEMs. When such is the case, it is

necessary to reformulate a SEM in an effort to get models that perform

adequately in forecasting or to build simpler new SEMs. Last, it should

not be overlooked that many operating SEMS, as well as empirical time

series models, including VARs, are not very good in forecasting turn-

ing points in economic activity, as many have recognized from painful

past experience in connection with incorrect turning point forecasts.

For example, a few years ago, when Ray Fair spoke at the University of

Chicago on his very impressive macroeconometric model of the US

economy, I asked him whether his model had forecasted the 1990–

91 downturn correctly. He replied, “Damn it, Arnold, you had to ask

that question. I missed the ’90–91 downturn along with everyone else.”

Indeed, the same, general poor turning point forecasting performance

was encountered by others in connection with the 1981–82 downturn

and in many other turning point episodes.

In view of difficulties in obtaining good structural models, many

have turned to use empirical, statistical models, e.g. vector autore-

gressions (or, as I refer to them, “very awful regressions”). Years ago,

Litterman demonstrated that an unrestricted VAR for the US econ-

omy did not work very well in forecasting. He used seven quarterly
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macroeconomic variables with six lags on each, e.g. real GDP, unem-

ployment rate, an interest rate, a price index, etc. Note, as I have pointed

out many times over the years, each equation of his VAR contains a

dependent variable, and 7 × 6 = 42 lagged explanatory variables and

an intercept. This is like using a regression with forty-two highly cor-

related independent variables; a severe case of multicollinearity. Also,

with just a few years of quarterly data available, the ratio of the number

of observations to the number of parameters is rather low. Thus, in

forecasting, it is the case that the many imprecisely estimated param-

eters employed contribute to blowing up the mean squared error of

forecast and other measures of forecast error, theoretically and practi-

cally. In an effort to deal with this problem, Litterman very ingeniously

devised informative prior distributions for the many parameters of his

VAR and created what is known as a Bayesian VAR, or BVAR, which

performed better in forecasting than the unrestricted VAR. The extra

prior information in his prior density served to augment the infor-

mation in his data to produce improved forecasting results. A version

of Litterman’s BVAR was used by Sims at the Federal Reserve Bank of

Minneapolis until it missed the 1990–91 downturn in the US econ-

omy. See the discussion of VARs and BVARs in the Journal of Business

and Economic Statistics by Steven McNees of the Federal Reserve Bank

of Boston and Robert Litterman, who concluded that SEMs, VARs

and BVARs do not perform adequately in forecasting.65 They did not

consider turning point forecasting performance of current structural

and VAR models that is generally recognized to be very poor.

In view of the generally poor forecasting performance of large-scale

structural econometric models since the 1970s, many such models

have been abandoned. Recently, Fisher and Whitley, in their article

“Macroeconomic models at the Bank of England,” wrote:

The role of macroeconomic models is to encapsulate in quantitative

form a description of the economy that can be used as a basis for

discussion and analysis of policy issues. Macroeconomic models are
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inevitably approximations. For one thing, there are serious difficul-

ties in measuring economic variables . . . More fundamentally, it is

simply not possible to capture more than a few of the myriad aspects

of economic behaviour in a single model.66

This point of view contrasts markedly with the views of many who,

before and after World War II, attempted to build large-scale SEMs of

economies for explanation, prediction and policy-making purposes.

Most of these large-scale models are no longer in operation because

of poor performance, and now many economists and others are seek-

ing new, simpler models that explain and predict well and are use-

ful in policy-making. As mentioned earlier, many favor “sophisticated

simplicity” in modeling, in accord with the Jeffreys-Wrinch “simplicity

postulate” – namely that simpler models are more likely to provide

better predictions and understandable explanations.

As an example of a large-scale, quarterly macroeonometric model

of the US economy, consider the Federal Reserve-MIT-PENN model

with about 170 equations, many of them non-linear stochastic differ-

ence equations. It is difficult to prove that this model has a unique

solution. In practical use, solutions are obtained for linearized ver-

sions of the model, and it is well known that such linearized solutions

may not be good solutions to general non-linear systems. As a simple

example, consider a linear labor demand equation and a backward-

bending labor supply equation. Generally there are two equilibrium

solutions. However, with a local linearization of the system there is

just one equilibrium solution. Further, when simulation experiments

were done with this model, it was discovered that it had very un-

usual features.67 For example, when the model was shocked with large

changes in its money variable – unborrowed reserves plus currency – a

nominal interest rate assumed negative values and the computer pro-

gram stopped because it was not possible to compute the logarithm

of a negative variable. Also, when the model was put through a great
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depression – such as that of the 1930s – in simulation experiments, its

output variable went down, unemployment went up but short- and

long-term interest rates went to about 18 percent and stayed there.

Further, wages and prices leveled off and never came down. As regards

“on-line performance,” I learned that there were great difficulties in

explaining the output of the model to policy-makers and that it did

not work very well in forecasting. After many years of operating the

model, the Federal Reserve authorities decided to discontinue using it

some years ago and are still searching for a good model.

1.6 The structural econometric modeling, time series
analysis (SEMTSA) approach

To satisfy this need for models that work well, it was suggested in the

SEMTSA approach that simple forecasting equations for individual

variables, perhaps derived algebraically from tentatively formulated

dynamic structural models, be considered and evaluated in terms of

fit to past data and in forecasting. Then, economic theory can be

employed to explain why the equations perform well and to suggest

improvements. That is, having a set of tested components, namely

forecasting equations for important variables, the problem is how to

combine them to produce a structural, causal model. To begin this line

of research in the 1980s, my colleagues and I considered modeling and

forecasting rates of growth of real GDP for a sample of nine indus-

trialized countries: seven European countries, Canada and the United

States.68 Using annual data, our initial model was an autoregression

of order three – AR(3) – for each country: that is, for the i’th coun-

try in the t’th year, yit = βoi + β1i yi t−1 + β2i yi t−2 + β3i yi t−3 + εi t ,

i = 1, 2, . . . , m, t = 1, 2, . . . , T, where the β’s are parameters and εi t

is an error term. A third-order autoregression was chosen to allow for

the possibility of having two imaginary roots of the process associated

with an oscillatory component and one real root associated with a local
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trend. While all this theory was fine, it did not take too long to deter-

mine that this AR(3) model did not perform well in one-year-ahead

forecasting because it was missing cyclical downturns and upturns in

the real GDP growth rates. At the top of the cycle, the AR(3) model gen-

erally forecasted continued growth when the economy turned down,

and, at the bottom of the cycle, it predicted continued contraction

when the economy turned up. The same unsatisfactory performance

occurred with benchmark random walk and other benchmark time

series models, including Box-Jenkins’ ARIMA models.

Given the very obvious problem, it did not take long to remember

the famous research of Burns and Mitchell on the properties of busi-

ness cycles in the United Kingdom, France, Germany and the United

States using data going back to the nineteenth century.69 In this re-

search, they found that two variables tended to lead in the business

cycle, namely money and stock prices. As regards explanations for

these findings, it occurred to me that a traditional monetarist point of

view, emphasizing real balance or Pigou effects, which I had estimated

in my published thesis research using quarterly data for the United

States and which was later confirmed using British data, probably ac-

counted for the leading role of the money variable. That is, changes

in real money affect demand, particularly the demand for durables

and services on the part of consumers and producers, which results in

increased expenditures with a lag. Similarly, in thinking about infor-

mation flows and the stock market, it is probably the case that those

in the market react to news events – say, war news, or news of an

increase in oil prices – much more quickly than those making invest-

ment and other decisions in industry and government. With these

considerations in mind, the above AR(3) model was reformulated to

include the lagged rates of growth of real money, GM, and of real stock

prices, SR. In addition, a world stock return variable was introduced

to reflect world news events, namely WR, the median of the individual

countries’ real stock price growth rates, to yield the first variant of our
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“autoregressive, leading indicator” (ARLI) model:

yit = βoi + β1i yi t−1 + β2i yi t−2 + β3i yi t−3 + β4i G Mt−1

+ β5i S Rit−1 + β6i S Rit−2 + β7i W Rt−1 + uit (1.4)

where i = 1, 2, . . . , m, t = 1, 2, . . . , T, the β’s are parameters and uit

is an error term for the i’th country in the t’th year.

The model in equation (1.4) was implemented using annual data

for seven European countries, Canada and the United States from the

IMF’s International Financial Statistics database, 1954–73 for fitting

and 1974–81 for one-year-ahead forecasts, with estimates updated year

by year. Initially, when simple least squares estimates and one-year-

ahead least square forecasts (which are also “diffuse prior” Bayesian

forecasts) were employed, it was found that there was a considerable

improvement in forecasting performance, particularly in the vicinity

of turning points in the rates of growth of total real output relative to

the benchmark models.

In later work the number of countries involved in the analysis

was increased to eighteen and the period of forecast extended. See

figure 1.1 for box plots of the data. It is seen that the median growth

rates of real GDP, real stock prices and real money exhibit cyclical

behavior, with the latter two variables showing a tendency to lead. For

example, in the 1973–74 oil crisis period, the median growth rates of

real stock prices and of real money turned down in 1973, while that

of real GDP turned down in 1974.

The fits of the equation (1.4) to the individual countries’ data were

good but not “too good,” with R2’s ranging from 0.26 to 0.76 for

the eighteen countries and a median of 0.56.70 It should be appre-

ciated that the historical period covered by our data, from the early

1950s to the late 1980s, included several wars, oil crises, the imposition

of wage and price controls, changes in world trade policies, etc. No

dummy variables or intervention procedures were utilized. It appears

that our leading indicator money and stock return variables captured
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Box plot of annual growth rates of real output, 1954--87

Box plot of annual growth rates of real stock prices, 1953--86

Box plot of annual growth rates of real money, 1953--86
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Figure 1.1 Box plot of annual growth rates of real output, real stock prices

and real money for eighteen industrialized countries
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the effects of many of these major events, although there are some out-

lying points, as shown in figure 1.1. Also, a former student, Chansik

Hong, in his doctoral dissertation studied, among other things, the

dynamic properties of the ARLI model, shown in equation (1.4) for

each of the eighteen countries in our sample.71 In particular, using

Bayesian methods – namely a normal likelihood function, a diffuse

prior density for the parameters and Bayes’ theorem – he computed

the probability that a country’s equation has two imaginary roots and

one real root by making draws from the marginal trivariate Student-t

posterior density of the parameters β1i, β2i, and β3i of equation (1.4).

For each draw he computed the roots of the characteristic equation

and found that, in about 85 percent of the draws, he obtained two

complex roots and one real root. Thus, the probability that the pro-

cess contains an oscillatory component is estimated to be about 0.85.

Further, for those draws leading to imaginary roots, he computed the

period and amplitude of the associated oscillatory component. The

periods so calculated tended to be in the four- to six-year range, and

the amplitudes below one, for each of the eighteen countries. Also, the

real roots of the processes tended to the below one in value. Thus there

appears to be evidence of a damped, oscillatory component and a local,

non-explosive trend in the equations for the eighteen countries.

1.7 Elaborations of the ARLI model

With the simple ARLI model in equation (1.4) formulated for each

country’s output growth rate, it was not hard to think about possi-

ble modifications that might produce improved performance, just as

Henry Ford did in going from the Model T to the Model A and on

to other models quite successfully. Starting simply and complicating

if necessary seems to be a generally accepted procedure that produces

good results in many areas.

Specifically, with respect to the equation in (1.4), the following

changes were implemented and evaluated in forecasting experiments,
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first using data for nine industrialized countries and then eighteen

industrialized countries: many European countries, the United States,

Canada, Japan and Australia. First, it may be that the coefficients in

equation (1.4) are not fixed in value but may vary for a variety of

reasons, e.g. aggregation effects, changes in tastes and/or technol-

ogy, changes in governmental policies, etc. See, e.g., Wolff for evi-

dence that making parameters time-varying in structural exchange

rate models led to improved forecasting performance.72 Thus we al-

lowed the parameters to vary in a variety of ways, using what are

called modern Bayesian state space and shrinkage techniques. One

simple, state space model allowed the parameter vector in (1.4) to

vary through time following a vector random walk. That is, if we

write the fixed parameter (FP) version of (1.4) in vector and matrix

form as:

yi = Xiβi + ui , i = 1, 2, . . . , m (1.5)

we assume that the coefficient vectorβ i varies through time and follows

the following vector random walk process: β i t = β i t−1 + eit , where eit

is a white noise error vector. This permits coefficients flexibility to vary

in value over different periods and thus to accommodate parameter

changes produced by changes in technology or tastes, Lucas effects

and other factors producing structural shifts in parameters. Bayesian

posterior odds were calculated for fixed versus time-varying parameter

models and the results tended to favor time-varying parameters for

many countries.73

A broader assumption regarding temporal variation in parame-

ters of (1.5) that allows for a Stein shrinkage effect involves assuming

β i t = θt + vit and θt = θt−1 + wt, with vit and wt independent white

noise error term vectors. Here, in a particular year, the vector βi t ’s are

distributed around a mean vector θ t, which follows a vector random

walk. The Bayesian recursive estimation of these models, which in-

corporate both shrinkage and time-varying parameter features, was

done, and such models were used for forecasting one year ahead, with
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results that are shown below. As can be seen, it was found that Stein

shrinkage was quite important in improving forecast accuracy.

Similar procedures were employed with a slightly elaborated version

of our ARLI model in (1.4) to include a world income (WI) variable,

w ′ = (w 1, w 2, . . . , w T), the median of the eighteen countries’ growth

rates, shown in the plots in figure 1. That is, equation (1.4) was

elaborated as follows:

yi = Xiβi + wαi + ui (1.6)

where w ′ = (w1, w2, . . . , w1, . . . , wT ).

As regards wt , it was assumed to be generated by the following ARLI

equation:

wt = πo + π1wt−1 + π2wt−2 + π3wt−3 + π4 MS Rt−1

+ π5 MG Mt−1 + εt (1.7)

where MS Rt−1 = median of the t−1’th year’s countries’ SRs, and

MG Mt−1 = median of the t−1’th year’s real money growth rates and

εt is an error term. Various versions of the ARLI/WI model in (1.6)

and (1.7) were fitted and evaluated in forecasting experiments, includ-

ing time-varying parameter variants, denoted by TVP/ARLI/WI, with

and without shrinkage or pooling.

1.8 Point forecasting results

In table 1.11 are shown the forecasted root mean squared errors

(RMSEs) for the eighteen countries, employing fixed and time-varying

parameters and with and without pooling or shrinkage. The effects

of pooling or shrinkage are striking. In the TVP case, with pool-

ing, the median RMSE = 1.74 percentage points with a minimum

RMSE = 1.17 percentage points and a maximum RMSE = 2.53 per-

centage points, while, without pooling, the median RMSE = 2.37

percentage points with a minimum = 1.39 percentage points and

a maximum = 3.32 percentage points. Similarly striking results are
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encountered in the FP case. Thus the results in table 1.11 show

clearly the improvements in forecasting performance produced by

use of Bayesian pooling or shrinkage techniques, with results for the

time-varying parameter model slightly better than those for the fixed

parameter model. Also, it should be appreciated that these models

performed much better than various benchmark models, e.g. random

walk, AR(3), ARIMA and several other models, in forecasting annual

growth rates.

In further efforts to improve performance, in analogy to “contin-

uing product improvement” efforts in industry, we considered pro-

cedures for combining or averaging the forecasts of various models.

In the extensive literature on combining forecasts, starting with the

pioneering Bates-Granger paper in 1969, there has been a belief that

combined or averaged forecasts will work better than individual fore-

casts. Indeed, in some cleverly constructed examples involving con-

sideration of forecasts that are unbiased, it can be shown that combin-

ing always pays in terms of increased precision as measured by mean

squared error. However, I realized that “always” is a very strong prop-

erty and that, in life, not all forecasts are unbiased. Indeed, given the

poor models used to produce forecasts, it is to be expected that many

forecasts will be biased. Further, even with a perfect model, if one

uses an asymmetric loss function, it has been shown in the literature

that the optimal forecast that minimizes expected loss is biased. For

example, if over-forecasting by a given amount is a much more seri-

ous error than under-forecasting by the same amount, then a forecast

that is biased downward will be optimal. Thus, biased forecasts can

be optimal and proofs of the virtues of combining forecasts that are

based on the assumption that all forecasts are unbiased are quite lim-

ited in their applicability. Another point is that usually these proofs of

the optimality of combining forecasts or models involve the assump-

tion that an exhaustive set of forecasts or models is being considered.

If the set is non-exhaustive, as is usually the case, the proofs do not

go through. Thus, whether it is “optimal” or “beneficial” to combine
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forecasts or models is still an open issue that unfortunately cannot be

decided on logical grounds. Empirical analysis is needed to help settle

the issue.

Recognizing this last combining fact, in a paper with Min, we pre-

sented new Bayesian methods for combining fixed parameter and

time-varying parameter models. After some laborious efforts, we fi-

nally managed to obtain computable Bayesian posterior odds relating

to fixed parameter and time-varying, random parameter (RP) models,

e.g. a model with a coefficient vector generated by a vector random

walk process. That is, we started one to one on the FP model versus

the RP model and then used the data to evaluate the posterior odds

on the two models – say, 1.5 to 1 in favor of the RP model. The odds

were employed, year by year, to choose between or among alternative

models and their forecasts. Also, using my earlier results on deriving

an optimal combining density as one that is closest in an informa-

tion theoretic sense to the individual densities being considered, we

derived optimal combining predictive densities, updated them year

by year, and used their associated predictive means as point forecasts.

Such predictive means are optimal forecasts relative to a quadratic

predictive loss function. In calculations with data for eighteen coun-

tries, we compared the forecasting performance of combined models

with that of individual models. In our experiments, we found that

combining forecasts in this instance led to small improvements in

forecasting performance. Further, it was established that the Bayesian

forecast combining techniques worked better than non-Bayesian fore-

cast combining techniques.

In a published review of our paper by R. Fildes, an editor of the

International Journal of Forecasting, he wrote in 1994 (pp. 163–164)

that the alternative models and methods

were carefully compared based on their individual country per-

formance measured by root mean squared error for the years

1974–1987, and the distribution of these (particularly the median).
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The results offer mild support for using time-varying parameter

schemes. Pooling is important in improving accuracy. Model selec-

tion schemes are not particularly helpful except in so far as they

identify pooled TVP (time-varying parameter) models as the most

accurate forecasting models. Combining does not improve over the

TVP models and, with the Granger-Ramanathan unconstrained

scheme for choosing the weights, led to substantially poorer accu-

racy. Equal weights were not considered. This paper is an excellent

example of good empirical economics where the theory is utilized

effectively in analyzing the problem in hand.74

1.9 Turning point forecasting methods and results

While point forecasting work gave us some important evidence re-

garding the forecasting performance of our basic ARLI model and

variants of it, a much more demanding test involves the ability to fore-

cast cyclical downturns and upturns in economic activity accurately.

As mentioned earlier, in our past work and in work by others, it has

been found that time series models, e.g. random walk, AR(3), ARIMA

and others, perform poorly in forecasting turning points. The same

can be said of many macroeconometric models.

In approaching this problem, it is necessary to define what is meant

by a “downturn” (DT) or “no downturn” (NDT) and by an “upturn”

(UT) or “no upturn” (NUT), as recognized earlier by William Wecker

and John Kling.75 Among many possible definitions, we settled on the

following simple definitions regarding the behavior of annual rates of

growth of real GDP. Given that we are in year T, with growth rate y(T),

and have observed two previous growth rates, y(T − 2) and y(T − 1),

if the previous growth rates and next year’s, as yet unobserved growth

rate, y(T + 1), satisfy the following relation, we state that a DT has

occurred in year T + 1:

y(T − 2), y(T − 1) < y(T) > y(T + 1) DT in year T + 1

(1.8)
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Also, if the data and the as yet unobserved growth rate for period

T + 1 satisfy the following relation, an NDT event has occurred:

y(T − 2), y(T − 1) < y(T) < y(T + 1) NDT in year T + 1

(1.9)

Similarly, for UT and NUT events in year T + 1, we have for the

definition of an UT:

y(T − 2), y(T − 1) > y(T) < y(T + 1) UT in year T + 1

(1.10)

and:

y(T − 2), y(T − 1) > y(T) > y(T + 1) NUT in year T + 1

(1.11)

Thus, if we have two successive growth rates below the third and the

fourth is below the third, we have a DT, while, if the fourth is not

below the third, there is NDT. Also, if we have two successive growth

rates above the third and if the fourth is above the third, we have an

UT, while, if the fourth is not above the third, we have a NUT.

While these are not the only definitions that can be employed, they

are operational and easily comprehensible. Assuming that two previ-

ous growth rates are below the current growth rate and given data up

to period T, DT, the Bayesian predictive density for y(T + 1) associated

with one of our models is readily available. See figure 1.2 for a plot

of this predictive density. Using this predictive density, it is easy to

compute the probability that next year’s rate of growth, y(T + 1), will

be less than this year’s rate of growth – that is, the probability of a DT,

namely Pr(DT) = Pr(Y(T + 1) < Y(T) | D), where D stands for past

prior and sample information and the condition defining a DT/NDT

episode. Also, the probability of NDT is Pr(NDT) = Pr(Y(T + 1) >

Y(T) | D) = 1 − Pr(DT). See figure 1.2 for a graphic representation of

Pr(DT) and Pr(NDT).
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p yiT + 1DT⎧  
⎩

⎫
⎭

P
DT

yiTyiT + 1

yiT + 1
ˆ

Figure 1.2 Calculation of probability of a downturn in period T + 1

Given that we have computed the values of Pr(DT) and Pr(NDT),

we can use these probabilities in association with a 2 × 2 loss structure

to determine an optimal turning point forecast – namely the one of the

two possible forecasts that has lower expected loss associated with it.

Explicitly in terms of the loss structure, shown in figure 1.3, expected

loss associated with the choice of a DT forecast is aPr(NDT) while

that associated with an NDT forecast is bPr(DT). On comparing these

expected losses, we choose the forecast with the smaller expected loss.

That is, if aPr(NDT) < bPr(DT), we choose the forecast DT, while, if

the inequality is reversed, we choose the NDT forecast. In the special

case of a symmetric loss structure, a = b, we shall choose the DT

forecast if Pr(NDT) = 1 – Pr(DT) < Pr(DT); that is, if Pr(DT) > 1/2.

Similarly, if the Pr(NDT) > 1/2 or, equivalently, Pr(DT) < 1/2, we choose

the DT forecast.

An analysis similar to that shown above can be employed to derive

optimal UT/NUT forecasts using the probability of an UT computed

from a predictive density function. Again, an optimal turning point

forecast, e.g. an UT, can be obtained using a 2 × 2 loss structure. If

the loss structure is symmetric, the optimal turning point forecast is

to forecast an UT if Pr(UT) > 1/2 and a NUT if Pr(UT) < 1/2.

Shown in table 1.4 are computed probabilities of downturns in the

rates of growth in real GDP for eighteen countries in upper turning

point episodes. It is clearly the case that the computed probabilities

contain information regarding future movements of countries’ growth
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DT 0

DT NDT

NDT

a

b 0

aPr(NDT)

bPr(DT)

Pr(NDT)Pr(DT)Probabilities

Forecasts

Outcomes Expected losses

Loss structure

Figure 1.3 Loss structure

Note: a and b are non-negative losses. Losses have been scaled so that zero

losses are associated with correct forecasts.

rates. Probabilities relating to upturns are shown in table 1.5. Again,

it is the case that the probabilities provide information about future

movements.

When we forecast using the above “1/2 rule” – namely – forecast-

ing a DT given that the Pr(DT) > 1/2 and NDT otherwise – we see

from figure 1.4 that, in 158 turning point forecasts for eighteen coun-

tries, 1974–86, use of a variety of our ARLI models, with and without

pooling, led to more than 70 percent of the turning point forecasts

being correct. In the case of the TVP/ARLI/WI model, with or without

pooling, and the pooled EW/ARLI/WI (exponentially weighted) and

FP/ARLI/WI models, the percentages of correct forecasts were about

eighty. Similarly, as shown in figure 1.5, the percentages of seventy-six

DT or NDT forecasts being correct were about seventy or higher for

all the models considered, with results using pooling quite a bit better

than those without use of pooling or shrinkage. As regards eighty-two

UT or NUT forecasts, in figure 1.5 we see that about 70 percent were

correct. The results (see table 1.6) seem to indicate that the DT/NDT

forecasts were slightly better than the UT/NUT forecasts in terms of

percentages of correct forecasts.
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Figure 1.4 Percentages of turning points correctly forecasted

This rather good turning point forecasting performance came as a

pleasant surprise. However, it may be that some benchmark models

could do as well. In this connection, the following “naı̈ve” turning

point forecasters were created. First, there is the “eternal optimist,”

who in an upper turning point episode, as defined above, always fore-

casts NDT. Similarly, our eternal optimist always forecasts UT in a

lower turning point episode. Second, there is the “eternal pessimist,”

who always forecasts DT at the top and NUT at the bottom. Third,

there is the “deterministic four-year cycle” forecaster, who always fore-

casts DT at the top and UT at the bottom. As shown in table 1.7

these “naı̈ve” or “benchmark” forecasters do not do nearly as well as

the ARLI-type models in forecasting turning points. For example, of

158 turning points, the eternal optimist gets just 41 percent correct.

The eternal pessimist does a bit better in getting 59 percent correct,

while the deterministic four-year cycle forecaster does the best with

68 percent correct. On the other hand, all the ARLI-type models had

over 70 percent correct, with three having 80 percent or more correct.

Similarly, with respect to DT/NDT and UT/NUT forecasts, the models

performed better than the naı̈ve turning point forecasters.
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Percentages of correct DT/NDT forecasts 

Percentages of correct UT/NUT forecasts 
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Figure 1.5 Percentages of correct downturn / no downturn and upturn / no

upturn forecasts
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Table 1.7 Performance of various procedures for forecasting turning

points in annual output growth rates for eighteen countries, 1974–86

Number and percentage of incorrect forecastsa

Forecasting 76 DT/NDT 82 UT/NUT 158 turning point

procedure forecasts forecasts forecasts

1 Eternalb optimist 59 (78) 34 (41) 93 (59)

2 Eternal pessimistc 17 (22) 48 (59) 65 (41)

3 Deterministic

four-year cycled

17 (22) 34 (41) 51 (32)

4 TVP/ARLI/WI

Unpooled 13 (17) 16 (20) 29 (18)

Pooled 12 (16) 20 (24) 32 (20)

a Figures in parentheses are percentages of incorrect forecasts.
b An eternal optimist forecasts either UT or NDT.
c An eternal pessimist forecasts either DT or NUT.
d Forecasts either DT or UT.

Another naı̈ve turning point forecaster is a fair coin flipper. With

158 turning point episodes, a coin flipper would expect or forecast

that 1/2 (158) = 79 actual DTs and UTs would occur. In the data there

are 107 DTs and UTs out of 158 cases – quite a bit more than expected

by the coin flipper. For each of our models and each turning point

episode, the probabilities of each DT or of each UT were computed

and added over the 158 turning point episodes to get the expected

number of turning points, with results shown in table 1.8. It is seen

that the expected numbers vary from 94 to 104, much closer to the

actual number observed – 107, than provided by the coin flipping

procedure, namely an expected number equal to 79.

The results of these turning point forecasting experiments were

so pleasing that I decided to share them with Milton Friedman, a

colleague and good friend. While he was pleasantly surprised by the
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Table 1.8 Expected number of turning points, downturns

and upturns

Model Unpooled Pooled

1 TVP/ARLI 104 98

2 TVP/ARLI/WI 101 98

3 EW/ARLI 101 102

4 EW/ARLI/WI 98 98

5 FP/ARLI 100 99

6 FP/ARLI/WI 96 94

Actual number of TPTs 107 107

Total number of cases 158 158

results, he suggested that we extend the sample to see whether our

results would hold up using new data. Also, he pointed to a differ-

ence between experimental testing of procedures and on-line testing

of procedures, where, among other things, one has to deal with the

“preliminary data” problem. That is, preliminary estimates of, for ex-

ample, GDP can differ considerably from revised estimates and also

revisions take place not just once but quite a few times – as I found

when I was completing my doctoral dissertation dealing with quarterly

consumption and personal disposable income data. I found that revi-

sions in the most recent data were very large and wrote an article on

the topic after completing my dissertation, in which I described prop-

erties of revisions in a number of variables in our national income

and product accounts.76 There is no question but that good proce-

dures are needed to deal with the “preliminary data revision problem”

in connection with obtaining good forecasts. Recognizing this, it still

seemed of great interest to determine how our turning point forecast-

ing methods would perform on an expanded sample of data for our

eighteen countries. Thus, data for the period 1974–95 were collected

from the IMF database, and it was found that the expanded database

included 211 turning point episodes, as defined above. On using the
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ARLI-type models and turning point forecasting methods, described

above, to analyze the new data set, again 70 percent or more of the

turning point forecasts were correct – much better than the forecast-

ing performance of our naı̈ve turning point forecasters and our coin

flipper.77

1.10 Compatibility with economic theory

Having obtained models that perform reasonably well in point and

turning point forecasting, in the SEMTSA approach the next step is

to determine the extent to which the models are compatible with

economic theory. It was not too hard to develop an aggregate demand

and supply model, from which it is possible algebraically to derive

an equation for the rate of growth of real output that resembles our

ARLI/WI model. Also, Chansik Hong, in his doctoral dissertation at

the University of Chicago, derived our ARLI/WI model from a version

of Hicks’ IS/LM model, and Chung-ki Min in his doctoral dissertation

formulated a generalized real business cycle model and showed that it

implied a model similar to our ARLI/WI model.78

Thus the ARLI/WI model is compatible with certain well-known

macroeconomic models that are featured in macroeconomic texts.

While this is reassuring, in our continuing efforts to improve our

models it was noted that many macroeconomic models do not allow

adequately for the different cyclical and trend characteristics of in-

dustrial sectors – say, agriculture, construction, mining, etc. Further,

in some real business cycle models there is a representative firm, and

one wonders what happens if the representative firm shuts down. No

allowance has been made for the entry and exit of firms – a very impor-

tant aspect of business fluctuations. Also, note that in Muth’s famous

paper on rational expectations in a competitive industry he, and later

many others, assumed a constant number of firms. On hearing of

this assumption, Marshall probably turned over in his grave. Finally,

there is the issue of the emergence of new industrial sectors – e.g.

the computer industry, etc. – that are important in affecting growth
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and fluctations in output and other variables, as Schumpeter, Hansen,

Gordon and many others have recognized.

1.11 The Marshallian macroeconomic model

With the above considerations in mind, it occurred to me that an

MMM would be worthwhile to consider and might yield improved ex-

planatory and predictive performance. By considering various sectors

of an economy, many more observations would be available on sector-

specific variables as well as on aggregate variables. Also, specific fea-

tures of sectors – say, agriculture, construction, mining, etc. – could be

modeled and might improve explanatory and predictive performance.

Of course, the argument that disaggregation might yield improved

modeling results had been forcefully presented by Guy Orcutt for many

years.79 And, indeed, some macroeconometric modelers did disaggre-

gate in various ways, including Stone, the Leontieff input-outputters,

the FRB-MIT-PENN macroeconometric modelers and others.

To show that disaggegation could lead to improved forecasts, equa-

tion (1.7) was employed to forecast the median growth of eighteen

countries’ growth rates of real GDP – an aggregative approach. As an

alternative, equations (1.6) and (1.7) were employed to obtain annual

growth rate forecasts for each of the eighteen countries, and the median

of the eighteen countries’ annual forecasts was used as a forecast. As

shown in table 1.9, the second, disaggregative procedure produced

much better annual forecasts, indicating that, in this instance, it paid

to disaggregate.80 Also, there were analytical results indicating that

working with disaggregated data could lead to improved forecasts

of aggregate variables.81 Of course, if models for the disaggregated

data and the disaggregated data are of poor quality, then obviously

there may be no advantages associated with disaggregation. On the

other hand, with good disaggregated data and appropriate models for

them, better forecasts of aggregate data may be obtained. In addition,

obviously, forecasts of disaggregated sector variables are available.
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With the above considerations in mind, the problem of how to dis-

aggregate arose. It was possible to go all the way to models with an

extremely detailed level of disaggregation, e.g. Leontieff input-output

models or Orcutt micro-simulation models. While these possibilities

were considered, it was thought more advisable to approach the disag-

gregation process step by step. A first step was to adopt a Marshallian

sector view of the economy, with each sector having demand, sup-

ply and entry equations; a sophisticatedly simple model that has been

shown to be useful in many different contexts over the years. As noted

above, most macroeconomic models have not considered entry and

exit of firms at all. Note that, in the 1930s Depression in the United

States, about 20 percent of the firms industry by industry shut down

with an enormous impact on supply. Also, the primary mechanism

producing long-run equilibrium in a Marshallian industry model is

the entry and exit of firms.

With these considerations in mind, it was decided to formulate

simple competitive Marshallian models of eleven sectors of the US

economy, using annual data in an effort to investigate the extent to

which disaggregation might help in improving forecasts of aggregate

variables and their growth rates, e.g. total real US GDP and its growth

rate, obtained by adding sector GDP forecasts to get a forecast of the

total each year. In a working paper, de Alba and I had shown that,

under a variety of conditions, improved forecasts could be obtained,

given that sectors’ input variables were not identical or highly posi-

tively correlated, and, obviously, if the sector models and data were

adequate.82

In our work to construct an MMM, we assumed individual firms

in a sector to be operating with Cobb-Douglas production functions

incorporating neutral and factor-augmenting technological change

(an elaboration of a production function used in an earlier study of

the Canadian furniture industry), and to be maximizing profits given

product price and the prices of factor inputs, labor and capital.83 From

the profit-maximizing solution, we derived the supply function for an
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individual firm and the industry supply function, which involved the

number of firms in operation in year t, denoted by N(t). By multi-

plying the individual firm’s supply function by N(t) and p(t), the real

price of output, we obtained the sector’s real sales function in year t,

S(t), which depends on: N(t), the number of firms in operation; p(t),

the real price of output; technological change, A(t) – the product of

neutral and factor-augmenting technical change; and the real prices

of factor inputs, labor, capital, etc. Along with this supply function,

we introduced a demand equation for the sector’s output and an entry

equation. When the three equations were solved for the implied rela-

tion for industry real sales, S(t), in the continuous time version of the

model, the differential equation for S(t) assumed the following form:

(1/S)d S/dt = a(1 − S/F ) + g (1.12)

where a and F are positive parameters and g=g(t) is a linear function of

the rates of change of variables shifting demand and supply relations,

e.g. real income, real money balances, real wage, real price of capital,

etc.

If in equation (1.12) g = 0 or g = constant, the solution to the dif-

ferential equation is the well-known “S-shaped” logistic function with

(1 + g/a)F, the long-run equilibrium value of real sales. Also, when

a sector is in long-run equilibrium, when g changes – perhaps due

to a change in a demand shifter, e.g. real income, or a supply shifter,

e.g. the real wage rate – the sector growth rate is disturbed from its equi-

librium value and a movement to restore a new equilibrium through

the entry or exit of firms is initiated. Also, it should be noted that, if

there is a discrete lag in equation (1.12), it is in the form of a mixed

differential-difference equation model, and the movement to the new

equilibrium can involve oscillatory features. In a sense, this model

with a discrete lag provides a “structural” Marshallian rationalization

of the well-known Friedman “plucking model” of the business cycle.

Further, as a former student, Mervin Daub, recently suggested, it is

possible to add the sectors’ equilibrium values of S to obtain a new,
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operational definition of full employment real GDP. Last, as has been

recognized in a recent paper, the discrete version of equation (1.12)

is in the form of a canonical “chaotic model” solution, which can ex-

hibit a wide range of rather interesting and unusual oscillatory and

non-oscillatory properties.84

In figure 1.6, annual data for real GDP relating to eleven sectors of

the US economy between 1949 and 1997 are plotted. It is seen that the

sectors’ data exhibit very different characteristics, with the agriculture,

mining, durable and construction sectors showing much greater vari-

ability than other sectors; see the box plots of the sector growth rates

in figure 1.7, which graphically display the differences in sector out-

put growth rate variability. As emphasized in the early business cycle

literature, interaction between or among sectors is an important ele-

ment in understanding why some downturns are so severe and others

are relatively mild. Thus, there appears to be additional information

in the disaggregated sector models that may be helpful in improving

forecasts of aggregate variables.

In recent work with B. Chen, published in Macroeconomic

Dynamics, various discrete time series models approximating equation

(1.12) have been formulated (see table 1.10) and fitted using annual

real GDP data for eleven sectors of the US economy 1949–79, and then

used to calculate one-year-ahead forecasts of sectors’ real GDP, which

were added to provide a forecast of total real GDP and its growth

rate.85 When these “disaggregate” forecasts were compared with fore-

casts of total US real GDP derived from AR(3) and other time series

models implemented with aggregate data, it was found that use of the

sector model and disaggregate data led to considerable improvement

in forecast accuracy. For example, from table 1.11, we see that, when

an AR(3) model was used to forecast annual US real GDP growth rates

1980–97, with parameter estimates updated year by year, the RMSE

of forecast was 2.32 percentage points while the mean absolute error

(MAE) of forecast was 1.71 percentage points. Also, this AR(3) model

missed all the turning points. While ARLI and an ARLI model with
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Table 1.11 RMSEs for pooled and unpooled ARLI/WI models’ forecasts

by country, 1974–87

RMSE (%) Countries Freq. Prop.

A. Pooled TVP model

1.00–1.49 FRN GER NET SPN 4 0.22

1.50–1.99 AUR BEL CAN FIN ITY NOR SWD UKM USA 9 0.50

2.00–2.99 AUL DEN JAP SWZ 4 0.22

2.50–2.99 IRE 1 0.06

3.00–3.49 — 0 0.00

Median = 1.74 Minimum = 1.17 Maximum = 2.53 18 1.00

B. Unpooled TVP model

1.00–1.49 UKM 1 0.06

1.50–1.99 BEL FRN GER NET SPN SWD 6 0.33

2.00–2.49 AUR USA 2 0.11

2.50–2.99 CAN DEN ITY NOR 4 0.22

3.00–3.49 AUL FIN IRE JAP SWZ 5 0.28

Median = 2.37 Minimum = 1.39 Maximum = 3.32 18 1.00

C. Pooled FP model

1.00–1.49 NOR SPN 2 0.11

1.50–1.99 AUR BEL CAN FIN FRN GER NET SWD UKM 9 0.50

2.00–2.49 AUL DEN IRE ITY JAP SWZ USA 7 0.39

2.50–2.99 — 0 0.00

3.00–3.49 — 0 0.00

Median = 1.86 Minimum = 1.21 Maximum = 2.48 18 1.00

D. Unpooled FP model

1.00–1.49 — 0 0.00

1.50–1.99 BEL NET NOR UKM USA 5 0.28

2.00–2.49 FRN SPN SWD 3 0.17

2.50–2.99 AUR CAN GER IRE 4 0.22

3.00–3.49 AUL DEN FIN JAP SWZ 5 0.28

3.50–3.99 ITY 1 0.06

Median = 2.60 Minimum = 1.50 Maximum = 3.68 18 1.01



Bank of England 75

lagged levels of real GDP and a trend variable included performed

better than the AR(3) model, they did not perform as well as the fore-

casts derived by adding sector forecasts of real GDP to get a forecast

of total GDP and its growth rate, with year-by-year updating of sec-

tor models’ parameter estimates. See figure 1.8 for plots of actual and

forecasted values year by year. Variants of these “disaggregate” MMM

forecasts had RMSEs ranging from 1.40 percentage points to 1.92 per-

centage points and MAEs ranging from 1.17 percentage points to 1.62

percentage points. The lowest MAE, of 1.17 percentage points, was en-

countered when the set of sector equations was treated as a seemingly

unrelated regression system and estimated taking account of sector er-

ror terms, differing error term variances and error term correlations.

However, in many instances, other Bayesian and non-Bayesian estima-

tion procedures, some allowing for possible endogeneity of input vari-

ables – e.g. real income and the real wage rate – produced rather good

results. However, disaggregate forecasts derived from AR(3) models

fitted with sector data did not show much, if any, improvement relative

to an AR(3) model implemented with the aggregate data.

Thus, these forecasting experiments indicate that our “first approx-

imation” sector Marshallian macroeconomic modeling approach ap-

pears to be promising. However, the models for several sectors, par-

ticularly agriculture, mining and construction, need improvement.

Also, perhaps allowing for departures from competitive conditions,

using more elaborate entry equation formulations, allowing for dis-

creteness in demand for durables, using more input variables, fitting

sector equations jointly rather than just one equation per sector, etc.

can lead to improved forecasts. Also, if good quarterly data are avail-

able by sector, models using them may lead to more improvement

in explanatory and forecasting performance, particularly if variables’

seasonal variation and seasonal components’ interaction with cyclical

and trend components are carefully modeled. Last, by adding mar-

kets for factors, e.g. labor, money, capital, a government sector and

an export sector, we have a complete macroeconomic model that
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permits a broader range of variables to be forecasted and problems to

be analyzed.

Implementation of our SEMTSA approach has been rewarding in

terms of producing models that are operational with reasonably good

performance in point and turning point forecasting experiments. For-

tunately, not only were statistical time series models produced, but

also these models have been rationalized using macroeconomic the-

ory. Further, the philosophy to start simply and complicate only if

necessary has led to the discovery of the MMM, a sector-based model

that accommodates demand, supply and entry considerations as well

as the birth of new sectors and the death of old sectors, à la Schumpeter

and recently considered endogenous growth models. Theoretically and

practically, use of these models is satisfying in terms of their explana-

tory power and their direct, practical forecasting and policy analysis

uses. E.g., in evaluating the effects of a change in real money on de-

mand, account can be taken of the differential real balance effects

on durable goods and services as compared to those on non-durable

goods.86 Similarly, different effects of tax cuts on demand in differ-

ent sectors can be utilized, thereby avoiding aggregation effects that,

as is well known, can afflict estimates derived from aggregate data

with serious biases. Further, use of time-varying parameter models or

state equation systems, as the engineers call them, can take account

of changes in parameter values over time in response to changes in

tastes, technology, policies, etc., and appear to be favored over fixed

parameter models by calculated posterior odds based on past data

in our work with ARLI models using aggregate data. Possibly, use of

an MMM with time-varying parameters and Bayesian shrinkage may

provide improved results, as was the case with Quintana, Chopra and

Putnam in their forecasting of international exchange rates87.

Last, but not least, the integration of micro- and macroeconomics

is a distinguishing feature of our Marshallian macroeconomic model.

Departures from competitive conditions in certain sectors can be mod-

eled and effects on an economy’s performance determined, analytically
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or in simulation studies. Similarly, alternative governmental policies’

effects can be evaluated analytically or in simulation experiments.

As our research on statistics, econometrics and forecasting contin-

ues in the years ahead, it will be a pleasure to share our results with the

research staff of the Bank of England and other researchers. Hopefully,

after many years of work by Richard Stone and many others, improved

Bayesian statistical and econometric techniques can be combined with

fruitful SEMTSA modeling techniques to provide us with sophisticat-

edly simple Marshallian macroeconomic models that explain the past

and perform well in prediction and policy-making.
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The National Institute of Economic and Social Research is an inde-

pendent educational charity, founded in 1938. It conducts research

on a wide variety of topics, but has a particular interest in economic

modeling, investment and productivity, labour market issues and

vocational education and training. All research projects are designed

to contribute to the public debate on the issues they address. The

Institute has its own research staff based in central London, and works

in cooperation with universities, industry and other bodies. It is inde-

pendent of UK government and receives no core funding from public

or private sources.

The Institute aims to promote, through quantitative research, a deeper

understanding of the interaction of economic and social forces that

affect people’s lives, in order that they may be improved. Its main func-

tion is to produce research suitable for publication through academic

channels, and hence findings from the Institute’s work are published

widely in academic journals and elsewhere. They often find an outlet

in the Institute’s own quarterly Economic Review, which is available

on subscription or individually. Discussion Papers dealing with work

in progress, and Occasional Papers on specific topics, are also issued

from time to time. Results from major pieces of research often lead

79
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to books, published through commercial publishers. In addition, the

NIESR holds conferences each year, which provide an opportunity to

hear about research findings and debate them with interested organi-

sations and individuals.

National Institute of Economic and Social Research

2 Dean Trench Street, London SW1P 3HE

Tel: 020 7222 7665 Fax: 020 7654 1900

I am happy to be at the National Institute of Economic and Social

Research to present the second Sir Richard Stone Lecture, a continua-

tion of the discussion of statistics, econometrics and forecasting that

I presented at the Bank of England several days ago. There I men-

tioned the debt that we owed to Sir Richard for his basic, fundamental

contributions to both theoretical and applied statistics and economet-

rics, particularly his fruitful, practical and philosophical approach to

research problems. See, for example, his classic 1954 book for an out-

standing example of his influential research. Also, I pointed out at the

Bank of England that a paradigm shift is taking place in theoretical and

applied statistics and econometrics, namely a movement to a Bayesian

approach to estimation, testing, prediction and decision-making pro-

cedures, in view of not only its strong philosophical basis but also,

very importantly, its success in practical applications in many fields

of science and application, including forecasting. With respect to the

very difficult problem of the formulation of models that work well in

explanation, prediction and policy-making, I described the SEMTSA

approach that my colleagues and I have been pursuing in our work to

produce good, structural macroeconometric models, and how it has

led us to construct and test a multi-sector MMM.1 Before going into

detail about this model, I shall begin with some material relating to the

general SEMTSA approach. Then I shall describe the implementation

of it and end with theoretical and empirical analyses, including some

forecasting results for our recently developed Marshallian macroeco-

nomic model and possible extensions of it.
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2.1 The structural econometric modeling, time series
analysis (SEMTSA) approach

The SEMTSA approach to model building in statistics and econo-

metrics originated years ago after I became familiar with the Box-

Jenkins ARIMA modeling approach. George Box was a colleague in

the Department of Statistics at the University of Wisconsin in Madison

when I was a member of Wisconsin’s Department of Economics dur-

ing the early 1960s. Indeed, he played a major role in developing the

Statistics Department with its many connections with other units of

the university, including economics, business, engineering, comput-

ing, etc. It was indeed a case of British empire building at its best, which

had many fruitful effects on research and teaching. In the 1960s, Box

addressed the Econometrics Research Seminar on his current research

with Gwilym Jenkins on ARIMA models, which led to their famous

time series book. Earlier, I had reviewed Quenouille’s excellent 1957

book on multiple time series models, including multivariate autore-

gressive moving average (MVARMA) models, and wondered how this

time series work related to dynamic econometric simultaneous equa-

tions models of the sort that Tinbergen, Stone, Klein and many others

constructed.2 As usual, when I have a difficult problem, I formulate a

simple variant of the complicated problem and try to solve it. If success-

ful, I go on to other variants of the problem and sequentially approach

the general solution. In this instance, I wondered whether it was pos-

sible to solve Quenouille’s general model for the implied processes on

individual variables and what form they would take. Also, I wondered

how Quenouille’s general MVARMA model was algebraically related

to the class of dynamic simultaneous econometric models.

Having formulated the above two specific problems, fortunately it

was not too hard to get answers, which were published in the 1970s

in two articles co-authored by Franz Palm, who visited the University

of Chicago for a couple of years as a graduate student and finished his

doctoral dissertation at the University of Louvain under my direction
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as his “promoter.” It was a pleasure to be at his degree ceremony,

dressed up, along with other faculty members, in robes and hats that

made us appear to be members of the Inquisition questioning the

candidate. Fortunately, he answered all questions exceptionally well,

to the pleasure of his parents and other friends who were present at the

ceremony, and has since had a very productive career and wonderful

family. I’ve often wondered how his very substantial output in research

and teaching is measured in the national income and product accounts.

My guess is that his, and others’, considerable output in research and

teaching is grossly underestimated in the national accounts; a topic

that deserves much more attention, in my opinion. In fact, in corre-

spondence with a former doctoral student of mine, Dr Brent Moulton,

who recently was deeply involved in correcting price indices for quality

change and in revising the US national income and product data, he

told me that a revision of the data on the output and productivity of

higher education was high on his list of items “to do” at the Bureau

of Economic Analysis in Washington, DC. I also hope that he devises

much-needed improved methods for measuring the output and pro-

ductivity of government sectors worldwide, particularly in view of

the huge amount of resources devoted to these sectors in most coun-

tries of the world. Measuring output of government sectors by factor

inputs can produce very crude, biased measures, as is well known.

As regards the first of the two problems, mentioned above, the

Quenouille multiple time series model, in the form of a MVARMA

process, for an mx1 vector of variables, z(t), can be expressed as:

H(L )z(t) = F (L )e(t) t = 1, 2, . . . , T (2.1)

where L is the lag operator such that L i z(t) = z(t − i) and H(L ) is

an mxm matrix lag operator of degree p, i.e. H(L ) = I + H1 L +
H2 L 2 + · · · + Hp L p where the Hi, i = 1, 2, . . . , p, are mxm matrices

with constant elements. Further, F (L) = F0 + F1 L + F2 L2 · · · + Fq Lq

is an mxm matrix lag operator of degree q, with the F ’s mxm matrices

with constant elements. The mx1 error vector e(t) in equation (2.1)
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is assumed to have zero mean and to be serially uncorrelated – that is

Ee(t)e(t)′ = 0 for t �= t′ and = I for t = t′. Note that, if F is of degree

zero – that is, F (L) = F0 – equation (2.1) is a vector autoregression or,

as I call it, a “very awful regression,” for reasons to be explained below.

Note too that, in the recent literature, there have been some misun-

derstandings about our system in equation (2.1) and its breadth of

coverage. In writing the system, we do not necessarily assume station-

arity nor do we always assume that the variables are always differenced

to induce stationarity. In our interpretation of Quenouille’s model, it

is broad enough to accommodate variables in differenced form and/or

level form, and thus we are not guilty of the charge leveled at us that

the system in equation (2.1) is not broad enough to represent many

multivariate linear time series models in use.3 However, it does not

represent the class of time-varying parameter models.

With respect to the first problem posed above, namely what the

implied marginal processes are for individual elements of z(t) – say

the rate of change of real GDP – if H(L) is invertible we have z(t) =
H−1 Fe(t)= (Ha/|H |) Fe(t), where H−1 =Ha/|H |, where Ha =adjoint

matrix associated with H, and the dependence of H and F on L is

suppressed. Thus, the answer is:

|H|z(t) = Ha F e(t) (2.2a)

or:

|H|zit = a ′
i e(t) (2.2b)

where ai
′ is the ith row of HaF . Since |H | is usually a very high degree

polynomial in the lag operator L, the process for zit in equation (2.2b)

is a high-order autoregression. Further, since the error term in (2.2b)

is the sum of moving average processes for the individual elements of

e(t), under well-known conditions, it can be represented as a moving

average process in terms of a single white noise error – say, ai(t). Thus,

not only is the process for zit in the Box-Jenkins ARMA form but,

if there is no canceling of roots, the autoregressive process for each
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element of z(t) will be of the same, usually high order with the same

parameters. This result also holds for the special case of a VAR, where

it is assumed that F (L) is of degree zero – that is, F (L) = F0 – and

which has come to be known as the “autoregression paradox” since

most empirical, statistical time series workers, using Box-Jenkins

and other procedures, find low-order autoregressions for individual

variables in empirical analyses and low-order moving average pro-

cesses for individual variables using first differenced variables. Since

such high-order autoregressive processes with identical autoregressive

parameters are not observed in empirical time series analyses, this leads

me to believe that unrestricted MVARMA or VAR processes are not

generating the data that we observe.

Also, on considering the VARs used by Litterman and others in the

1980s, which had m=7 and elements of H(L) of sixth degree, the equa-

tion for each variable of the system in (2.1) has a dependent variable

and 6 × 7 = 42 lagged input variables plus an intercept. Individually,

it’s like a regression with forty-two highly correlated input variables

and an intercept term. With twenty years of quarterly data there are

just eighty observations to fit a model with forty-three parameters,

with the result that parameter estimates are not very precise, and, as

Litterman discovered, the fitted – or “overfitted” – equations did not

perform well in forecasting. While his use of a clever prior distribution

for the parameters acted effectively to reduce the number of parame-

ters somewhat and did result in improved forecasting performance for

real variables, its performance for the financial variables was not satis-

factory, as noted by Stephen McNees. Further, when Litterman’s BVAR

was employed by Christopher Sims and others at the Federal Reserve

Bank of Minneapolis in the 1990s, it missed the 1990–91 downturn and

was scheduled to be revised. Thus, whether Bayesian or non-Bayesian,

VARs have not performed satisfactorily in forecasting, and this is one

reason for my use of the term “very awful regressions.” More funda-

mentally, the VAR, viewed by many as an encompassing model, is not a

very sophisticatedly simple model, intuitively or more formally using

Jeffreys’ operational measure of the complexity of models applied to
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a VAR model. As equation (2.2b) indicates, it has strong implications

that do not square with the information in the data. Thus, using it as

an encompassing model, as some have done, is – in my opinion – a

choice of the wrong model at the beginning, and testing downward

will probably lead, unfortunately, to great disappointments. After all

these years, as far as I know, such procedures have not as yet produced

models that work well in explanation and prediction.

Now, to return to our second problem, namely how Quenouille’s

model in (2.1) relates to dynamic structural econometric models.

Again, when the specific, direct question is formulated, it is not very

hard to provide an answer after some thought. In the present case, the

key difference between (2.1) and a dynamic simultaneous equations

model is the fact that, in the latter, there are some variables – such

as the weather etc. – that are assumed to be exogenously determined;

that is, their variation is determined outside the dynamic simulta-

neous equations model. To accommodate such variables, the vector

zt is partitioned into z′
t = (y ′

t, x ′
t), where yt is a vector of endog-

enous variables and xt is a vector of exogenous variables, and the

system is written as follows with a partitioning of the H(L) and F (L)

matrix lag operators:(
H11 H12

H21 H22

) (
yt

xt

)
=

(
F11 F12

F21 F22

) (
e1t

e2t

)
(2.3)

The assumption that the x vector is exogenous implies the following

restrictions on the system in (2.3): H11 ≡ 0, F12 ≡ 0 and F21 ≡ 0. With

these restrictions imposed, the system becomes:

H11 yt + H12xt = F11e1t (2.4)

and:

H22xt = F22e2t (2.5)

From (2.4) we can solve for the so-called “transfer functions,” which

are different from the traditional “reduced form” equations. In the

transfer functions, we have the current and lagged values of just one
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endogenous variable, and current and lagged values of the exogenous

variables. In a usual reduced form equation, one current endogenous

variable appears along with lagged values of it and lagged values of

other endogenous variables, as well as current and lagged exogenous

variables. Thus, by incorporating current and past values of just one

endogenous variable, transfer functions are somewhat simpler than

unrestricted reduced form equations. However, the error terms in

a transfer function are usually autocorrelated even if the structural

error terms are not, whereas in a traditional reduced form equation

the errors are not autocorrelated, given that the structural error terms

are not autocorrelated.

On multiplying each side of (2.4) by the inverse of H11 – namely

H11
−1 = H11a/|H11|, where H11a is the adjoint matrix associated with

H11 – we obtain:

|H11|y(t) = H11a H12xt + H11a F11elt (2.6)

It is seen from (2.6) that each transfer function involves the same lag

structure and parameters on the left-hand side given that there is no

canceling of common roots. That is, the scalar lag polynomial, |H11|,
hits each element of y(t), and thus, if there is no canceling of roots,

each of the m transfer functions in (2.5) should have identical left-hand

sides. On the right side of (2.5), if we know the orders and degrees of

the matrix lag operators, the coefficients and lags on each exogenous

variable in each equation can be determined algebraically. Also, the

order of each moving average process on the errors in the transfer

functions can be determined given information regarding the degrees

of the elements of the matrix lag operators, H11a and F11.

Further, the marginal processes for individual variables, called the

“final equations” or “marginal processes” for individual variables, can

be derived by substituting xt = H22
−1 F22e2t from (2.5) into (2.4) to ob-

tain yt = −H11
−1 H12H22

−1 F22e2t + H11
−1 F11elt, or |H11||H22|yt =

−H11a H12 H22a F22e2t + |H22|H11a F11e lt. Thus, given a multivari-

ate structural equation system in the form of (2.4) with exogenous
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variables generated by (2.5), it is direct to determine the forms of its

associated transfer functions and final equations and check their forms

using data.

As recognized and applied to a structural monetary model for the

US economy, formulated and implemented by Milton Friedman, (2.6)

can be employed to check formulations of dynamic structural simulta-

neous equations models. That is, first the equations in (2.6) are derived

algebraically from the structural equations. Second, using statistical

transfer identification procedures, transfer functions’ forms are deter-

mined or identified empirically from the data. Then the empirically

determined transfer functions’ forms are compared with those of the

transfer functions derived algebraically from the model. In connec-

tion with the Friedman monetary model, Palm and I found that the

implied transfer functions from the model did not agree with those

determined empirically from the monthly data whether we assumed

adaptive expectations or rational expectations in formulating the

structural equations of the model.4 Thus there is a need for some model

reformulation to have the model’s transfer functions square with those

determined from the data.

Similarly, we analytically derived the final equations associated

with Friedman’s monetary model and compared their properties with

those of empirically determined univariate models for the three vari-

ables of the model: nominal money, nominal interest rate and the

price level. Again, there were some discrepancies between the empi-

rically determined final equation models and the final equations

derived analytically from the structural model. While going from

assumed adaptive expectations to assumed rational expectations pro-

duced some improved agreement between the empirically and ana-

lytically derived transfer functions and final equations, there is still

a need for further improvement; perhaps, as we suggested, in taking

better account of seasonal effects, among other elements.

Indeed, the problem of seasonality deserves much more attention

in modeling daily, monthly and quarterly data. For example, when
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working on my doctoral dissertation years ago, I used seasonally

adjusted quarterly personal disposable income and consumption data.

When I wrote to Washington, DC, requesting the seasonally unad-

justed quarterly personal disposable income data, I was told that “it did

not exist.” Baffled by this response, I wrote requesting an explanation

and was told that proprietors’ income was just available from income

tax returns annually and was interpolated to produce quarterly esti-

mates without incorporating a seasonal component, and thus the total

income variable was not available seasonally unadjusted even though

it was available seasonally adjusted. In addition to this and many other

measurement problems, it is the case that seasonal adjustment proce-

dures in use – e.g. X11, X11-ARIMA, X-12, etc. – are based on strong

assumptions regarding trend, cyclical, seasonal and noise components

that have little economic theoretical justification, as explained in the

literature and in our report on seasonal analysis and adjustment pro-

cedures completed for the US Federal Reserve authorities.5 In this

report, in addition to statistically motivated models for seasonal anal-

ysis of monetary time series, there is an economically motivated, causal

monetary model of seasonality that was formulated to provide more

meaningful analyses of seasonal effects and for improved seasonal

adjustment. Much more work in this area is needed and probably will

yield improved analyses and predictions of the economic behavior of

industries and economies. And, of course, Quenouille’s multiple time

series model can be generalized to incorporate seasonal effects, and

associated transfer and final equations can be derived and checked for

their agreement with empirically derived “seasonal” transfer functions

and “seasonal” final equations.

While the above transfer functions and final equations can be

derived from given, known models and compared to those derived

empirically, when we do not know the form of the structural model –

e.g. we do not know that the model is in the form of equation (2.4)

or lack information about identifying restrictions – it is still the

case that empirical work can go forward. However, here there has
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been a divergence of views about how to proceed. Some, including

R. Litterman, C. Sims, D. Hendry and others, start with an “encom-

passing” or “empirical” VAR model, which is a model in the form of

Quenouille’s MVARMA model, perhaps with moving average (MA)

error term processes of order zero – that is, the operator F (L) in equa-

tion (2.1) is of degree zero. It is clearly the case that many aspects of

the VAR may be unsatisfactory, and, if so, efforts to find relations that

work well in forecasting will not be successful. As mentioned above,

Litterman in his work showed that unrestricted VARs did not forecast

very well and improved their performance by introducing informa-

tive prior densities for the parameters in his Bayesian VAR, which

performed better than his unrestricted VAR but still did not provide

totally acceptable performance, according to McNees’ evaluation in a

1986 article in the Journal of Business and Economic Statistics.6 Also,

according to an article in an NIESR volume, the Bank of England

carries along a BVAR model to help in its forecasting efforts, but no

data are provided to evaluate its past performance.7 And on a recent

visit to the Federal Reserve Bank of Atlanta I was told that their BVAR

model did not forecast very well.

When the algebraic operations above are used to derive the marginal

processes for individual variables from VAR or VARMA models, the

marginal processes are found to have high-order autoregressive parts

and high-order MA error term processes, not very much like the low-

order processes identified using Box-Jenkins and other procedures by

many researchers.

Given these difficulties with complicated VAR processes and the fact

that their use has not led to good point and turning point forecasts, as

mentioned above, I prefer to start simply with empirically determined

transfer functions or empirical univariate forecasting equations that

can be derived from the data, and to evaluate their performance in

forecasting experiments and in “on-line” forecasting, taking account

of the preliminary data problem. If a set of equations for important

variables (e.g.) the rate of growth of real GDP, the price level, the
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number of firms in operation, etc.) that work well in forecasting has

been obtained, then it is possible to use old and new economic theory

to attempt to rationalize these equations and to combine them into a

logically consistent, structural econometric model capable of explain-

ing the past and predicting the future and, possibly, being of assistance

in making policy. Here the unusual fact is that certain empirical, time

series relations work fairly well in explaining variation in past data

and in forecasting. Explaining successfully why this is the case, using

subject matter economic and statistical theory, is indeed a noteworthy

and satisfying achievement and an essential element of the SEMTSA

approach to model building.

As is well known, in many fields, including economics and econo-

metrics, rationalizing empirical regularities or relationships has led to

useful new models and theories. For example, Kuznets’ finding of a

relatively stable savings rate for the United States over the first half

of the twentieth century in the face of sharply rising real income,

an empirical finding contradicting Keynesian views that the savings

rate would rise, led to new theories of consumer behavior by Friedman,

Modigliani, Ando, Tobin and others that rationalized the constancy of

the savings rate in one manner or another. However, I believe that it

would be worthwhile to review Kuznets’ empirical work to determine

whether savings were measured appropriately. For example, as indi-

cated in a May 23, 1987, Wall Street Journal article by Clark S. Judge

entitled: “Problem isn’t rate of US savings, but where the money goes,”

it was pointed out that the personal savings rate, the ratio of personal

savings to personal income, “fell to an all-time low of 3.2 percent . . .

in 1987.” However, he pointed out that savings, as measured by the

Department of Commerce, do not include much of individuals’

and employers’ contributions to various pension funds. Also, it was

pointed out that the Department of Commerce “counts [expenditures]

on cars and other consumer durable goods as consumption . . .” rather

than just services yielded by durables as consumption. He pointed

to a better measure of savings, the Federal Reserve’s “Savings by
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Individuals,” which includes “all pensions and the net value of con-

sumer durables, as well as certain capital gains that Commerce leaves

out. In 1987, calculating from these figures (reported in the Council

of Economic Advisers’ Economic Report to the President), Americans

saved 9.4 percent of their incomes – almost triple what Commerce

shows. From 1977 to 1987 the Fed savings rate fluctuated between a

low of 9 percent in 1980 to a high of 12 percent in 1984.” However, that

is not the end of the story, since these numbers produced by Commerce

and the Federal Reserve system “. . . leave out one big contribution

to savings – Social Security . . . Counting Social Security payments,

we Americans sock away nearly one in every five dollars we make –

18.5 percent in 1987, up from 17.1 percent in 1980 and 17.0 percent

in 1970.” Also, as the author pointed out, these estimates might also

have been too low because of several other items that are omitted from

measured savings, namely lumping non-profit organizations, which

save very little, with other individuals. “Drop out non-profits and the

savings rate for individuals rises.” Further, he noted that “. . . both the

Fed and Commerce treat the sale of a home in a perverse way” that

tends to understate the savings rate. Thus, instead of a savings rate of

about 3 or 4 percent, as measured by the Department of Commerce,

or a savings rate of about 9 to 12 percent, as measured by the Federal

Reserve, Judge’s estimate was in the range of 17 to 19 percent – much

higher than Kuznets’ estimates, and certainly much higher than some

recently reported Department of Commerce’s negative savings rates

for the United States. In my opinion, this important measurement

problem, undoubtedly relevant for many economies, may have a great

impact on the evaluation of alternative theories of consumer savings

behavior. Thus, as recognized broadly, and particularly by Richard

Stone, we must be serious about measurement problems in statistics,

econometrics and forecasting in order to make progress in producing

statistical and econometric models that work well. Using bad data will

many times produce results in accord with the old adage, “Garbage in,

garbage out.”
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To summarize, the SEMTSA approach can be employed to check

a given structural dynamic model’s features by comparing its asso-

ciated transfer equations and final equations properties with those

determined empirically from the data using time series transfer func-

tion and final equation identification procedures. Further, the point

and turning point forecasting performance of the dynamic structural

model can be compared with that of empirically determined transfer

and final equations. If this empirical work indicates that the structural

model is defective in certain respects, then work can be undertaken

to improve the original model in an iterative model improvement

process, which has been employed successfully by workers in many

sciences and industries.

On the other hand, if a satisfactory dynamic structural model is not

available, then research is undertaken to produce relations for impor-

tant, relevant variables that perform well in explaining past variation

in the data and in point and turning point forecasting. Given a set of

empirical relations that perform well, it is a challenge to use economic

theory to explain this unusual finding. When this is done, there will

usually be a number of other improvements suggested by theory that

can be implemented. And of course, close study of the properties of

the overall model is very worthwhile and may be done analytically

and/or in simulation experiments with the model. To illustrate the

importance of simulation experiments, I shall briefly review our work

on a regional modeling project.

Henry Hamilton and others at the Battelle Memorial Institute (BMI)

in Columbus, Ohio, along with university consultants, built a model to

evaluate the possible effects of proposed dam construction by the US

Corps of Engineers on the Susquehanna River on regional economic

growth.8 The Corps contracted with the National Planning Associa-

tion (NPA) to estimate the effect of dam construction on the growth

of the region. The NPA estimates showed a considerable impact on the

growth of the region. On the other hand, the BMI model predicted

very little impact over and above that associated with the direct effects
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of building the dams. The BMI model reflected the following very

simple considerations of how dam construction might affect regional

growth:

(1) Dams can provide water for irrigation in agriculture and for

other heavy water-using industries;

(2) Dams can provide electric power for industrial and other uses;

(3) During low flow periods, water can be released from the dams to

help deal with pollution problems that affect regional location

and other decisions; and

(4) Artificial lakes created by dam construction can stimulate

tourism and associated activities.

As regards these possible effects, pragmatic reasoning, and the

model’s outputs, reflected the fact that rainfall in the region was sub-

stantial and that agriculture in this region did not require irrigation.

Also, the price of water was so low that heavy water-using industries

were already in the region and would not be much affected by water’s

being available in connection with dam construction. As regards elec-

tricity, the region already had many sources of electricity, some hydro,

at reasonable prices. With respect to pollution, the river was not very

polluted and did not require released water from proposed dams to

deal with pollution that, e.g., might discourage firms from locating in

the region. Last, the region includes mountainous regions, the Catskills

and the Poconos, with many lakes and a thriving tourist industry and

didn’t require artificial lakes to stimulate more tourism. These simple

considerations were confirmed in the output of simulation experi-

ments using the BMI simulation model. While the model was large

to capture needed detail, its basic operation could be explained using

just nine equations. Detail was added because of the use of subregions

along the river, age-specific birth, migration, family formation and

death rates, various industrial sectors, a water sector, etc. Having an

appreciation of important, rather simple issues and considerations

was extremely helpful in model building in this instance.
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2.2 Application of the SEMTSA approach to
macroeconomic data

The idea that structural macroeconomic models’ performance in fore-

casting should be evaluated by comparing their performance to that of

simple benchmark models is an old idea. For example, years ago dur-

ing the Cowles Commission days at the University of Chicago, Milton

Friedman and Carl Christ compared forecasts of Klein’s models with

those of random walk models, with results that were quite shocking

to the structural model builders.9 In a like manner some years later,

Charles Nelson and Charles Plosser compared the forecasting perfor-

mance of Box-Jenkins’ ARIMA models to that of large-scale structural

econometric models, with results that were again quite disturbing to

the model builders.10 The same can be said with respect to forecasts

produced by Cooper’s third-order autoregression, an AR(3), vis-à-vis

those produced by structural econometric models.11 The conclusions

that I and many others draw from such forecasting experiments is that

the structural models require reformulation to improve their forecast-

ing performance.

Similarly, some past simulation experiments, designed to determine

important properties of large-scale structural econometric models,

have yielded surprising results regarding the properties of such models

that were unknown to the model builders. See, for example, papers by

the Adelmans and Zellner and Peck showing very unusual properties

of certain large macroeconometric models.12 Again, such results imply

the need to reformulate these large, complicated models and indicate

the costs of failure to KISS – that is, to keep it sophisticatedly simple.

My preference for sophisticatedly simple models should not be

interpreted as just a preference for small models. If much detail is

needed in modeling, a model may have to be large, but it still can be kept

sophisticatedly simple. For example, as mentioned above, in model-

ing the Susquehanna River basin economy years ago, we needed much

detail regarding subregions, different industries, etc. but managed to
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keep the model rather simple. This preference for simple models, and

starting simply and complicating if necessary, seems to be a general one

in many areas of science. As Einstein is quoted as saying, “Keep your

theories as simple as possible, but no simpler.” Also, Jeffreys recognized

that simplicity is a relative term in discussing the Schrödinger wave

equation, a partial differential equation that he regarded as “simple.”

What subsequent discussion brought out was that Jeffreys meant that,

of the possible equations that could explain what Schrödinger wanted

to explain, his equation was the simplest.

In addition to the above considerations, from the results of a St Louis

Federal Reserve Bank conference in the early 1990s designed to deter-

mine which macroeconomic model (e.g. monetarist, neo-monetarist,

Keynesian, neo-Keynesian, real business cycle, etc.) was best supported

by the data, Ray Fair and I reported in our contributions that there was

not enough empirical testing of alternative models, and explained in

our papers how to proceed to formulate and test alternative macroe-

conomic models.13 Of course, I emphasized the SEMTSA approach,

briefly described above, as a sensible way to proceed and indicated that

we had already used it to evaluate one monetary model of the United

States in earlier work and were using it in current research efforts

aimed at producing operational models that work well in forecasting,

explanation and policy-making.

In our work to achieve this last objective, we decided to start simply

and complicate if necessary. As regards the initial choice of a variable,

it was decided to analyze processes for the rate of growth of real GDP,

a variable of great interest to many and involved in most macroe-

conomic and macroeconometric models. Note that we used the first

difference of the log of GDP, the growth rate, in part to get rid of sys-

tematic measurement biases and in part because there is great interest

in this variable. Also, while we did some work with quarterly data

in our first paper, the quality of quarterly data and seasonal adjust-

ment procedures used in many countries leaves much to be desired, as

mentioned above. In some cases quarterly data are interpolated and
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seasonal adjustment procedures are based on assumptions regarding

trend, cyclical, seasonal and noise components – for example inde-

pendence and/or stationarity assumptions – that are inappropriate

for structural modeling. Thus, in the main, our empirical work has

been carried forward using annual data, relating to, first, nine indus-

trialized countries and, later, to eighteen industrialized countries. See

figure 1.1 for box plots of the data.

It is seen from the box plots for the GDP growth rate data that the

data reveal systematic fluctuations in the rates of growth with about

a four- to six-year period – the “business cycle” observed and written

about by many, with some making a distinction between “inventory”

or Abramowitz cycles and longer-period “replacement” or Juglar

cycles. Knowing beforehand that the data exhibited cyclical features,

we decided to begin our investigations using an autoregression model

of order three, which could have two imaginary roots, giving rise to a

cyclical component, and a real root, giving rise to a local trend.

It didn’t take very long to learn that the AR(3) model did not work

well in forecasting because it was missing turning points. That is, at

the top of the cycle it tended to forecast continued upward movement

when the economy turned down, and at the bottom it would forecast

continued contraction when the economy expanded in many cases.

Note that many other time series and structural models have difficulty

in forecasting turning points.

On seeing what the problem was with the AR(3) model’s forecasting

performance, it was not too hard to remember that Burns and Mitchell

in their famous book Measuring Business Cycles (which I had read as

a graduate student) found that money and stock prices tended to lead

in the business cycle, using data for the United Kingdom, France,

Germany and the United States extending back to the nineteenth

century.14 Thus, it was decided to add two variables – lagged rates

of change in real money, GM, and real stock prices, SP – to our AR(3).

In addition, the lagged annual rate of growth of the median of the

eighteen countries’ rates of growth of real stock prices was introduced
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as a world return variable, WSP, to obtain the following equation for

the i’th country:

yit = β0i + β1i yi t−1 + β2i yi t−2 + β3i yi t−3 + β4i G Mit−1

+ β5i S Pit−1 + β6i S Pit−2 + β7i WS Pt−1 + uit

i = 1, 2, . . . , m t = 1, 2, . . . , T (2.7a)

or:

yi = Xiβi + ui (2.7b)

As explained in my first lecture, we rationalized the introduction of

the lagged rate of change of real money by pointing to the real balance

effects of the classical quantity theory of money. That is, changes in real

money tend to induce increased expenditures in order for producers

and consumers to achieve a new equilibrium in their portfolios of

various financial and real assets. In earlier studies using US data, I

estimated such real balance effects in quarterly consumption functions

and found significant effects, which were reproduced using British

data.15 Also, on disaggregation, in an unpublished paper, it was found

for consumers that changes in real money holdings tended to affect

real expenditures on durable goods and services much more than real

expenditures on non-durables.16

The introduction of the leading indicator stock return variable was

rationalized by pointing out that the stock market reacts quickly to

news events (e.g. wars, policy changes, unexpected changes in oil

prices, etc.) whereas the economy reacts with a lag, perhaps due to

delays and costs associated with changing the values of real variables.

In general, the introduction of the “leading indicator” variables in our

model, now called an autoregressive, leading indicator model, led to

better fits, but not over-fits, and more accurate forecasts.

At this stage in our work, we distributed our data set to those who

requested it. One group used our data set and found that their estima-

tion and forecasting techniques, based on various state space models,
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worked “much, much better” in terms of the RMSEs of forecast than

our model. Their RMSEs were so low that I knew that something had

to be wrong. Finally, it occurred to me that perhaps they had used the

complete sample to fit their model and used part of the same sample in

their forecasting experiments. It turned out that this was indeed what

they had done, and when this “glitch” was corrected their RMSEs in-

creased substantially and did not dominate those of the ARLI model.

Another researcher, S. Mittnik, used our data in conjunction with his

clever model identification procedures and found that we should have

included not only the real money growth rate with a one-year lag but

also the same variable with a two-year lag.17 Also, he found that no

lagged values of the output growth rate were needed in his empiri-

cally determined relation. Further, his state space methods produced

forecasts that seemed rather good. Last, P. W. Otter used our data and

canonical correlation methods to obtain yet another preferred model,

namely one in which output growth was linked to the output growth

rate and the growth rates of real money, real stock returns and world

stock returns, all lagged one year.18

In view of these different results about what the appropriate model

is, I thought it of interest to consider all possible models, involving the

eight input variables, that is, 28 = 256 possible models, including our

formulation as well as those of Mittnik and Otter. That is, posterior

odds were computed relating to particular models versus the broadest

model, that containing all eight input variables using the expression

for posterior odds that a former student, A. Siow, and I had derived

and applied earlier. The posterior odds favored our AR(3)LI model,

the Mittnik and Otter models, and a few others. Indeed, the results

indicated that our AR(3)LI model was slightly favored relative to the

Mittnik and Otter models, and all three models were strongly favored

relative to a random walk model and somewhat favored relative to the

general model containing all eight input variables.19

A surprise that came out of these calculations was the high poste-

rior odds favoring several models that just included the rate of output
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lagged three years while excluding values of this variable lagged one

and two years. The odds favored these restricted AR(3)LI models quite

markedly even though their advantage in terms of RMSEs of forecast

was not that great. It turns out on further analysis that an autoregres-

sion y(t) = a + by(t − 3), with b < 0, can have one real root and two

complex roots with an associated cycle of about five to six years; just

about right for our problem. Thus, the added complexity of including

the variables y(t − 1) and y(t − 2) does not appear to be necessary to

produce an appropriate cyclical component.

These posterior odds calculations gave us information that our spec-

ification of the ARLI model was competitive relative to the alternatives

suggested by Mittnik and Otter, as well as to many other formulations

in the 255 alternatives to our model. However, the RMSEs of fore-

cast for all the models seemed too large, even though they were much

smaller than those for random walk and other benchmark models,

and thus there was a need for further improvement. As noted by many,

posterior odds constitute a relative measure, not an absolute measure,

of performance. For example, the posterior odds on model A versus

model B might be thirty to one, but this does not imply that A is an

adequate model. It may be that B is a very bad model and that A is just

a poor model. It was for these reasons that we computed RMSEs of

forecast to get some idea of the absolute performance of our models.

To achieve model improvement, we considered a variety of possi-

ble alternatives, including (1) adding the current rate of growth of a

‘world’ real income variable – the annual median output growth rate of

the eighteen countries in our sample – to our ARLI model, renamed the

ARLI/WI model, and (2) adding an equation to explain and forecast

the median growth rates of the eighteen countries, which are plotted

in figure 1.1 Note that the median of the eighteen countries’ growth

rates follows a cyclical path and, of course, a real world income variable

is an important element in the demand for countries’ exports.

Using the ARLI/WI model, we first forecasted the median growth

rate of the eighteen countries and then inserted this forecasted growth
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rate in the eighteen countries’ individual ARLI/WI equations and used

them to forecast countries’ output growth rates year by year. Generally,

the ARLI/WI model performed better than the individual countries’

ARLI models without the world income variable. Later, R. A. Highfield

and J. Tobias indicated that a joint analysis of the equations for indi-

vidual countries involving the world income variable and the equation

for world income was possible, and their results certainly deserve more

attention in future work.20

In addition to experimenting with the ARLI and ARLI/WI mod-

els, we also investigated several alternative “pooling” or “shrinkage”

procedures, building on the work of Stein and our earlier work on

Bayesian statistical shrinkage techniques. Briefly, in the 1920s actuar-

ial statisticians had discovered empirically that, when estimating many

parameters relating to different insured groups, it was useful to average

individuals’ estimates with an estimate of an overall mean. Essentially,

the individual estimates were being drawn closer or “shrunk” towards

the common estimated mean, and results seemed more “stable” and

“useful” than estimates obtained without averaging or shrinking.

In the 1950s, Charles Stein, an eminent statistician, published theo-

retical work based on the Bayesian approach that theoretically implied

a posterior mean in a form similar to the “shrinkage” estimates used

by the actuarial statisticians. He further showed that not only does the

shrinkage procedure effect improvement relative to other, traditional

procedures under special conditions, but that, when quadratic loss

is used, shrinkage procedures uniformly dominate usual estimation

procedures, including least squares and maximum likelihood proce-

dures, when estimating a vector of three or more means or a vector

of three or more regression coefficients, etc. Thus, the usual, maxi-

mum likelihood and least squares estimators are inadmissible relative

to Stein’s shrinkage estimators – a finding that shook the profession.

The added information that individual means are distributed about

a common mean, or that elements of a regression model’s coeffi-

cients are distributed about a common value, is extremely useful in
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improving performance of both estimators and predictors for a

wide range of models and is often compatible with empirical con-

ditions. In view of these developments and my own work joint with

a former student, Walter Vandaele, on interpreting and producing

Stein-like estimators for various problems using Bayesian and non-

Bayesian procedures,21 it was decided to investigate the extent to which

Stein-like shrinking or pooling would help improve the forecasting

performance of our ARLI and ARLI/WI models.

A second modification of our original fixed parameter ARLI model

was to make allowance for parameter variation through time, much in

the way that engineers do in their state space models; see, e.g., the useful

books by Swamy, and Kim and Nelson, for consideration and analysis

of a variety of time-varying parameter models.22 Now, it may be asked,

“Why should parameters of macroeconomic models vary through

time?” There are many reasons, namely aggregation effects, structural

changes or breaks, technological change, changes in tastes, changes

in economic policies and their attendant effects on parameters –

so-called “Lucas effects,” etc. It is indeed surprising that not very many

models in the macroeconometric area involve the use of time-varying

parameters. Indeed, in a recent review of a leading book on economic

forecasting, published in 1999, the well-known forecaster L.-E. Öller

remarked, “State space models would have fitted in here [in modeling

breaks], but are not considered.”

A question that naturally arises in attempting to model time-varying

parameters is, “How do the parameters vary?” One point of view that

we considered briefly was to assume that parameters might change

at specific points in the business cycle and that a Markov process

might be used to model such specific changes. Since such an approach

would involve introducing many parameters and might not capture

the properties of the timing of parameter changes and the nature

of their movements, we decided to follow the state space engineers’

approach by making the parameters random and putting specific time

series processes on them that permit them to vary using relatively few



102 Statistics, Econometrics and Forecasting

parameters. Thus, for example, in our first published paper in 1987,

we assumed that the coefficient vector in the ARLI model for the

i’th country β i t followed a vector random walk βi t = βi t−1 + εi t, t =
1, 2, . . . , T, i = 1, 2, . . . , m.

Using recursive computing procedures, we were able to utilize this

random walk process along with the data to produce one-year-ahead

forecasts. Also, broader processes for the parameter vectors were

employed, along with shrinkage assumptions. For example, in one

model we assumed that the i’th country’s coefficient vector was dis-

tributed around a common vector θ t that is allowed to follow a vector

random walk. That is, we assumed β i t = θ t + εi t , where θt is a common

mean in year t, εi t an error vector and θ t = θ t−1 + ut a vector ran-

dom walk for the annual common mean parameter vector θt. Recur-

sive Bayesian updating procedures were used to estimate and forecast

year by year. Such models were termed time-varying parameter, ARLI

models, and denoted by TVP/ARLI. When similar assumptions and

techniques were applied to our ARLI/WI models, we called the result-

ing models TVP/ARLI/WI models. In the case of such models, we fitted

them country by country with no shrinkage or pooling assumptions

and with such assumptions.

In table 2.1 forecasting results using fixed parameters and time-

varying parameters with and without pooling are shown. In the upper

panel, forecasting results for the eighteen countries using TVP/ARLI/

WI models with and without pooling are presented. It is seen that,

when pooling is utilized, countries’ RMSEs of forecast are more highly

concentrated about a lower median value, namely 1.74 percentage

points, than when pooling is not utilized, namely 2.37 percentage

points.

Similar results are encountered when shrinkage is employed using

FP models, namely a median RMSE = 1.86 percentage points when

the pooling or shrinkage assumption is employed, as against a median

RMSE = 2.60 percentage points when the pooling or shrinkage assum-

ption is not employed. Also, results for the TVP models are slightly



Table 2.1 Forecasted RMSEs and MAEs for disaggregated models

using currency as money variable (percentage points), 1952–79 ⇒
1980–97

MMM(DA)

Error AR(3)(DA) AR(3)LI(DA) Distrib Lag(DA) I II III IV

OLS

RMSE 2.26 1.62 1.61 1.61 1.52 1.47 1.80
MAE 1.65 1.32 1.35 1.31 1.28 1.25 1.47

Extended MELO

RMSE 2.26 1.58 1.62 1.55 1.55 1.50 1.80
MAE 1.65 1.23 1.34 1.26 1.31 1.26 1.46

2SLS

RMSE 2.26 1.60 1.63 1.59 1.49 1.48 1.78
MAE 1.65 1.31 1.38 1.29 1.25 1.24 1.45

SUR

RMSE 2.21 1.70 1.66 1.68 1.61 1.40 1.92
MAE 1.52 1.41 1.36 1.39 1.38 1.17 1.60

Complete shrinkage

RMSE 2.11 1.73 1.82 1.76 1.57 1.59 1.70
MAE 1.45 1.57 1.60 1.46 1.37 1.38 1.43

γ -shrinkage (γ = 0, same as OLS above): γ = 0.25

RMSE 2.21 1.62 1.61 1.61 1.49 1.46 1.74
MAE 1.59 1.36 1.38 1.34 1.26 1.25 1.41

γ = 0.5

RMSE 2.18 1.62 1.63 1.62 1.49 1.46 1.71
MAE 1.56 1.39 1.42 1.36 1.27 1.27 1.38

γ = 1

RMSE 2.15 1.64 1.66 1.64 1.49 1.48 1.69
MAE 1.52 1.44 1.46 1.38 1.29 1.29 1.39

γ = 2

RMSE 2.13 1.66 1.70 1.67 1.51 1.50 1.68
MAE 1.49 1.48 1.51 1.41 1.32 1.32 1.40

γ = 5

RMSE 2.11 1.69 1.75 1.71 1.53 1.54 1.68
MAE 1.47 1.52 1.56 1.44 1.34 1.35 1.41
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better than those for the FP models. Thus, improvements in forecasting

performance were encountered using the TVP/ARLI/WI model with

pooling assumptions.

To effect further improvements in forecasting performance, the pos-

sibility of using “combined forecasts” from several alternative models

was considered. Or one may refer to this as a form of model averaging.

For many years in the forecasting literature since the publication of the

innovative paper by Bates and Granger, there has been much research

on how to combine different forecasts and whether the combining

of forecasts tends to improve forecasts.23 See R. Clemens’ paper for a

comprehensive review of research on these and other topics relating to

forecast combining techniques and their uses.24 First, there is the issue

of whether combining or averaging alternative forecasts will always

produce improved forecasts. Since “always” is a very strong word, I

was skeptical that combining would always improve forecasts. Simply,

if we average a bad forecast with a very good one, it is not at all clear that

we always get improved forecasting performance by using the average.

In work with Palm and Min, it was shown that, when the forecasts

being considered do not constitute an exhaustive set and they may

be biased, it is not the case that combining forecasts always produces

improved results.25 Sometimes it does, but not always.

Further, there is the issue of how to combine alternative forecasts.

Some ingenious Bayesian and non-Bayesian procedures in the liter-

ature due to Winkler, Granger, Bates and others are based on the

assumption that the forecasts to be combined are all unbiased – a very

strong assumption. There are many reasons that may cause forecasts to

be biased, e.g. use of defective models, bad data, asymmetric predictive

loss functions for which biased forecasts are optimal, etc.

In view of this restriction of unbiasedness on forecasts to be com-

bined and other reasons mentioned above, we did not believe with cer-

tainty that combining forecasts derived from different models would

always lead to improvement. However, since there is a possibility that

improvement might result and since we wished to compare Bayesian
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and non-Bayesian combining techniques, it was thought worthwhile

to investigate the issues of whether it pays to combine and how to

combine most effectively.

In the Bayesian approach to combining, first we compute the poste-

rior odds on alternative models – say, an FP model versus a TVP model.

Then, as I suggested in a 1987 paper, it is possible to derive a “com-

bining density” that is closest in a weighted information metric sense

to the individual predictive densities of alternative models.26 That is,

if two predictive densities for a future observation yf are available –

say, f 1(y f ) and f 2(y f ) – with associated posterior probabilities P1

and P2, the weighted Euclidean distance between these densities and

a combining density, yc (y f ), can be minimized by choice of fc sub-

ject to fc’s being proper to yield the optimal result, f ∗
c : namely f ∗

c =
a[K f1 + f2], where a = normalizing constant and K = P1/P2. Of

course, other distance metrics can be employed in deriving optimal

combining densities. Also, more than two densities can be combined

using a given distance metric.

Given a combining density, for example that shown above, it can be

employed to make probability statements about future outcomes, e.g.

to compute the probability that next year’s growth rate will be below

this year’s growth rate, etc. Also, given whatever predictive loss func-

tion is thought to be appropriate, point predictions that minimize

expected predictive loss can be determined, analytically or numeri-

cally, and employed in forecasting.

Posterior odds can be utilized to compare a combining density and

a given predictive density – say, that associated with a benchmark

model or a particular model – in a model choice context. Thus, in

some years a benchmark model and its forecast may be employed, and

in others the combined density and its forecast are employed. This

procedure was applied in forecasting eighteen industrialized countries’

output growth rates, and it was found that use of this model choice

approach did not yield much improvement relative to general use of

the combined forecasts or general use of the forecasts of any particular
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model.27 Thus, while combining and model choice approaches can

provide improved results, it is not the case that they always do so.

Obtaining the posterior odds on FP versus TVP models took some

hard work, but finally the result was obtained in an easily computable

manner that could be used to derive the optimal combining density, the

mean of which was an optimal point forecast relative to quadratic loss.

In evaluating the actual performance of such combined forecasts

vis-à-vis individual forecasts, it was found in our examples that com-

bining did not produce much in the way of improved forecasts but

that our Bayesian combining procedures worked better than the non-

Bayesian combining techniques we considered.

As a result of the above investigations, it was concluded that the

TVP/ARLI/WI model utilizing pooling or shrinkage techniques was

the model that worked best in point forecasting of annual rates of

growth of real output for eighteen industrial countries. Then the issue

arose as to how well this model, and variants of it, would work in

forecasting turning points in countries’ real growth rates; that is, in

forecasting downturns and upturns in output growth rates for these

countries. As explained in the first lecture, we (1) defined turning

points, (2) derived probabilities of a downturn and of no downturn,

PDT and PN DT = 1 − PDT respectively, from models’ predictive den-

sities, and (3) used these probabilities along with a 2 × 2 loss structure

to derive optimal turning point forecasts. That is, given two possible

outcomes – say, DT or NDT – we chose the forecast – say, a DT – that

has lower, associated expected loss. On applying this approach using a

symmetric loss structure, the optimal procedure is to forecast a DT if

the probability of a DT is greater than 1/2. If the probability of a DT is

less than 1/2, the optimal forecast is NDT. Similar analysis, along with

a definition of an upturn and no upturn for outcomes at the bottom

of a cyclical episode, leads to an optimal choice between UT and NUT

forecasts that can easily be computed. Again, if the 2 × 2 loss structure

is symmetric, it is optimal to forecast an UT when the probability of an

upturn is greater than 1/2 and NUT when it is less than 1/2. On applying
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these techniques to the data for eighteen industrialized countries using

a variety of models, with and without pooling, results were obtained

that indicate that our various models forecasted 70 percent or more of

211 turning point episodes correctly! What a pleasant surprise. In con-

nection with almost all models considered, use of pooling or shrinkage

tended to produce improved results.

Also, results of experiments with asymmetric loss functions show

that, by altering the relative costs of errors, it is possible to improve cer-

tain forecasts.28 That is, when the cost of an erroneous NDT forecast

is high, such forecasts are made just when the evidence for an NDT

outcome is extremely strong and thus the percentage of correct NDT

forecasts tends to rise. This is important to recognize since in many

circumstances an incorrect NDT forecast can be a much more serious

error than an incorrect DT forecast. Thus, choice of an appropriate

loss structure is very important. Further, it should be recognized that

it is possible to choose among more complicated alternatives, e.g. a

moderate downturn, a severe downturn and no downturn, and sim-

ilarly with respect to upturns. Using various 3 × 3 loss structures,

optimal turning point forecasts were computed and reported in a re-

cent paper.29 It was found that it is difficult, but not impossible, to

forecast the more detailed outcomes.

Some of our work on forecasting turning points was made known to

Milton Friedman. He challenged us to expand the forecasting time pe-

riod to increase the number of turning point episodes. We took up his

challenge by expanding our sample to increase the number of turning

point episodes from 158 to 211.30 Fortunately, the models continued

to forecast about 70 percent or more of the turning points successfully,

and much better than a variety of naı̈ve turning point forecasters, e.g.

a coin flipper, or an “eternal optimist,” who always forecasts NDT at

the top and UT at the bottom, or an “eternal pessimist,” who always

forecasts DT at the top and NUT at the bottom.

Above, we have used likelihood functions based on the assump-

tion that error terms and data are normally distributed. In recent



108 Statistics, Econometrics and Forecasting

works, we have used the Bayesian method of moments, which does not

involve the use of a likelihood function or prior density in obtaining

post data densities for parameters and predictive densities for future

observations. As explained above, various assumptions are made about

the moments of the realized error or disturbance terms in relations that

imply values of the moments of parameters. Then, on making assump-

tions about the moments of future, as yet unobserved error terms,

given the moments of the parameters, the moments of future values

of the dependent variable – say, the rate of growth – can be derived

and used in forecasting. Also, given the moments, proper maxent

densities are easily obtained, which are useful in making probability

statements about future growth rates and deriving turning point fore-

casts. In this work, as mentioned earlier, Tobias, Ryu and I extended

the possible outcomes to include moderate DT, extreme DT and NDT,

and we were able to determine an optimal forecast using a 3 × 3 loss

function and computed probabilities associated with the possible out-

comes. Also, results of experiments with the use of bounds on future

growth rates, e.g. Hicks-like ceilings and floors, were reported. Overall,

the results indicated that the BMOM approach is operational and

yields rather good results with minimal assumptions.

See my paper with Tobias for detailed comparisons of BMOM and

traditional Bayesian (TB) results relating to the multiple regression

model.31 In this paper, posterior odds are calculated that can be used

to compare and/or combine TB and BMOM posterior and predictive

densities. As mentioned in the first lecture, the BMOM is an example

of a new, operational Bayesian information processing, inference pro-

cedure that can be employed when the likelihood function’s and/or

the prior density’s forms are not known.

2.3 Models and economic theory

Now, with the statistical models mentioned above that worked fairly

well in fitting past data and in point and turning point forecasting,
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the next step in our continuing efforts to improve our models was to

check the compatibility of our models with macroeconomic theory. In

this connection, we showed that it is possible to derive our ARLI/WI

model from a standard aggregate demand and supply model. Also,

Chansik Hong in his doctoral dissertation showed that it is possible to

derive the ARLI/WI model from a variant of a Hicksian IS/LM model,

for many years the standard model featured in many macroeconomic

texts.32 Later, Chung-ki Min in his doctoral dissertation showed that

our ARLI/WI model can be derived from a generalized real business

cycle model that he formulated.33 These derivations are examples of

“going from the data to the theory,” which is very often the case in

science.

While the aforementioned compatibility with various economic

theoretical models was satisfying, it was recognized that these mod-

els were not adequate to describe many empirical features of business

fluctuations and growth as described in Burns and Mitchell’s work

and in various business cycle textbooks. Thus, a need to go beyond

these theoretical models was recognized. Below, there is a discussion

of disaggregation and modeling of economies, followed by a descrip-

tion of the Marshallian macroeconomic model and its statistical and

econometric implementation and performance in some forecasting

experiments.

Disaggregation and the Marshallian macroeconomic model

The idea that disaggregation may help to improve the explanatory and

predictive performance of models is an old one, emphasized particu-

larly in the work of Richard Stone, Guy Orcutt and others. Remarkably,

there is not an extensive analytical and empirical literature on the pos-

sible improvements in forecasting provided by disaggregation. In a

working paper co-authored with Enrique de Alba, we analyzed the

aggregation of regression models under various conditions to show

when there would be gains in forecasting precision by forecasting
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components of an aggregate variable and adding the forecasts of com-

ponents to get a forecast of the total.34 Generally, it is when the input

variables to the individual regression equations are highly negatively

correlated that the greatest gains are realized using disaggregation. If

the input variables for individual equations are identical, there is no

gain associated with disaggregation. See also the impressive analyti-

cal results of Lütkepohl for the effects of disaggregation in the con-

text of forecasting stationary time series. Further, in Antonio Espasa’s

empirical forecasting of inflation rates, he reports that forecasting the

components of inflation – that is, rates of change of prices for various

sectors – and summing them to get an overall inflation rate forecast

has provided much improved forecasts relative to those based on anal-

yses of aggregate price level data.35 Thus, there is some analytical and

empirical evidence that not only can disaggregation provide valuable

information about and forecasts for sectors of economies but it may

also lead to better forecasts of aggregate variables.

As described in the first lecture, the idea of disaggregating by sec-

tor with a Marshallian model for each sector occurred to me a few

years ago. The idea appealed to me very much since the Marshallian

industry model, with its demand, supply and entry relations, has been

one of the most successful economic models. Also, William Veloce, a

former doctoral student of mine, and I had used it in analyzing data

for the Canadian furniture industry, with rather interesting results. In

particular, the annual changes in the number of firms in operation

was much greater than we expected and had a substantial impact on

industry supply, which is often overlooked in models that just include

demand and supply equations with no allowance for the number of

firms in operation and entry and exit effects. Indeed, the failure to

include the number of firms in operation in supply equations and to

take account of firm failures and start-ups is a serious defect of many

econometric models of industries and economies, and mathemati-

cal economists’ general equilibrium models. As I have emphasized

in past writing, some supposed partial adjustment supply equations
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giving rise to lagged responses may be confusing lags in entry behav-

ior with lags in supply response, as pointed out in one of my general

articles on the SEMTSA approach.36 Recognition that shutdown and

start-up decisions are very important components of the process of

moving from one equilibrium to another led to the inclusion of an

entry equation in our Marshallian sector model. The other two equa-

tions are simply formulated consumer demand and industry supply

equations.

In formulating our model of a sector, in line with my belief in start-

ing simply and complicating if necessary, the first model – a slightly

modified version of that considered in my earlier work with Veloce – is

a simple one that can be generalized in many directions, if necessary.37

Starting with a competitive industry in which each producer uses a

Cobb-Douglas production function q = ALαKβ , where q = output,

L= labor input, K= capital service input and A=A1A2
αA3

β , the product

of neutral and factor-augmenting technical change effects, and 0 <

α + β < 1. Then the profit function is π = pq − w L − r K , where

p, w and r are the real prices of output, labor and capital services

that are given to the competitive firm. On maximizing profits with

respect to L and K to obtain the profit-maximizing inputs L∗ and

K∗, the firm’s supply function is q = AL∗α L∗β . On multiplying both

sides by the number of firms in operation at time t, N, and the real

price of output, p, the industry “real sales” supply equation is S =
Npq = N A∗ p1/θ w−α/θγ −β/θ . On logging both sides and differen-

tiating with respect to time, the industry real sales supply relation is:

Ṡ/S = Ṅ/N + Ȧ∗/A∗ + (1/θ)ṗ/p − (α/θ)ẇ/w

− (β/θ)ṙ/r SUPPLY (2.8)

where A∗ = A1/θ and dots over variables denote time derivatives,

e.g. Ṅ = d N / dt.

Similarly, we express the consumer demand equation in terms of real

sales; that is, S = pq = B p1−ηxη1

1 xη2

2 · · · xηk

k , where the parameters B
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and η are non-negative and the x’s are “demand shifters” such as real

disposable income, real money balances, etc. On logging this “real

sales” demand equation and differentiating with respect to time, the

result is:

Ṡ/S = (1 − η) ṗ/p +
k∑

i=1

ηi ẋi/xi DEMAND (2.9)

Finally, our entry equation is Ṅ/N = γ ′(� − Fe ), where γ ′ is a

positive adjustment parameter, � is industry profits and Fe is a fixed

real cost of entry. Since � = θS from our Cobb-Douglas model, the

entry relation can be written as:

Ṅ/N = γ ′(� − Fe ) = γ (S − F ) ENTRY (2.10)

where γ = γ ′θ and F = Fe/θ .

There are three endogenous variables in the above model, namely S,

p and N. In line with our SEMTSA approach for discrete time systems,

we solve the above continuous model for the transfer function for the

rate of change of real sales, (1/S)dS/dt, by substituting from equation

(2.10) in (2.8) and then eliminating ṗ/p from the two equations, to

obtain:

Ṡ/S = a(1 − S/F ) + g (2.11)

where g is a linear combination of the rates of growth of demand- and

supply-shifting variables, e.g. real income, real balances, real wage rate,

real price of capital services, etc.

The form of the continuous transfer equation for S in (2.11) is

surprising in that, for constant g, it is in the form of the differential

equation the solution of which is the well-known logistic function,

which has been fitted by many to output data for many industries and

also employed in the marketing literature in connection with modeling

sales of new products. Note that for g = 0, from the phase diagram

considerations, S = F = Se is an equilibrium. If S > Se, d S/dt < 0,
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while if S < Se, d S/dt > 0, and thus the equilibrium is stable. For

temporary variations in g, S will return to Se. Further, if S on the right-

hand side of equation (2.11) has a discrete lag, i.e. S = S(t − 1), then

the return to equilibrium can involve oscillations. Further, a discrete

approximation to (2.11) is well known to be in the form of a chaotic

model.38 Thus (2.11) is indeed a rather appealing and useful initial

formulation.

Now, if a sector model such as that described above is available for

each sector of an economy, it is possible to aggregate labor, capital

and other input factor demands over the sectors to get economy-

wide factor demands for labor, capital and other inputs that, when

combined with labor, capital and other input supply equations, can

determine factor prices, factor utilization and factor payments. In an

open economy, a foreign sector would have to be added along with a

government sector to complete the MMM.

It is, of course, recognized that many variants of the above sector

model are possible. For example, monopolistic competition might be

assumed rather than perfect competition. Interdependencies between

or among sectors through demand or supply of materials can be intro-

duced. However, before considering all these possible complications, it

was thought interesting to check the extent to which the simple model

above was useful in forecasting.

Model specification, estimation and forecasting

To make the above sector model operational, a discrete approxima-

tion to the continuous transfer equation in (2.11) was formulated,39

namely:

y1t = y2tγ2 + y3tγ3 + x ′
1tβ1 + u1t (2.12)

where y1t = (1 − L) log St, y2t = (1 − L) log Wt, y3t = (1 − L) log Yt,

with St real sector sales, Wt real wage rate and Yt real GDP, and
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x ′
1t = (1, St−1, St−2, St−3, (1 − L) log S Rt−1, (1 − L )Mt−1) with S Rt

real stock prices and Mt real money. In equation (2.12) it is possible

that y2t and y3t are exogenous variables. With equations like (2.12) for

each sector, with the real wage rate and real GDP variables assumed

exogenous, we have a set of dynamic seemingly unrelated regression

equations, since we would expect error terms to be contemporane-

ously correlated across sectors. However, it should be realized that the

assumptions regarding the income and wage rate variables as being

exogenous to the sector may not be satisfied. Thus, below, we also

consider models in which they are considered to be endogenous vari-

ables. We have not as yet computed posterior odds on the hypothesis

of exogeneity versus endogeneity – a procedure that would permit us

to use one or the other of the hypotheses or average over the alternative

models.

On the other hand, if y2 and y3 in equation (2.12) are endoge-

nous variables, simultaneous equations complications are present. In

this case, the following MMM reduced form equations for the three

endogenous variables in (2.12) are:

y1 = Xπ1 + v1 (2.13)

and:

Y1 = X�1 + V1 (2.14)

where Y1 = (y2, y3) and X = (X1, X0), where X0 contains prede-

termined variables in the system that are not included in equation

(2.12).

Clearly, with a simultaneous equations model for each sector in

the form of (2.12), the system can be jointly estimated and used

for forecasting – a procedure that has not as yet been implemented.

What has been done in the case that simultaneous equation compli-

cations are present is to substitute from (2.14) in (2.12) to obtain the



National Institute of Economic and Social Research 115

well-known restricted reduced form equation:

y1 = X�1γ1 + X1β1 + v1 = Zδ1 + v1 (2.15)

with Z = (X�1
... X1) and δ′

1 = (γ ′
1

... β ′
1), and where v1 is a reduced

form error vector.

To estimate the coefficients in (2.15), in the Bayesian literature,

“goodness of fit”, “precision of estimation” and “balanced loss” func-

tions have been employed.40 In each case, optimal structural coefficient

estimates that are associated with minimum expected loss are avail-

able for use, and they have been found to have rather good sampling

properties in Monte Carlo experiments.41

In table 2.2 the three loss functions mentioned in the previous para-

graph are presented, along with the optimal Bayesian estimates using

a TB approach and a BMOM approach. In the TB approach, a normal

likelihood function for the reduced form system in equation (2.14) and

a diffuse prior for its parameters are employed to obtain a posterior

density for the reduced form parameters that is employed to evaluate

the expectations of the three loss functions. In the BMOM approach,

there is no use of an assumed likelihood function or prior density, but

rather assumptions are introduced regarding the properties of the real-

ized error terms that imply values of the parameters’ moments, which

can be used to evaluate the optimal, minimal expected loss (MELO)

estimates that are shown in table 2.2. Surprisingly, these optimal

Bayesian estimates turn out to be in the form of “K” or “double K”

class estimates put forward years ago in the econometric literature. For

years, work was directed at the problem of how to choose values for

the K parameters. Fortunately, the Bayesian approach automatically

provides optimal values when diffuse prior information is employed.

Of course, if more informative prior densities for parameters are

employed, the optimal estimates will no longer be in the form of

K or double K class estimates.
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Further, note that the elements of v1 in equation (2.13) may be cor-

related with the elements of V1 in (2.14). If we consider the regression

of v1 on V1, v1 = V1η1 + ε1, and substitute this expression for v1 in

(2.15), we have:

y1 = X�1γ1 + X1β1 + (Y1 − X�1)η1 + ε1 (2.16a)

or:

y1 = W 1δ1 + ε1 (2.16b)

where W1 = (X�1, X1, Y1 − X�1) and δ′
1 = (γ ′

1, β
′
1, η1). To estimate

the coefficient vector δ1, we can use the “goodness of fit,” “preci-

sion of estimation” or “balanced loss” functions shown in table 2.2

and compute optimal estimates. Also, as explained in my paper with

B. Chen, a complete posterior density for the parameters in (2.16b)

and a predictive density and optimal forecasts for future values of y1

can be computed.42

Another variant of the problem is one in which we have a set of

restricted reduced form equations, say for the demand, supply and

entry sector equations, each in the form of (2.16). It is possible to

compute joint posterior densities for the system’s parameters and pre-

dictive densities that take account of the error term correlations. Also,

optimal point estimates and predictions vis-à-vis given loss functions

can be computed.

All of the above finite sample Bayesian results contrast markedly

with the available non-Bayesian estimation techniques for simulta-

neous equations systems. For example, there is no known optimal

finite sample estimator for parameters of a structural equation. All

estimators are generally rationalized in terms of asymptotic criteria,

e.g. consistency, asymptotic unbiasedness, asymptotic efficiency, etc. –

properties also enjoyed by Bayesian estimators. In terms of the two-

stage least squares (2SLS) estimate, note that, for the “goodness of fit”

loss function, if one were to conditionalize by inserting �1 = �̂1 –

the least squares estimate of �1 – the minimizing value is the 2SLS
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estimate. However, this estimate is just a conditional minimizing

estimate, not an unconditional minimizing estimate. Similarly, in

Basmann’s generalized classical linear estimator, there is a condition-

ing on an estimate of the reduced form coefficients, and the resulting

estimator is rationalized in terms or asymptotic properties, not exact

finite sample properties.

Note that, in equation (2.16b), conditional upon�1, it is in the form

of a regression model and this feature can be exploited in obtaining

finite sample posterior densities for its parameters and predictive den-

sities for future observations, These results can be employed to analyze

(2.16b) alone or as one of a set of relations with correlated errors; that

is, in the form of a non-linear SUR system.

That the Bayesian approach yields exact finite sample results for the

individual equations and the joint non-linear SUR system is remark-

able. And, of course, the usual large sample properties of posterior

densities – namely that they are normally shaped with mean equal

to the maximum likelihood estimate and variance-covariance matrix

equal to the inverse of the estimated Fisher information matrix – hold

in the above case, and thus in large samples there will be agreement

with likelihood results, as proved by Jeffreys, Heyde and Johnstone,

Chen and others.43 However, in small to moderate-sized samples,

optimal Bayesian estimates vis-à-vis various loss functions can dif-

fer considerably from often employed non-Bayesian estimates (e.g.,

ordinary least squares [OLS] limited information maximum likeli-

hood [LIML], modified LIML, 2SLS, etc.), which are not optimal

estimates in finite samples. However, since there is much interest

in comparing Bayesian and non-Bayesian results, several non-Bayesian

methods – namely OLS, 2SLS and feasible SUR estimates and

forecasts – are computed. Of course, since the contemporaneous

sector error terms are probably correlated, the SUR procedure may

have an advantage over “single equation” methods such as OLS or

2SLS, especially if all the variables on the right side of the relation are

predetermined and thus simultaneous equation complications are
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not present. Of course, if they are, then simultaneous equation sys-

tems methods, Bayesian, or non-Bayesian, can be employed that take

account of error term correlations.

In forecasting experiments with eleven sector equations, annual

data for 1952 to 1979 for the United States were employed to fit the

sector equations. Then, using reduced form predictions of the two cur-

rent aggregate variables appearing in each sector’s equation, forecasts

of each sector’s real sales for 1980 were computed. These were then

summed over the eleven sectors to obtain a forecast of real GDP and

its growth rate for the US economy. Then, the sector estimates were

updated using data for 1980 and the process repeated to get sector and

aggregate forecasts for 1981 and following years through 1997. Such

forecasts obtained from the sector forecasts were called “disaggregate

forecasts.” A main objective was to determine whether such disaggre-

gate forecasts were better than forecasts obtained using just aggregate,

annual data and several benchmark models.

Many have argued that disaggregation should be advantageous since

with disaggregation the information in many more observations on

the specific characteristics of sectors – e.g. agriculture, mining, con-

struction, etc. – can be utilized to produce improved forecasts relative

to forecasts derived from models using just aggregate data. Of course, if

the sector models are not very good, it is not at all clear that disaggrega-

tion will improve forecasts. Indeed, in a published paper by Grunfeld

and Griliches titled: “Is aggregation necessarily bad?” calculations are

performed to support the contention that aggregation may result in

improved results.44 In my response, “On the Questionable Virtue of

Aggregation,” included in the appendix, I questioned the results of

Grunfeld and Griliches’ article. Indeed, there is unfortunately quite

a limited literature on the analysis of the aggregation-disaggregation

issue.

Note also that, with disaggregated data for eleven sector models, it is

possible to use shrinkage forecasting techniques to make improvement

relative to single sector forecasts. By adding the improved sector
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shrinkage forecasts, the forecast of the total is also usually improved,

as shown in a recent paper.45

In what follows results of forecasting experiments will be reported

that relate to the above issues after a discussion of the data employed

in the forecasting experiments.

Data plots and forecasting results

A chart showing the eleven sectors’ growth rates of real sales is shown

in figure 1.6. As can be seen, the most volatile sectors are agriculture,

construction, durables, and mining. This feature of the data is also

apparent from the box plots presented in figure 1.7. In the future,

it would be desirable to add variables to the analysis – e.g. weather

variables, interest rates, inventory variables, exchange rates, world oil

prices, etc. – to help improve the sector models. In the current exper-

iments, “bare bones” sector models are being employed in an initial

investigation as to whether it pays to disaggregate in terms of improv-

ing aggregate forecast performance.

In table 1.10 are shown the aggregate (A) and disaggregate (DA)

models that are employed in the forecasting experiments. Benchmark

aggregate models include an autoregression of order three, denoted

by AR(3)(A), which has been widely employed. Another benchmark,

aggregate model is the autoregressive’ leading indicator model,

AR(3)LI(A), an AR(3) model that includes the lagged rates of change

of real stock prices and real money – leading indicator variables as

shown in earlier empirical work. Finally, the third aggregate bench-

mark model that is employed is the ARLI model with added lagged

level of real GDP and a time trend variable – an equation that flows

from an aggregate version of the sector Marshallian model and thus is

designated by MMM(A).

Also shown in table 1.10 are the aggregate reduced form equa-

tions for the real wage rate Wt, the first of which is an AR(3)(A)

model, using the rates of change of Wt, namely (1 − L) log Wt. The



National Institute of Economic and Social Research 121

second aggregate equation is the same as the first with the addi-

tion of the leading indicator variables, the rates of change of real

stock prices and real money, and is denoted by AR(3)LI(A). The final

aggregate equation involves the addition of two lagged levels of the

real wage and a time trend to the AR(3)LI(A) model and is designated

MMM(A).

With respect to the sector DA forecasting equations, as shown in

table 1.10, an autoregression of order three in terms of the rates of

change of sector real sales, denoted by AR(3)(DA), is employed along

with AR(3)LI(DA), Distrib.Lag(DA), and the other MMM(DA) dis-

aggregated sector forecasting models, which differ with respect to how

the level of real sales variables enter the relations. In the first model,

denoted by MMM(DA)I, there is only one lagged level of real sales in

the relation, while, in the next two models, real sales lagged two and

three years enter and are denoted by MMM(DA)II and MMM(DA)III

respectively. Finally, the last model incorporates the level of real sales

lagged one year and the square of this variable in the model denoted

by MMM(DA)IV.

In our forecasting experiments we compare the aggregate models’

performance to that of the disaggregated models’ performance in fore-

casting rates of change in aggregate US real GDP year by year, using

RMSE and MAE as our measures of performance. Forecasting results

for aggregate and disaggregated models are shown in table 1.11. Models

were estimated using annual data for 1952 to 1979 and then used

to forecast the real GDP growth rate for 1980 and subsequent years

to 1997, with parameter estimates updated annually. For the aggre-

gate models using aggregate data, least squares forecasts were used,

while, for the disaggregated models and data, least squares and a

number of alternative estimation and forecasting techniques were

employed. The results show that it both pays to use the MMM and

to disaggregate in forecasting annual rates of growth of real GDP for

the United States. As summarized in our Macroeconomic Dynamics

paper,
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As regards the disaggregate forecasts shown in table 2B, it is seen

that all of them have smaller RMSEs and MAEs than those for the

aggregate and disaggregate AR(3) benchmark models. For example,

the AR(3)(DA) model has RMSE = 2.26 and MAE = 1.65, whereas

the disaggregate AR(3)LI, Distributed Lag and MMM(DA) mod-

els have RMSEs ranging from 1.40 to 1.98 and MAEs from 1.17 to

1.62 respectively. The lowest RMSE and MAE are encountered for

the MMM(DA)III model fitted using the SUR approach, namely

RMSE = 1.40 and MAE = 1.17. However, quite a few other

MMM(DA) models had RMSEs in the 1.4–1.5 range and MAEs

in the 1.2–1.4 range.

Thus, the results illustrate some benefits associated with disaggrega-

tion and use of the MMM’s equations. In this connection, it should

be recognized that several on-line forecasting units, including the US

Council of Economic Advisors, the Wharton Newsletter and the Uni-

versity of Michigan, have had MAEs of forecasts in the vicinity of

1.2 percentage points for forecasts of annual rates of growth of real

GNP in the period 1953–84, according to results summarized in the

literature.46

Shown in figure 2.1 are plots of one-year-ahead forecasts associated

with our models using “complete shrinkage” in fitting; that is, assum-

ing that sectors’ coefficient vectors are equal in value. It is seen that

the AR(3) model missed all turning points whereas the other models

performed better in this respect and in terms of RMSEs and MAEs of

forecast, as mentioned above. Note from the plots that these models

missed the 1990–91 downturn, when policy with respect to payments

of interest on demand deposits changed. Use of a broader concept of

money, e.g. M, rather than currency, in our models led to our forecasts

catching the 1990–91 downturn; e.g., see figure 3B in the Zellner-Chen

paper. In future work, at the suggestion of Milton Friedman, we shall

also experiment with the M, money variable.

In summary, use of disaggregation and the Marshallian sector ap-

proach seems to be very promising not only in providing improved
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aggregate forecasts but also in providing sector forecasts that are of

great interest to many. Further disaggregation by sector and region

may also produce improved results of interest to many. Currently, we

are working to close the model by adding factor markets for labor,

capital, and money and government and foreign sectors in one, two

and N sector versions of the model. Variants of the full model have

been solved and used in experiments to study solution properties and

impulse response functions’ forms. When further results are obtained,

it will be a pleasure to share them with you.

Thanks again to all for giving me the honor of presenting the first

of the Sir Richard Stone Lectures, and best wishes for future success

in this lecture series, which honors a truly outstanding person and

scholar.



appendix

On the questionable virtue
of aggregation

In a brilliant and provocative article entitled “Is aggregation neces-

sarily bad?” Y. Grunfeld and Z. Griliches present some calculations

that they interpret as supporting the position that aggregation is not

necessarily bad.1 As R. Solow points out, such a position runs counter

to “one of the deep-seated prejudices of the economics profession –

the belief in disaggregation.”2 But, even so, Solow – while calling for

more evidence and recognizing the intricacies of the problem – cites

the Grunfeld-Griliches paper approvingly.

Of course, the belief in disaggregation is more than a prejudice

on the part of the economics profession. As Orcutt and Rivlin state,

“That microeconomic data contain more information than the same

data aggregated is obvious. In general, one might expect some of this

extra information to be useful for purposes of testing and prediction.”3

Further, the results of Theil on aggregation bias, even though limited

to linear aggregation (where one might think that the aggregation

problem would be least bothersome), cannot be anything but disturb-

ing to those who rely solely on estimated macro-relationships.4 In fact,

Grunfeld and Griliches (GG) devote a considerable portion of their

paper to an attempt to explain why it is that one of Theil’s theorems

is contradicted by their empirical findings.

Given this extremely important issue of micro-versus macro-

analysis – one that has, among other things, vital implications for

125
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the direction of economic research – it seems worthwhile to present

an explanation of GG’s empirical results, which apparently indicate

that, in two instances, macro-relations have greater explanatory power

than do the micro-relations underlying these macro-relations. Once

set forth, the explanation will appear simple and obvious. That, in

reality, this is not so is clear from the fact that many researchers who

have analyzed micro-temporal cross-section data have failed to esti-

mate their relationships in such a way as to utilize all the information

in their data and thus to obtain the greatest possible explanatory and

predictive power.5

GG analyzed two sets of data: one relating to investment demand

and the other to fertilizer demand. Since the methodology and results

were quite similar in both cases, we shall concentrate attention on

just one of these analyses: that of investment demand. Annual data

relating to each of eight corporations were first employed to estimate

micro-investment functions. Then a “composite” measure of goodness

of fit, R2
c , was computed – a measure that GG constructed to show

the percentage of the variation of the eight corporations’ aggregate

investment “explained” by the estimated micro-investment functions.

This “composite” coefficient, R2
c , was then compared with a squared

multiple correlation coefficient, R2, for a regression of the eight firms’

aggregate investment on “independent” variables, each of which was

a simple sum of corresponding explanatory micro-variables. It was

found that the macro R2 was slightly larger than the composite

coefficient, R2
c . GG interpret this result in the following words

(1960, p. 3):

The composite coefficient of multiple determination computed for

the eight regressions is presented in the last row of table 1. It will be

observed that this coefficient is lower than the coefficient of multiple

determination of the aggregate regression. This result implies that,

if we want to explain the aggregate investment behavior of the eight

corporations, we are better off if we first aggregate all the variables
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and then compute one regression than if we compute separate

regressions for each firm and then “aggregate their explanations.” If

our aim were only to explain aggregate investment, we would have

gained nothing from disaggregation.

To illustrate their approach as simply as possible, consider the case

in which we have data relating to two firms. For these firms we posit

the following micro-relations:

y1t = β1x1t + α1 + u1t
(1)

y2t = β2x2t + α2 + u2t

where the subscript t denotes period t, y1t and y2t are observed invest-

ment of firms 1 and 2 respectively, x1t and x2t are observed values

of explanatory variables, u1t and u2t are disturbance terms and the

α’s and β’s are micro-parameters. Now, in fitting the relationships in

(1) by the OLS method, which GG utilized, we seek values of the α’s

and β’s that minimize
∑T

t=1u2
1t and

∑T
t=1u2

2t or that minimize:

S1 =
T∑

t=1

(
u2

1t + u2
2t

)
(2)

For the macro-relation, derived from the micro-relations in (1), we

have:

Yt = γ1Xt + γ0 + Vt (3)

with Yt = y1t + y2t, Xt = x1t + x2t, Vt a macro-disturbance, and γ 1

and γ 0 macro-parameters. In estimating equation (3) by least squares,

values of γ 1 and γ 0 are sought which minimize:

S2 =
T∑

t=1

V2
t (4)
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After having estimated the relations in (1) and (3), the following

goodness of fit measures were considered:

R2
a = 1 − S2

a

S2
y

(5)

for the macro-relationship in (3) and:

R2
c = 1 − S2

c

S2
y

(6)

for the micro-relationships in (1). S2
y, which appears in both (5) and

(6), is the estimated variance of the macro-dependent variable in (3),

S2
a is an estimate of the variance of Vt in (3), and S2

c is given by:

S2
c = 1

T′

T∑
t=1

(û1t + û2t)
2 (7)

with û1t and û2t being computed residuals from the least squares esti-

mates of the micro-relations in (1) and T′ the sample size adjusted for

loss of degrees of freedom due to estimation.6 Since, as GG point out:

R2
c = 1 − S2

c

S2
a

(
1 − R2

a

)
(8)

the relative magnitude of R2
c and R2

a depends on the relative magnitude

of S2
a and S2

c .

It is important to realize that S2
c in (7) is based on

∑T
t=1(û1t + û2t)2

but that the method of estimation employed to estimate the micro-

relations minimizes the quantity S1 shown in (2). On the other hand,

S2
c is based on

∑T
t=1 V̂2

t , and this is just the minimal value of S2

shown in (4). Thus, for the micro-approach, GG use one criterion

to get estimates and a different criterion to construct R2
c , whereas

in the macro-approach the same criterion is employed in estima-

tion and in constructing R2
a. To obtain a similar consistency for the
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micro-approach as in the macro-approach, we should minimize:

S3 =
T∑

t=1

(u1t + u2t)
2 (9)

rather than S1, with respect to α1, β1, α2 and β2 to get coefficient

estimates. That is, we minimize:

S3 =
T∑

t=1

(y1t − β1x1t − α1 + y2t − β2x2t − α2)2

=
T∑

t=1

[Yt − (β1x1t + β2x2t) − (α1 + α2)]2 (10)

wherein Yt is the macro-dependent variable.

Another way of rationalizing the minimization of S3 to obtain esti-

mates is to add the equations in (1) to obtain:

Yt = y1t + y2t = β1x1t + β2x2t + α1 + α2 + u1t + u2t (11)

and this gives the “explanation” of the macro-variable Yt implied by

the micro-system. Then minimization of S3 is nothing more than OLS

applied to (11).

Will minimization of S3 to obtain micro-estimates change the ver-

dict regarding macro- versus micro-goodness of fit? Fortunately, it

is not necessary to do any computations to provide an answer. Note

from (10) and/or (11) that the macro-approach involves minimiza-

tion of S3 subject to the constraint β1 = β2. Since a constrained min-

imum can never be smaller than an unconstrained minimum, we

must have S3 ≤ S2 with equality holding when β1 = β2. Thus, this

micro-approach7 will always do as well as, if not better than, a macro-

approach in terms of goodness of fit.8

In summary, then, it can be said that GG’s paradoxical results have

been explained. When micro-data are analyzed in an appropriate fash-

ion, it appears, according to GG’s criterion, that these micro-analyses

will be found not inferior to macro-analyses based on the same data.9
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45. Heckerman et al. (2000).

46. For further discussion and analysis see Berger (1985), Bernardo and

Smith (1994), Press (1989) and other Bayesian texts.

47. For some work on the theory and application of the Bayesian method

of moments, introduced in 1994, see Zellner (1997a and b), Zellner

and Tobias (1999), LaFrance (1999), Tobias (1999), Soofi (2000),
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Mittelhammer, Judge and Miller (2000) and van der Merwe, Pretorius,

Hugo and Zellner (2001).

48. See references in note 47. See also Ryu (1990 and 1993) for innovative

use of maximum entropy procedures in the analysis of various inference

problems.

49. Golan, Judge and Miller (1996) and Mittelhammer, Judge and Miller

(2000).

50. See, Zellner and Tobias (1999).

51. Good (1991). Also, Press and Tanur (2001) provide convincing evidence

that leading scientists use much subjective information in their work.

52. See, e.g., some of the papers in Poirier (1991).

53. See Zellner and Vandaele (1975) for the prior that Stein used to produce

his shrinkage estimate for his n means (1962, 266).

54. See Jeffreys (1998, 194), Heyde and Johnstone (1978) and Chen (1985).

55. Anderson and Rubin (1949).

56. Zellner (1983).

57. Diebold and Lamb (1997).

58. Nelson and Startz (1990), Zellner (1978, 1983, 1997a, 277ff.).

59. Tsurumi (1990), Gao and Lahiri (1999), Park (1982), Shen and Perloff

(2001), Diebold and Lamb (1997) and Zellner (1998).

60. See, e.g., Dufour and Khalaf (2002) and references cited therein.

61. Soofi (2000). See also Soofi (1996) for additional useful, information

theoretic results.

62. Hogarth and Einhorn (1992).

63. Fair (1992).

64. See Zellner and Palm (1974, 1975 and 2001).

65. McNees (1986) and Litterman (1986).

66. Fisher and Whitley (2000).

67. Zellner and Peck (1973).

68. Garcia-Ferrer, Highfield, Palm and Zellner (1987).

69. Burns and Mitchell (1946).

70. See Zellner, Hong and Gulati (1990), pages 390–393, for estimation

results.

71. Hong (1989).

72. Wolff (1985).
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73. Min and Zellner (1993). For earlier work on Bayesian variable selection

procedures, see Zellner and Siow (1979).

74. Fildes (1994).

75. Wecker (1979) and Kling (1987).

76. Zellner (1958).

77. Zellner and Min (1999).

78. Hong (1989) and Min (1992).

79. Orcutt (1952 and 1957).

80. Zellner and Tobias (2000). See also Highfield (1986) for a procedure

that may produce even better forecasting results for this disaggregated

approach.

81. De Alba and Zellner (1991), Lütkepohl (1986) and Zellner (1962).

82. De Alba and Zellner (1991).

83. Veloce and Zellner (1985).

84. For plots of the output of such simple chaotic models as initial con-

ditions and the parameter value are varied, see Kahn (1990, 428ff.) and

Koop, Pesaran and Potter (1996, 124ff). In the latter reference, interesting

generalizations of the basic chaotic model are considered.

85. Zellner and Chen (2001).

86. Zellner, Huang and Chau (1973).

87. Quintana, Chopra and Putnam (1995).

LECTURE 2: NATIONAL INSTITUTE OF ECONOMIC AND

SOCIAL RESEARCH

1. See Zellner and Chen (2001).

2. See Box and Jenkins (1976) and Quenouille (1957) for early work on time

series analysis and Tinbergen (1937 and 1939) for pioneering work on

econometric model construction and implementation.

3. Zellner and Palm (2000).

4. See Zellner and Palm (1975), reprinted in Zellner and Palm (2001).

5. Moore, Box, Kaitz, Pierce, Stephenson and Zellner (1981).

6. McNees (1986).

7. See Fisher and Whitley (2000).

8. Hamilton, Roberts, Pugh, Milliman, Goldstone and Zellner (1968).

9. Christ (1951 and 1975).
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10. Nelson (1972) and Nelson and Plosser (1982).

11. Cooper (1972).

12. Adelman and Adelman (1959), Zellner and Peck (1973).

13. Fair (1992) and Zellner (1992).

14. Burns and Mitchell (1946).

15. Zellner, Huang and Chau (1973).

16. Huang and Zellner (1966).

17. Mittnik (1990).

18. Otter (1990).

19. Zellner and Min (1993), reprinted in Zellner (1997a).

20. Highfield (1992) and Tobias (2001).

21. Zellner and Vandaele (1975).

22. Swamy (1971), West, Harrison and Mignon (1985) and Kim and Nelson

(1999).

23. Bates and Granger (1969). Also, Winkler (1981) provides one of the first,

if not the first, formal Bayesian analysis of how to combine forecasts. For

further Bayesian combining methods, see Zellner (1987) and Min and

Zellner (1993).

24. Clemens (1989).

25. See, Palm and Zellner (1992) and Min and Zellner (1993).

26. Zellner (1987).

27. See Min and Zellner (1993).

28. Zellner and Hong (1991).

29. Zellner, Tobias and Ryu (1999).

30. Zellner and Min (1999).

31. Zellner and Tobias (1999).

32. Hong (1989).

33. Min (1992).

34. De Alba and Zellner (1991).

35. Lütkepohl (1986), Espasa (1994) and Espasa and Matea (1990).

36. See, e.g., some of the articles in Zellner (1997a).

37. See Veloce and Zellner (1985) and Zellner (2001).

38. See, e.g., Kahn (1990) and Koop, Pesaran and Potter (1996).

39. Zellner and Chen (2001).
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40. These are discussed in various articles in Zellner (1997a) and in Dey,

Ghosh and Strawderman (1999).

41. See, e.g., the summary of Monte Carlo experimental results in Zellner

(1998).

42. For more on impressive, recent developments in computing techniques

that have had a substantial impact on Bayesian analysis, see the articles by

Geweke (1999) and Geweke and McCausland (2001) and the references

that they cite. Also, in Berger (2000), references to free downloadable

Bayesian software are provided, including the Cambridge BUGS and the

Duke BATS programs.

43. Jeffreys (1998), Heyde and Johnstone (1978), Chen (1985).

44. Grunfeld and Griliches (1960).

45. Zellner (2002b).

46. See Zarnowitz (1986).

APPENDIX: ON THE QUESTIONABLE VIRTUE OF AGGREGATION

1. Grunfeld and Griliches (1960).

2. Solow (1960, 318).

3. Orcutt and Rivlin (1960, 321).

4. Theil (1954).

5. Compare Zellner (1961) and Zellner and Huang (1961).

6. It is not clear what GG used for T′. Further, it should be noted that taking

T′ = T − k, with k an integer, will not in general lead to an unbiased

estimator of the variance of u1t + u2t when u1t and u2t are correlated;

cf. Zellner and Huang (1961), 14.

7. In some important senses this micro-approach is not the best one; Zellner

(1961) cf. and Zellner and Huang (1961).

8. The argument is easily generalized to any number of micro-relations and

any number of independent variables.

9. This statement in no way implies that macro-analyses should be aban-

doned nor that GG’s criterion is an appropriate one. Perhaps a more

appropriate criterion would be, say, a quadratic form in the forecast

errors.
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